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Thermal electronic properties of aluminum under pressure: The role of sp to 3d electron transfer
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As a simple metal, aluminum’s valence band is usually described as a free-electron gas with three electrons
per atom. The discrepancies between the experimental electronic Grüneisen parameter and heat capacity and
their free-electron-gas counterparts are usually attributed to electron-phonon coupling. We recently calculated
thermal electronic contributions to aluminum’s internal energies with our average-atom code PARADISIO and
obtained results that contradict this point of view. Our code also pointed out the overlap of the sp valence band
by the 3d one, resulting in an sp to d electron transfer. Applying Sommerfeld’s temperature expansion method
to the electron-electron Coulomb part of the internal energy, we relate the electronic Grüneisen parameter, T =
0 K isotherm, and thermal contributions to the internal energy to a parameter α describing the fraction of d
electrons resulting from p to d transfer. Finally, we find a unique value of this parameter that provides a consistent
explanation for the experimental Grüneisen parameter, for T = 0 K energy deduced from experimental shock
Hugoniot data, as well as for our average-atom thermal contributions to internal energy.
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I. INTRODUCTION

The study of matter under extreme conditions is a sub-
ject of great interest with important applications to materials
science, geophysics, as well as astrophysics. The need for
accurate descriptions of thermophysical properties at extreme
conditions is augmented by the growth of interest in inertial-
confinement-fusion experiments. Understanding the physics
of stellar and planetary interiors requires appropriate theoreti-
cal models too.

At first sight, the link between aluminum and these subjects
is not obvious. Aluminum’s interest relies actually on the fact
that it is one of the most studied materials under extreme
conditions, in relation to both experimental techniques and
theoretical methods that could be developed for the above
mentioned studies.

Aluminum was found to be a good choice as a reference
material in explosive and light-gas-gun driven shock-wave
experiments using the impedance matching technique. Indeed,
aluminum is an ideal material from the point of view of the-
oretical studies, and accurate equations of state (EOS) in the
pressure-temperature domain relevant for shock experiments
are therefore available, which is the main prerequisite for
its use as a reference material. Its interest as a standard for
laser-induced shock waves too has been pointed out [1].

In addition, aluminum is also the object of various theoret-
ical investigations covering a wide pressure and temperature
range, which makes it also attractive as a reference material
for theoretical approaches. Aluminum’s theoretical investiga-
tions include Thomas-Fermi [2], average-atom [3–7], density-
functional, and molecular-dynamics [8–15] theories, as well
as semiempirical [16–19] methods. Some of them are favor-
ably examined in the light of shock-wave experiments [20].

*nadine.wetta@cea.fr

In the low density off-Hugoniot domain, quantum-molecular-
dynamics results agree with isochoric heating experiments
in the “isochoric plasma closed vessel” facility [21]. In the
warm-dense-matter regime, the path-integral Monte Carlo
method proves its usefulness to benchmark EOS [22] in a
domain where experiments are still scarce.

Aluminum belongs to the class of simple metals charac-
terized by nearly free s and p electrons forming their valence
band. Actually, aluminum’s T = 0 K density of free states is
perfectly fitted with the free electron gas (FEG) model [23]
for which (we will use atomic units throughout the paper)

n(ε) = 3Z∗

2

ε1/2

ε
3/2
F

, (1)

where Z∗ is the number of free electrons, equal to 3 for
aluminum, and εF is the Fermi energy given by

εF = 1

2

(
3π2Z∗

V

)2/3

, (2)

V denoting the atomic volume. In the same reference, the
temperature dependence of the calculated chemical potential
is also found to be very close to that of the FEG model.

According to the latter model, thermal internal electronic
energy and electronic heat capacity read respectively, at tem-
peratures T � TF = εF /kB, TF denoting the Fermi tempera-
ture and kB being the Boltzmann constant,

ET
int = 1

2�T 2 (3)

and

CV (T ) = �T, (4)

where

� = π2

3
n(εF )k2

B. (5)
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Experimental heat capacity as well as electronic Grüneisen
parameter are, however, not reproduced with these rela-
tions. Indeed, at normal density ρ0 = 2.7 g/cm3, �FEG =
91 J/(m3 K2), which is somewhat less than the experimental
[24] �exp = 135 J/(m3 K2) value cited in Ref. [23]. The FEG
value for the electronic Grüneisen constant, defined as

γe = −d ln ET
int

d ln ρ
(6)

is 2/3, which is considerably lower than the measured values.
A recent experiment [25] gives γ

exp
e = 1.4 ± 0.3 and confirms

previous measurements around 1.6 [26,27].
These differences are usually attributed to strong electron-

phonon coupling in aluminum. Accounting for these effects,
expression (5) should be corrected by a (1 + λ) factor, where
λ denotes the electron-phonon coupling parameter. According
to Ref. [23], experimental values for λ range between 0.38
and 0.45 for aluminum. Choosing λ ≈ 0.42, the corrected
� agrees with the experimental one. Concerning the elec-
tronic Grüneisen parameter, Wallace calculated the volume
derivative of the electron-phonon coupling parameter [27] and
obtained the corrected value γe = 1.63, which is in excellent
agreement with measurements. A very recent study [28] gives
λ = 0.46 for aluminum at ρ = ρ0 and predicts its strong decay
with increasing pressure.

