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SU(4) Heisenberg model on the honeycomb lattice with exchange-frustrated perturbations:
Implications for twistronics and Mott insulators
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The SU(4)-symmetric spin-orbital model on the honeycomb lattice was recently studied in connection to
correlated insulators such as the eg Mott insulator Ba3CuSb2O9 and the insulating phase of magic-angle twisted
bilayer graphene at quarter filling. Here we provide a unified discussion of these systems by investigating
an extended model that includes the effects of Hund’s coupling and anisotropic, orbital-dependent exchange
interactions. Using a combination of mean-field theory, linear flavor-wave theory, and variational Monte Carlo,
we show that this model harbors a quantum spin-orbital liquid over a wide parameter regime around the
SU(4)-symmetric point. For large Hund’s coupling, a ferromagnetic antiferro-orbital ordered state appears, while
a valence-bond crystal combined with a vortex orbital state is stabilized by dominant orbital-dependent exchange
interactions.
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I. INTRODUCTION

Kugel-Khomskii (KK) models [1] are effective Hamilto-
nians with couplings between spin and orbital degrees of
freedom that describe various phenomena in transition metal
oxides [2,3]. Recently, the applications of KK models have
been extended to Mott insulators with strong spin-orbit cou-
pling [4], iron-pnictide superconductors [5], Coulomb im-
purity lattices designed with scanning tunneling microscope
[6], and cold atom systems [7]. In realistic KK models, the
interplay between orbital configuration and lattice geometry
generally constrains the virtual electron transfers and gen-
erates exchange frustration in the form of bond-dependent
and anisotropic spin-orbital interactions [4]. This kind of
exchange enhances quantum fluctuations even in unfrus-
trated lattices [8], leading to the expectation that KK models
may present exotic orders, valence bond crystals (VBCs), or
even quantum spin-orbital liquids (QSOLs) as their ground
states [9].

The most well-studied examples of KK models display
two-orbital degeneracy and can be implemented in three dis-
tinct solid-state platforms. Historically, the first one arises in
Mott insulators with eg orbitals [1], where the orbital Hilbert
space is spanned by d3z2−r2 and dx2−y2 orbitals [10–14]. The
second platform comprises t2g Mott insulators with 4/5d1

magnetic species, in which the strong spin-orbit coupling
(SOC) favors a low-energy j = 3/2 multiplet [15]. These
models can be alternatively expressed in terms of pseudospins
and pseudo-orbitals that mimic the eg operators [16–20].
Lastly, two-orbital degenerate KK models were proposed as
relevant descriptions for correlated insulators observed in
twistronic systems [21,22]. This proposal hangs upon the

validity of Wannier orbitals to reproduce the twist-induced
flat bands. If this is the case and the interactions are siz-
able enough to describe these systems in the strong-coupling
regime, then KK Hamiltonians naturally arise as minimal
models for their insulating phases [23–30].

One example of the two-orbital KK model is the SU(4)
Heisenberg model, which is receiving renewed interest due
to suggested implementations in the three solid-state plat-
forms described above [19,20,23–32]. Although the model
is not exchange-frustrated, the higher symmetry fosters liq-
uid ground states as first noted in SU(N) “spin” models in
the large-N limit [33–35]. A specific study of the SU(4)
Heisenberg model on the honeycomb lattice was performed in
Ref. [36] using several numerical and analytical techniques.
The combination of exact diagonalization (ED) and varia-
tional Monte Carlo (VMC) provided good evidence in favor of
a π -flux QSOL with fermionic excitations similar to the ones
obtained in large-N theories. The experimental motivation
of the authors of Ref. [36] was the eg system Ba3CuSb2O9,
in which Cu2+ ions were proposed to form layered hon-
eycomb lattices [37]. Other theoretical descriptions of the
same compound also regarded the SU(4) Heisenberg model
as relevant, but included exchange-frustrated terms induced
by orbital-dependent virtual hopping processes [31,38]. In the
last year, two new platforms for the SU(4) Heisenberg model
were proposed: the analogues of Kitaev materials with 4/5d1

magnetic species (e.g., α-ZrCl3) [19,20] and the Mott phase
of twisted bilayer graphene (TBG) [24].

The purpose of this paper is to study the effects of
exchange-frustrated and Hund’s coupling induced interac-
tions on the SU(4) Heisenberg model on the honeycomb
lattice. We present a detailed analysis of a KK model derived
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FIG. 1. Phase diagram of the Kugel-Khomskii model as a func-
tion of the ratio of hopping parameters ξ = t ′/t and the dimension-
less Hund’s coupling parameter η = JH/U . There are three distinct
phases: a quantum spin-orbital liquid (QSOL, in blue), a noncollinear
ordering of spin dimers (NCD, in green), and a ferromagnetic state
with staggered orbital order (FM AFOxz, in orange). A region of
instability of the last phase is indicated in gray and discussed in
Sec. III B.

independently in Refs. [24] and [31] using mean-field theory
(MFT), linear flavor-wave theory (LFWT) (complemented by
a variational study considering the Huse-Elser wave function
[39,40]), and VMC. Our main results are summarized in
Fig. 1. Our study corroborates the existence of a stable QSOL
phase around the SU(4)-symmetric point studied in Ref. [36].
For larger values of the SU(4)-symmetry-breaking interac-
tions, we find either a two-sublattice state with ferromagnetic
order for the spin degrees of freedom or a VBC phase of spin
dimers coupled to a three-sublattice vortex orbital state. Our
phase diagram agrees qualitatively with the one obtained by
the authors of Ref. [31] by exact diagonalization of the same
model on small clusters.