Solid aluminum undergoes a sequence of crystallographic
fcc → hcp → bcc transitions under increasing pressure,
recently theoretically investigated in relation to electronic
structure [29]. Such a transition sequence is common among
transition metals. Its occurrence for simple metal aluminum
is explained in Ref. [29] by electron transfer from an sp type
band to a 3d one as compression rises. This work points out
the importance of small deviations from the global simple
metal picture on aluminum’s behavior under pressure.

Our interest in these two latter topics is related to our recent
work on aluminum’s EOS. For that purpose, our average-atom
code PARADISIO [4], based on Liberman’s atom-in-jellium
model [30], was used to obtain the electronic contributions
to the EOS. A description of PARADISIO code is presented in
Appendix A. The code has been improved since the version
presented in Ref. [4]. The internal electronic energies are
now obtained by summing the different contributions, and
the electronic pressure by using the relativistic stress-tensor
formula [31]. In the case of aluminum, PARADISIO thermal
electronic internal energies exhibit a ET

int ∝ (ρ/ρ0)−1.56 be-
havior at compression up to 2.7, leading to γe ≈ 1.56, which is
close to the mean experimental electronic Grüneisen constant
γ

exp
e ≈ 1.6 [26,27], whose high value is attributed to electron-

phonon coupling. Because PARADISIO does not account for
this coupling, we have to find another explanation for the
calculated high value.

Our calculations also show that the Z∗ = 3 valence elec-
trons actually include a small fraction of d-like electrons,
even at normal density ρ0, in agreement with Ref. [29]. By
d electrons, we mean a d state that has electron density
inside the atomic sphere, even if, in aluminum, 3d electron
density varies as r4 within the sphere, which is far from a
typical localized d state. This deviation from the FEG could
explain our PARADISIO results. We expect those additional d
electrons to have an effect on the energies by the means of

electron-electron Coulomb interactions, simultaneously with
their impact on the fcc → hcp → bcc crystallographic tran-
sition. Proving it is the main purpose of our work. Beside
that, this work also provides an opportunity to benchmark
our PARADISIO code at low temperature (T � 1 eV), where
its relevance is not obvious. At high temperatures, PARADISIO

results agree favorably with other theoretical methods such as
molecular dynamics and path-integral Monte Carlo [31]. But
we can object that the jellium is a too crude approximation
for the ionic environment at lower temperature, and therefore
question the adequacy of the INFERNO model under these
conditions.

In Sec. II, we will apply Sommerfeld’s method to the
electronic densities in order to obtain a temperature expansion
for the electron-electron Coulomb energy in terms of the
valence band’s composition. We then introduce a model for
aluminum’s valence band described as a FEG perturbed by
an excess of d electrons associated with a deficit of s and p
ones, in order to keep Z∗ = 3 valence electrons. An analytic
expression is then obtained for Coulomb contribution to the
energy in terms of the fraction α of d electrons coming
from a p-type band. In Sec. III, we relate α to the electronic
Grüneisen parameter and to the T = 0 K isotherm. Finally,
in Sec. IV, we find a value for parameter α which explains
our calculated thermal energies as well as the experimental
electronic Grüneisen constant γe and the T = 0 K energy
deduced from shock Hugoniot data, and show by this simple
way that our PARADISIO results can be explained by sp to d
transfer under increasing compression.

II. SOMMERFELD’S LOW TEMPERATURE EXPANSION
APPLIED TO COULOMB ENERGY

A. Sommerfeld’s expansion method

The so-called Sommerfeld expansion [32–34], introduced
by Arnold Sommerfeld to put forward his simple heat capacity
model for metals, will be largely used in the present paper. It
reads ∫ ∞

−∞
H (ε) f (ε)dε

=
∫ μ

−∞
H (ε)dε +

∞∑
i=1

ai(kBT )2i d2i−1H (ε)

dε2i−1

∣∣∣∣
μ

, (7)

where H (ε) is any function that varies smoothly with energy
ε. Function f (ε) denotes the Fermi-Dirac distribution

f (ε) = 1

eβ(ε−μ) + 1
, (8)

where β = 1/kBT , μ being the chemical potential. Parameters
ai are related to zeta function by

ai = 2(1 − 21−2i )ζ (2i).

The first two give a1 = π2/6 and a2 = 7π4/360. The well-
known Sommerfeld low temperature expansion

E =
∫ εF

0
εn(ε)dε + π2

6
n(εF )(kBT )2 (9)

for band structure energy is recovered putting H (ε) = εn(ε)
in Eq. (7).
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B. Thermal contributions to electron densities

Within the local approximation of density functional the-
ory, the internal energy reads, neglecting exchange-correlation
contributions,

E = (E f + Eb) − 1

2

∫∫
r,r′�R

ρ(r)ρ(r′)
|	r − 	r ′| d3r d3r′, (10)

where (E f + Eb) is the sum over one-electron state energies,
whose low temperature expression is given by the Sommer-
feld expansion

(E f + Eb)T =0 + π2

6
(kBT )2n(εF ) + O(kBT )4. (11)

The remaining double integral in Eq. (10) represents the
electron-electron contributions. We propose to apply Sommer-
feld’s approach to them.