The remaining sections are organized as follows. We
present the local degrees of freedom and the KK model in
Sec. II. Besides fixing the notation, this section also discusses
the properties of the orbital degrees of freedom and symme-
tries of the model that will be relevant for our subsequent
analysis. Section III identifies possible ordered ground states
of the KK model using MFT, expanding the phase diagram
presented in Ref. [24]. The effects of quantum fluctuations
on these states are then evaluated within LFWT. The QSOL
proposed in Ref. [36] and possible VBCs ground states of
this KK model are studied within VMC as presented in
Sec. IV. The phase diagram in Fig. 1 is constructed through
the combination of the LFWT and VMC energetics studies.
The relevance of our results and perspectives for future work
are provided in Sec. V.

II. MICROSCOPIC MODELS

A. Local degrees of freedom

Let us start with a brief description of the local degrees
of freedom of the magnetic species that we are investigating.
We assign to each site a spin 1/2 as well as an orbital degree
of freedom corresponding to quantum numbers Sz = ± 1

2 and

τ z = ± 1
2 , respectively. The Hilbert space of each site i is then

spanned by four states |Sz
i , τ

z
i 〉 (often called colors) which are

labeled as

|1〉 = ∣∣ 1
2 , 1

2

〉
, |2〉 = ∣∣ − 1

2 , 1
2

〉
,

|3〉 = ∣∣ 1
2 ,− 1

2

〉
, |4〉 = ∣∣ − 1

2 ,− 1
2

〉
. (1)

The operators for spin (Si) and orbital (τ i) obey the usual
SU(2) algebra [Sα

i , Sβ
j ] = iεαβγ Sγ

i δi j , [τα
i , τ

β
j ] = iεαβγ τ

γ

i δi j

and [Sα
i , τ

β
j ] = 0 and are represented by the Pauli matrices

in their respective spaces.
The orbital degree of freedom may describe, for instance, a

low-energy eg doublet {d3z2−r2 , dx2−y2} in Mott insulators with
octahedral crystal field [4]. Alternatively, it may refer to px

and py orbitals in optical lattices [41] or twistronic systems
[24]. The doublets in these two cases constitute the orthogonal
eigenstates of the τ z operator. We will be concerned only with
Hamiltonians that remain invariant under C3 rotations around
the normal axis of the honeycomb lattice. Similar C3 rotations
on the internal orbital subspace spanned by (τ z, τ x ) accounts
for the effect of the spatial transformations on the orbitals.
The remaining component τ y has a distinct role that is more
easily seen by the effect of the time-reversal operator �. In the
orbital space, � reduces to a complex conjugation and leads
to �τ�−1 = (τ x,−τ y, τ z ). The physical interpretation of τ y

is that it distinguishes between states with different orbital
chiralities [25] and is, therefore, related to orbital-magnetic
orders [24].

B. Kugel-Khomskii model

We now introduce the minimal model proposed for
the Mott insulating phase of Ba3CuSb2O9 and TBG in
Refs. [24,31]. Despite the different nature of the orbitals in
these systems, their in-plane symmetries enable one to assign
the same Hubbard model in both cases. The interactions HI

are restricted to be onsite

HI = U
∑

i

∑
α=1,2

ni,α,↑ni,α,↓ + (U − 2JH )
∑

i

ni,1ni,2

+ JH

∑
i,s,s′

c†
i,1,sc

†
i,2,s′ci,1,s′ci,2,s

+ JH

∑
i,α �=β

c†
i,α,↑c†

i,α,↓ci,β,↓ci,β,↑, (2)

in which ci,α,s = cα,s(ri ) is the annihilation operator of an
electron at position ri on the honeycomb lattice with orbital
state α = 1, 2 (corresponding to τ z = ± 1

2 , respectively) and
spin s =↑,↓ (for Sz = ± 1

2 ). We also introduce the number
operator for a given orbital as ni,α = ∑

s c†
i,α,sci,α,s and two

parameters for electrostatic interactions: the direct Coulomb
repulsion U > 0 and Hund’s coupling JH > 0. The tunneling
between nearest neighbors on the honeycomb lattice is mod-
eled by the tight-binding Hamiltonian

HTB =
∑
i∈A

∑
α,β

3∑
γ=1

∑
s

c†
α,s(ri )ĥ

(γ )
αβ cβ,s

(
ri + êγ√

3

)
+ H.c.,

(3)
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where ê1 = ẑ, ê2 = − 1
2 ẑ +

√
3

2 x̂, ê3 = − 1
2 ẑ −

√
3

2 x̂ are unit
vectors in the zx plane, and i runs over the A sublattice, i.e.,
the triangular Bravais lattice. Here we set the lattice spacing
of the honeycomb lattice to 1. The matrix ĥ(γ )

αβ depends on the
overlap between the orbitals at positions ri and r j , connected

by a link in the direction ri j = r j − ri = 1√
3
êγ . Using an

analogy with organic chemistry, we can think of two types
of hoppings involving p orbitals that are connected by σ

or π bonds, as indicated in Fig. 2. The matrix ĥ(γ )
αβ is then

parameterized as [24,31]

ĥ(γ )
αβ = t + 2t ′êγ · τ = [

tσ
(

1
2 + êγ · τ

) + tπ
(

1
2 − êγ · τ

)]
, (4)

where tσ,π ≡ t ± t ′.
The KK model derived within second-order perturbation theory in the regime t, t ′ 
 U, JH reads

H(ξ, η) =
∑
〈i j〉

{
J1P1

i j[(1 − ξ 2)Q+
i j − 2(1 + ξ 2)(P+−

i j + P−+
i j )]

− J2P0
i j

[
8(1 − ξ 2)τ y

i τ
y
j + 2(1 + ξ )2P++

i j + 2(1 − ξ )2P−−
i j + 2(1 + ξ 2)(P+−

i j + P−+
i j )

]
− J3P0

i j ((1 − ξ 2)Q−
i j + 2(1 + ξ )2P++

i j + 2(1 − ξ )2P−−
i j )

}
. (5)

Here we defined the dimensionless parameters ξ = t ′/t and η = JH/U and the exchange coupling constants J1 = J
1−3η

, J2 = J
1−η

,

J3 = J
1+η

, where J = t2/U . As usual in KK models, the spin part of the interaction between the electrons at sites i and j is written
in terms of the projectors onto states with total spin S = 0 and S = 1:

P0
i j = 1

4 − Si · S j, P1
i j = Si · S j + 3

4 . (6)

Notice that the Hamiltonian is invariant under global spin SU(2) rotations. In contrast, the orbital part of the interaction is in
general anisotropic and bond dependent, as it involves the operators

Pμν
i j ≡ (

1
2 + μêi j · τ i

)(
1
2 + νêi j · τ j

)
, Q+

i j = 4[τ i · τ j − (êi j · τ i )(êi j · τ j )],

Q−
i j = 4

[
τ i · τ j − 2τ

y
i τ

y
j − (êi j · τ i )(êi j · τ j )

]
, (7)

where μ, ν ∈ {+,−} and êi j = êγ for ri j ‖ êγ . Explicitly, we can write the Hamiltonian as

H(ξ, η) =
∑
〈i j〉

{
(J1 + J2)

(
1 − ξ 2

)(
2Si · S j + 1

2

)(
2τ i · τ j + 1

2

)
+ (J1 − J3)

(
1 − ξ 2

)(
2τ i · τ j + 1

2

)

+ 2(J2 − J3)(1 − ξ 2)

(
2Si · S j − 1

2

)(
2τ

y
i τ

y
j + 1

2

)
− (J1 − 2ξ 2J2 − J3)

(
2Si · S j + 1

2

)

+ ξ (J2 + J3)4Si · S j (êi j · τ i + êi j · τ j ) + ξ 2(J1 + J3)8Si · S j (êi j · τ i )(êi j · τ j )

+ 2ξ 2(3J1 − J3)(êi j · τ i )(êi j · τ j ) − (J1 + 2ξ 2J2 + J3)

}
. (8)

Let us first consider the model with ξ = η = 0. In this
case, the original two-orbital Hubbard model in Eqs. (2) and
(3) is invariant under global SU(4) color transformations. As
a result, at this point the KK model reduces to H(0, 0) =
HSU(4) − 3NJ , where N is the number of sites of the honey-
comb lattice and HSU(4) is the SU(4) Heisenberg model given
by

HSU(4) = 2J
∑
〈i j〉

(
2Si · S j + 1

2

)(
2τ i · τ j + 1

2

)
,

= 2J
∑
〈i j〉

4∑
a,b=1

Sb
a(i)Sa

b ( j). (9)

Here we introduce the color exchange operators

Sb
a(i) = |a〉i〈b|i, (10)

which can be recognized as the SU(4) generators [36]. Any lo-
cal spin-orbital operator that appears in Eq. (5) can be written
as a linear combination of Sb

a(i) operators. In particular, HSU(4)

is proportional to the sum of color permutation operators
Pi j ≡ ∑

a,b Sb
a(i)Sa

b ( j) over all nearest-neighbor bonds.
In the case of isotropic hopping (ξ = 0) but nonzero

Hund’s coupling (η > 0), the Hamiltonian is given by

H(0, η) =
∑
〈i j〉

[
4J1P1

i j

(
τ i · τ j − 1

4

)

− 8J2P0
i j

(
τ

y
i τ

y
j + 1

4

)

−4J3P0
i j

(
τ i · τ j − 2τ

y
i τ

y
j + 1

4

)]
. (11)

Thus, along the ξ = 0 line in parameter space, the model
retains an SU(2)×U(1) symmetry. The U(1) symmetry is due
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FIG. 2. Representation of (a) pz and (b) px orbitals in the zx
plane. The orbitals in (a) overlap with each other analogously to a
σ -bond in organic chemistry. Analogously, (b) depicts active orbitals
similar to a π -bond.

to the conservation of the orbital chirality, as
∑

i τ
y
i commutes

with the Hamiltonian.
For general values of ξ and η, model (5) exhibits a global

SU(2)×Z3 symmetry, where the Z3 symmetry is associated
with ±120◦ orbital rotations about τ y accompanied by the
rotation of the bond directions. The bond-dependent hopping
t ′ introduces the exchange-frustrated perturbations given in
Eq. (8). Of particular interest are the points ξ = ±1 with
η = 0, where Eq. (5) becomes

H(±1, 0) = 8J
∑
〈i j〉

(
2Si · S j + 1

2

)
P++(−−)

i j − 6NJ. (12)

The orbital interactions take this form because Eq. (4) involves
a projector to either σ or π bonds (Fig. 2). Hence the electrons
interact with each other only if they both occupy the orbital
state which is an eigenstate of êi j · τ with eigenvalue ±1/2 for
t ′ = ±t , respectively. This type of orbital dependence appears
in compass models for eg orbitals [9] or for j = 3/2 states
after projection of t2g states in the limit of strong spin-orbit
coupling [16,17].

III. ORDERED STATES

The first step to gain intuition of the phase diagram of the
model in Eq. (5) is to study ordered states with MFT. In this
section, we study classical ordered states that are equivalent
to a product state

|�〉 =
∏

i

|ψi〉, (13)

in which |ψi〉 is a linear combination of the states in Eq. (1).
The method provides the phase diagram in Fig. 3(a), which
extends the result of Ref. [24] by including nonzero orbital-
dependent hopping t ′. We shall then analyze the stability
of the ordered states against quantum fluctuations using
LFWT [42].

A. Mean-field theory

Our choice of ordered states is guided by the symmetries
discussed in Sec. II B. The SU(2) symmetry and the absence
of geometric frustration suggest that, classically, the spins

FIG. 3. Classical states in the spin-orbital model Eq. (5).
(a) Mean-field phase diagram. The spin sector may display ferro-
magnetic (FM) or antiferromagnetic (AFM) order. In (b) through
(d), the arrows represent the orbital order within the plane (τ z, τ x ):
(b) ferro-orbital (FOxz), (c) Néel (AFOxz), (d) ferro-orbital vortex,
and (e) antiferro-orbital vortex. The numbers in (d) and (e) indicate
the six-sublattice magnetic unit cell.

form either a ferromagnetic (FM) or an antiferromagnetic
(AFM) order. Equation (7) suggests that the orbitals may
either align with τ y or be contained in the (τ z, τ x ) plane.
By computing the classical energy for different orbital con-
figurations, we find that only in-plane orbital-ordered states
are competitive. When bond-independent interactions domi-
nate, the system develops ferro-orbital (FOxz) or antiferro-
orbital (AFOxz) in the xz plane as illustrated in Figs. 3(b)
and 3(c). On the other hand, interactions proportional to
(êi j · τ i )(êi j · τ j ) favor the “vortex” orbital orders displayed
in Figs. 3(d) and 3(e). In fact, the orbital vortex states are
the best trial ground states of the compass model on the
honeycomb lattice [41]. They also appear as the exact ground
state for a special point of the JK� model for the honeycomb
iridates [43].
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We find that the mean-field phase diagram is symmetric un-
der ξ �→ −ξ . Figure 3(a) shows the phase diagram for ξ > 0
and 0 < η < 0.3. In the physically more relevant regime ξ <

1, we observe a competition between two states with AFOxz
order distinguished by the FM or AFM spin order. In agree-
ment with the authors of Ref. [24], the FM state has lower
energy for ξ → 0 at any fixed η. The transition from AFOxz to
the orbital vortex states across the line ξ = 1 can be attributed
to a six-sublattice orbital rotation symmetry of the model
discussed in Ref. [31], which maps H(ξ, η) �→ H(1/ξ, η) and
connects the collinear orbital phases in Figs. 3(b) and 3(c) to
their vortex counterparts in Figs. 3(d) and 3(e) [43].

B. Linear flavor wave theory

A careful analysis of MFT indicates that the classical phase
diagram in Fig. 3(a) is incorrect near the point ξ = η = 0, cor-
responding to HSU(4). The reason is that the expectation value
〈�|HSU(4)|�〉 is the same for any state in which 〈ψi|ψ j〉 = 0,
i.e., whenever neighboring sites have different colors [36].
The number of states satisfying this constraint increases ex-
ponentially with the system size and flags the onset of a
disordered state. On the other hand, finite Hund’s coupling
is expected to favor spin ferromagnetism, in consistency with
the FM AFOxz phase. It is then desirable to study the effect
of quantum fluctuations on the energy and stability of this
spin-orbital ordered state.

LFWT can be viewed as the analog of spin wave theory for
spin-orbital models [42]. It allows estimates of the excitation
dispersion, correction to the zero-point energy and reduction
of the order parameter by quantum fluctuations (�M) in a sin-
gle formalism. It also provides some criteria for the stability of
a given ordered phase. For example, the application of LFWT
to AFM AFOxz leads to dispersion relations with complex
frequencies at any η �= 0 and ξ �= 0. Such complex dispersion
clearly indicates that the AFM AFOxz state is unstable and
explains its absence in Fig. 1.

We then study the FM AFOxz state, which is the ordered
state with fixed colors mA = 3 and mB = 1 on the A and B
sublattices, respectively. The Holstein-Primakoff transforma-
tion introduces three bosonic species per sublattice labeled by
birm, in which i indexes the unit cells, r the sublattices and
m �= mr correspond to the colors in Eq. (1). After replacing
spin-orbital operators by their bosonic representations and
truncating the Hamiltonian at the level of quadratic terms, the
LFWT Hamiltonian is written in the Fourier space as

HLFWT = − 2NJ1(3 + ξ 2) +
∑

k

B†
kHkBk

− 3

2
N

[(
3 + ξ 2

2

)
J1−2(1 + ξ 2)J2−(1+ξ 2)J3

]
,

(14)

where k lies in the Brillouin zone. Here B†
k is a 12-component

spinor containing operators of the form

B†
k = (

b†
kA1 b†

kB3 b−k,A1 b−k,B3

b†
kA2 b†

kA4 b†
kB2 b†

kB4

b−k,2A b−k,A4 b−k,B2 b−k,B4
)
, (15)

FIG. 4. (a) Dispersions ωλ(k) for λ = 1, 2 (continuous line) and
λ = 3, . . . , 6 (dashed lines) of the ordered state FM AFOxz for
η = 0.2 and ξ = 0. (b) Dispersions ωλ(k) of the ordered state FM
AFOxz for η = 0.2 and ξ = 0.4 with the same convention set in
(a). (c) Correction to the order parameter �M as a function of ξ for
η = 0.2 (d) Ground-state energy as a function of η at ξ = 0 for the
FM AFOxz state comparing the classical energy, the LFWT energy,
and the Huse-Elser energy.

and Hk is a 12 × 12 Hermitian matrix. The ordering of the
spinor B†

k is motivated by the fact that bosons of colors m = 1
and m = 3 are decoupled from bosons with m = 2 and m = 4.
This implies that Hk can be written in a block diagonal form
as

Hk =

⎛
⎜⎝
H(1,3)

k 0 0

0 H(2,4)
k 0

0 0
[
H(2,4)

−k

]∗

⎞
⎟⎠, (16)

in which all the block matrices are 4 × 4. Diagonalization of
the LFWT Hamiltonian gives rise to six flavor dispersions
ωλ(k) that will be discussed below. We verify that the flavor
waves originated from H(2,4)

k conserve the total number of
bosons, in contrast to what happens for H(1,3)

k . The constant
term in the second and third lines of Eq. (14) gets canceled in
the diagonalization and do not contribute to the ground-state
energy.

Let us now turn to the flavor-wave dispersions ωλ(k) with
λ = 1, 2, which are related to H(1,3)

k . Only the exchange
constant J1 appears in this sector of the LFWT Hamiltonian
as a global multiplicative factor. Therefore, the shape of the
dispersions ωλ(k) does not vary with η and the bandwidth is
directly proportional to J1. Figure 4(b) shows ωλ(k) for ξ = 0
in solid lines. In this case, we observe two degenerate bands
with linear dispersion at the � point. This degeneracy is lifted
by bond-dependent interactions as shown in Fig. 4(b). The
resulting band retains a Goldstone mode and another gapped
mode.

We now turn to stability criteria given by ωλ(k) with λ =
3, . . . , 6 obtained from H(2,4)

k [see dashed lines in Figs. 4(a)
and 4(b)]. First, these bands become zero-energy flat bands
in the limit (ξ, η) → (0, 0). This provides another indication
of the instability of the ordered state at the SU(4)-symmetric
point. Second, ωλ(k) become negative depending on the
values of η and t ′, which provides yet another instability
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flag. The region in which this form of instability disrupts an
otherwise favored FM AFOxz phase was found numerically
and is indicated in gray in Fig. 1. The authors of Ref. [31] also
encountered an unidentified phase with ED for small clusters
in a close region of the parameter space. LFWT suggests
that such phase still exists in the thermodynamic limit, but
it is incapable of diagnosing its characteristics. When these
bosonic modes display strictly positive frequencies, they do
not alter the LFWT ground state. Thus, they do not affect the
reduction of the order parameter nor the zero-point energy.
The energy of the ordered state calculated with LFWT, ELFWT,
considers then only the integration of the modes λ = 1, 2 and
is given by

ELFWT

N
= −2J1

(
3 + ξ 2

) + 1

N

∑
k

2∑
λ=1

ωλ(k). (17)

The correction to the order parameter is provided by
Fig. 4(c), which shows that �M ∼ 0.14–0.25 when ξ < 0.99.
We observe a divergence of �M as ξ → 1. This is consistent
with the mean-field phase transition occurring at this point
due to the six-sublattice mapping discussed above, see Fig. 3.
Away from this line, the ordered phase FM AFOxz acquires
only mild corrections to the order parameter.

To further check the feasibility of the LFWT energies, we
also construct a variational wave function for the ordered FM
AFOxz phase, along the line ξ = 0, following the proposal
by Huse and Elser [39]. Using standard VMC techniques
[39,40,44], we then find the ground-state energy as a function
of η, shown in Fig. 4(d). The Huse-Elser energies display
a remarkable agreement with the LFWT theory, with only
a slightly lower energy. We can then argue that LFWT and
variational methods provide consistent results for the FM
AFOxz energy, which allows the use of ELFWT as the estimator
for the ordered state energy.

IV. QUANTUM SPIN-ORBITAL LIQUID
AND VALENCE BOND CRYSTALS

In Ref. [36], a QSOL was identified as the best candidate
for the ground state of the SU(4) Heisenberg model. Within
parton mean-field theory [45], the state can be pictured as
four flavors of free fermions hopping in a background with
π flux of the emergent gauge field through every hexagon
of the lattice. With the constraint of one fermion per site,
quarter filling of the bands gives rise to a gapless spectrum
with a Dirac dispersion at low energies. Being gapless, such
two-dimensional QSOL is, in principle, stable beyond the
mean-field level, when gauge fluctuations are included [46].

An important question is whether such QSOL survives in
the presence of SU(4)-symmetry-breaking perturbations like
the ones considered in model (5). Based on exact diagonaliza-
tion on small clusters, the authors of Ref. [31] argued for a
QSOL phase over an extended region in the parameter space
around the SU(4)-symmetric point. In the following, we use
VMC methods to investigate the stability of the QSOL in our
model. In contrast to ED, the computational time to obtain
an observable mean-value and variance with VMC increases
polynomially instead of exponentially. Hence, VMC calcu-
lations can then be performed in larger samples and allows

FIG. 5. (a) Mean-field ansatz for the π -flux state. The links in
black have χi j = χ (φi j = 0) while the links in green have χi j = −χ

(φi j = π ). (b) Dispersion relation of the π -flux state. The parton
mean-field ground state is obtained through the occupation of the
states in the lowest energy band displayed in yellow.

a more reliable extrapolation to the thermodynamic limit.
Moreover, VMC algorithms can be used to study VBC states
parting from small modifications of QSOL wave functions,
making it an adequate technique to evaluate the energetics of
these two classes of states.

A. Quantum spin-orbital liquid

First, we introduce the fermionic parton representation of
the SU(4) generators

Sb
a(i) = f †

i,a fi,b, (18)

in which a = 1, . . . , 4 labels the color states and i labels
the lattice site. The fermionic operators satisfy the canonical
relation { fi,a, f †

j,b} = δi jδab and define a Fock space. Equation

(18) is not an exact rewriting of Sb
a(i) since the physical

Hilbert space is isomorphic only to the Fock subspace that
satisfies the local single-occupancy constraint

∑
a f †

i,a fi,a = 1.
VMC allows an evaluation of averages for observables after
implementing a numerical projection to the physical space.

To generate a trial wave function for the QSOL, we first
determine the ground state of the mean-field Hamiltonian

Hmf = −
∑

a

∑
〈i j〉

[χi j f †
i,a f j,a + H.c.], (19)

where the choice of parameters χi j ∈ C specify the mean-field
ansatz. This ansatz is invariant under SU(4) transformations,
thus enforcing a higher symmetry on the state than the
SU(2)×Z3 symmetry of model (5). Translational invariance
requires the absolute value of χi j to be uniform: χi j = χeiφi j ,
where χ > 0 and φi j is the phase associated with the link 〈i j〉.
The gauge flux � on each elementary hexagonal plaquette is
defined by ei� ≡ ∏

〈i j〉∈� eiφi j . Here we focus on the π -flux
state with � = π through every hexagon [36] [see Fig. 5(a)].
The corresponding dispersion relation showing a single Dirac
cone at the � point is illustrated in Fig. 5(b).

The ground state at the mean-field level |ψ0〉 is obtained
by filling the lower band shown in Fig. 5(b). We just outline
the VMC procedure since technical details on how to perform
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FIG. 6. Comparison of the energy, per site, of three different
states: FM AFOxz, QSOL, and NCD (see text) as a function of the
Hund’s coupling η for (a) ξ = 0.2 and (b) ξ = 0.25. We identify the
phase transitions as the crossing points between the different curves.

the Gutzwiller projection of the mean-field wave functions
can be found in the specialized literature [16,20,36,44]. The
energy of the Gutzwiller-projected |ψ0〉 is calculated for the
KK model in Eq. (8) for different values of ξ and η (see
Fig. 6). We consider honeycomb lattices of linear length
L and N = 2L2 sites with L = 6, 12, and 18. An initial
state for the Monte Carlo evaluation is chosen by randomly
placing each color at N/4 sites of our lattice. Our Monte
Carlo move consists in exchanging a random pair of sites
containing distinct colors, which is accepted or rejected ac-
cording to the general Metropolis algorithm. A Monte Carlo
sweep consists of ∼103 exchanges attempts. After every
sweep, we compute the ground-state energy E0. We typically
perform ∼105 sweeps, with half of the steps discarded for
equilibration.

We compared the energy of this particular QSOL to that
of the ordered state FM AFOxz. Recall that, as discussed in
Sec. III, the AFM AFOxz phase is unstable against quan-
tum fluctuations and disappears completely. We find that the
QSOL extends itself away from the SU(4) point, and covers an
appreciable portion of the phase diagram before giving room
for the FM AFOxz at η ≈ 0.175, a value which is essentially
independent of ξ . The presence of the FM AFOxz phase at
large η is expected: Hund’s coupling favors a ferromagnetic
spin alignment, while the local Hubbard repulsion favors a
staggered orbital occupation [47]. Nevertheless, the QSOL
originally identified in Ref. [36] survives the introduction of
a finite Hund’s coupling and orbital anisotropy, and it is a

FIG. 7. Valence bond crystal states considered in this work:
(a) tetramerized state, in which the sites inside magenta triangles
form an SU(4) singlet; (b) dimerized state given by the product
of a ferromagnetic order and collinear orbital dimers; (c) product
state of noncollinear spin dimers and the ferro-orbital vortex state
of Fig. 3(d).

competitive ground state for KK models in the honeycomb
lattice.

B. Valence bond crystals

In Sec. IV A, we found that the QSOL is eventually re-
placed by an ordered state for large enough Hund’s coupling
η. Now we want to investigate different instabilities of the
QSOL, specially as a function of ξ and focused on the
formation of VBC states. We start this investigation with
the tetramerized state. Here the spins form four-site sin-
glet plaquettes breaking translational symmetry but preserv-
ing the SU(4) symmetry [48]. A possible tetramer covering of
the honeycomb lattice is illustrated in Fig. 7(a). We tested the
stability of the π -flux state against this tetramerization pattern
by considering variational wave functions generated by the
mean-field Hamiltonian

Hmf,t =
4∑

m=1

⎡
⎣∑

i

ε̃i f †
im fim −

∑
〈i j〉

(χ̃i j f †
im f jm + H.c.)

⎤
⎦. (20)

Here we keep the π -flux ansatz, so we modulate the sign of χ̃i j

as in Fig. 5(d), but we also allow for nonuniform magnitude of
the mean-field parameters: |χ̃i j | = χ tet if sites i and j belong
to the same tetramer and |χ̃i j | = χ otherwise. Furthermore,
we define a negative on-site energy ε̃i for sites at the center
of the tetramers [see sites highlighted in Fig. 7(a)]. For ε̃i =
0 and χ tet

i j = χ , we recover the uniform π -flux state. The
fully tetramerized state is the product of independent four-
site SU(4) singlets throughout the lattice [49]. To quantify
the degree of tetramerization of the projected wave func-
tions, we consider the permutation operator between nearest
neighbors: Pi j = ∑

a,b Sb
a(i)Sa

b ( j), with the color exchange
operators Sb

a(i) defined in Eq. (10). The tetramerization order
parameter is defined by [48]

rtet = 4
5 (P1 − P2), (21)

where P1 is the expectation value of Pi j for bonds connecting
sites inside a tetramer, while P2 is the average of Pi j for any
other bond [Fig. 7(a)]. The parameter rtet (ε̃, χ̃ ) is normalized
such that rtet = 1 in the four-site plaquette product state. For
each value of ε̃, we select the value of χ̃ = χ̃min(ε̃) that gives
the lowest energy within VMC and compute the correspond-
ing tetramerization order parameter rtet[ε̃, χ̃min(ε̃)]. Our VMC
results in Fig. 8(a) illustrate that the lowest energy is obtained
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FIG. 8. (a) Ground-state energy of the tetramerized state, per
site, as a function of the tetramerization parameter rtet . (b) Ground-
state energy of the dimerized state, per site, as a function of the
dimerization parameter rdim. We considered ξ = η = 0.1 for both
curves.

for rtet = 0 and thus the uniform state is always selected in the
region where the QSOL is stable. This implies that the QSOL
is stable against tetramerization, in accordance with the results
of Ref. [48] at the SU(4) point.

Next, we consider valence bond crystals constructed after
a mean-field decoupling of spin and orbital degrees of free-
dom [31]. Since it neglects spin-orbital entanglement, this
approximation should break down close to the SU(4) point.
Nevertheless, it allows us to search for other trial states which
may be stable, for instance, in the region ξ ∼ 1.

As a first example, we consider that the spins are fully
polarized while the orbitals form the collinear dimer pat-
tern shown in Fig. 7(b). A simple product state of orbital
dimers produces the following ground state energy: E0/N =
−3(1 + ξ 2)J1. It is interesting that this energy improves as
one moves away from the SU(4) point, in accordance with
our general discussion. We also performed a full VMC study
with a mean-field Hamiltonian similar to the one in Eq. (20).
The dimerization order parameter is rdim = P̃1 − P̃2, with P̃1

the average value of the two-color permutation operator on
bonds forming a dimer, and P̃2 is the average value for
any other bond. By definition, rdim = 1 in the product state
discussed previously. Our VMC results in Fig. 8(b) highlight
that the lowest energy occurs for rdim = 0 and thus this orbital
dimerization is never favored. Moreover, the overall energy
is not competitive and this state does not appear in the phase
diagram.

Now we assume that the spins dimerize, while the orbitals
develop some type of classical order. A spin dimer is clearly
not favored by Hund’s coupling and is most likely to be
present at small η. In this limit, a reasonable guess for the
orbital dependence would be that orbitals belonging to a spin
dimer are parallel. However, ferro-orbital order is too high in
energy in the region t ′ � t . Another more promising choice
is the ferro-orbital vortex state in Fig. 3(d), coupled to a
“Kekule” arrangement of nearest-neighbor spin dimers [50].
The resulting spin-orbital state is depicted in Fig. 7(c). We
follow the nomenclature of Ref. [31] and refer to it as a non-
collinear spin dimers (NCD) phase. To test this state within
VMC, we assume ferro-orbital vortex order and perform a
VMC calculation in the resulting spin Hamiltonian allowing
for spin dimerization, following the same approach as de-
scribed above. We now find rdim �= 0 in the NCD state. Impor-
tantly, this is the best variational state in the region ξ � 0.2
and η � 0.2, as indicated by Fig. 6. The detailed comparison
of the energies of the variational states FM AFOxz, QSOL,

and NCD leads to the phase diagram in Fig. 1. However, we
find no competitive candidate, within VMC, for the LFWT
unstable region in Fig. 1. In particular, we investigated states
with partially polarized spins, following the suggestion of the
authors of Ref. [31], but their energy is never competitive [see,
for instance, Fig. 8(b)].

V. DISCUSSION

We revisited a Kugel-Khomskii model in the honeycomb
lattice previously studied in the context of spin-orbital physics
of Ba3CuSb2O9 and quarter-filled twisted bilayer graphene
[24,31]. This model contains an SU(4)-symmetric point at
which a QSOL phase may be realized [36]. Using a combi-
nation of analytical and numerical techniques, we found that
this QSOL covers an extended parameter regime in the phase
diagram where we include the effects of Hund’s coupling and
bond-dependent frustrated exchange interactions. This result
raises hopes that a QSOL state may be observed in honey-
comb lattice materials with active spin and orbital degrees of
freedom.

Ba3CuSb2O9 contains Cu2+ ions with a 3d9 configuration.
In a first approximation, one may assume that this hole has a
fourfold degeneracy: a twofold spin degeneracy and a twofold
orbital degeneracy of the eg orbitals. Normally, one would
expect this degeneracy to be lifted and long-range order to
develop for both spin and orbital degrees of freedom at low
temperatures. However, no spin freezing is detected down to
20 mK [51], considerably below the Curie-Weiss temperature
of 50 K, and no evidence for a cooperative Jahn-Teller effect
is found down to 12 K [37,52]. These experimental obser-
vations motivated the proposal of this material as a QSOL
candidate [37,51]. Nevertheless, as stressed by Ref. [31], the
microscopic model in Eq. (5) is too simplistic to describe
Ba3CuSb2O9 and a QSOL is likely not its ground state. For
this material, a more realistic Hamiltonian on a decorated
honeycomb lattice should be taken into account.

In TBG, the orbital degrees of freedom originate from
the two Dirac points in the original Brillouin zone of each
graphene sheet, which should be centered on a honeycomb su-
perlattice due to symmetry constraints [53–55]. The effective
Hamiltonian obtained at quarter filling is the SU(4) Heisen-
berg model [24]. As we increase the Hund’s coupling, we find
long-range ferromagnetic order in the spins and antiferromag-
netic order in the orbitals, providing a possible connection
with a recently found spin-polarized state [56–58]. While
longer-range exchange couplings are likely to be relevant
in the Mott insulating phase of TBG [50,59], an intriguing
possibility is that a spin-polarized phase exists in proximity to
a QSOL [60] in this highly tunable system.

We close this paper with remarks about three solid-state
platforms that would be described by similar KK models:
the trilayer graphene/hexagonal boron nitride heterostruc-
tures (TLG/hBN) [27–30], the tiny-angle TBG system [61],
and the j = 3/2 compound α-ZrCl3 [19]. KK models for
TLG/hBN also display twofold orbital degeneracy, but these
Wannier orbitals are located on a triangular lattice, which
implies that our results are not extendable to this system.
However, our methodology is undoubtedly applicable to these
models and can provide complementary results. The same
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comment applies to the tiny-angle TBG under an electric field,
which is possibly described by a KK model on an emergent
kagome lattice [61]. Concerning the layered honeycomb ma-
terial α-ZrCl3, it is expected that extended versions of the
minimal model derived in Refs. [19,20] would lead to ex-
change frustration similar to the ones discussed in this paper.
The phase diagram of a realistic model for this compound
would then present extended regions of stability for the QSOL
and the NCD phases, with possible connection with α-ZrCl3

magnetism.
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