Let us write the electron density ρ(r) as a sum over
electronic states labeled by i,

ρ(r) =
∑

i

ρi(r). (12)

We then introduce the partial electron density ρi(r, ε) of the
state i for an energy ε,

ρi(r) =
∫ ∞

−∞
ρi(r, ε) f (ε) dε, (13)

the Fermi-Dirac distribution function f (ε) being given in
Eq. (8).

Applying Eq. (7) with H (ε) = ρi(r, ε) yields

ρi(r) =
∫ μ

−∞
ρi(r, ε)dε + π2

6
(kBT )2 ∂ρi(r, ε)

∂ε

∣∣∣∣
μ

+ O(kBT )4.

(14)

Sommerfeld’s expansion for the chemical potential μ reads
(see Appendix B)

μ = εF − π2

6

n′(εF )

n(εF )
(kBT )2 + O(kBT )4. (15)

This relation enables one to express ρi(r) in terms of the Fermi
energy εF . We obtain∫ μ

−∞
ρi(r, ε) dε

=
∫ εF

−∞
ρi(r, ε) dε +

∫ μ

εF

ρi(r, ε) dε

= ρT =0
i (r) − π2

6
(kBT )2 n′(εF )

n(εF )
ρi(r, εF ) + O(kBT )4

(16)

and

π2

6
(kBT )2 ∂ρi(r, ε)

∂ε

∣∣∣
μ

= π2

6
(kBT )2 ∂ρi(r, ε)

∂ε

∣∣∣
εF

+ O(kBT )4,

(17)

where we have made the approximation, valid at order (kBT )2,∫ μ

εF

ρi(r, ε)dε ≈ (μ − εF )ρi(r, εF ). (18)

Finally, the thermal contribution to the partial electron density
ρi(r) reads

ρT
i (r) = π2

6
(kBT )2

(
−n′(εF )

n(εF )
ρi(r, εF ) + ∂ρi(r, ε)

∂ε

∣∣∣∣
εF

)
+ O(kBT )4. (19)

In the case of an ideal FEG,
n′(εF )

n(εF )
= 1

2εF
(20)

and

ρ(r, ε) = n(ε) = 3Z∗

2

ε1/2

ε
3/2
F

, (21)

and consequently one finds that ρT (r) = 0. As expected for
the FEG, electron-electron interactions do not contribute to
thermal internal energy. This explains the success of Sommer-
feld’s low temperature expression for simple metals like alu-
minum. But Eq. (19) suggests possible thermal contributions
to the electron-electron Coulomb interactions from bands of
higher orbital quantum number crossing the Fermi level.

C. Approximation by spherical wave functions

To carry on with our development, we describe the elec-
tronic wave functions as spherical waves:

ϕi(r) =
(

2k2

π

)1/2

j
(kr), (22)

where j
 is the spherical Bessel function of order 
. The
electronic states are now labeled by the quantum orbital
number 
 instead of i. We also assume that the asymptotic
expression

lim
x�
(
+1)

j
(x) ≈ x


(2
 + 1)!!
(23)

for the Bessel functions can be used.
We refer to the T = 0 K quantities by superscript 0 and

to the thermal contributions by superscript T . The partial
electron density ρ0


 (r, ε) behaves then as A k2(kr)2
, where the
normalization coefficient A has to fulfill the condition

Z0

 =

∫
r�R

∫ εF

0
ρ0


 (r, ε)dε d3r, (24)

Z0

 representing the number of electrons in the state 
. Finally

we write

ρ0

 (r, ε) = Z0




4π

(2
 + 3)2

2ε
(2
+3)/2
F R2
+3

ε (2
+1)/2r2
 (25)

and

ρ0

 (r) = Z0




4π

(2
 + 3)

R2
+3
r2
. (26)

The thermal contribution ρT

 (r) to the electron density

ρ
(r) is then given by

ρT

 (r) = π2

6
(kBT )2

(
−n′(εF )

n(εF )
ρ
(r, εF ) + ∂ρ
(r, ε)

∂ε

∣∣∣∣
εF

)
+ O(kBT )4 (27)
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with

ρ0

 (r, εF ) = Z0




4π

(2
 + 3)2

2εF

r2


R2
+3
(28)

and

∂ρ0

 (r, ε)

∂ε

∣∣∣∣
εF

= (2
 + 1)

2

ρ0

 (r, εF )

εF
. (29)

D. Case of aluminum

We now introduce a simple model for aluminum’s valence
band. Let us assume that aluminum’s actual valence band can
be identified as Z∗ = 3 electrons forming a uniform FEG in
the atomic sphere of radius R. The density of states of this
system is then

n(ε) = 3Z∗

2ε
3/2
F

ε1/2. (30)

A proof of the relevance of this assumption can be found
in Fig. 1(a) of Ref. [23], where the VASP (Vienna Ab initio
Simulation Package) electron DOS of aluminum is found to
be well averaged by a FEG DOS n(ε) ≈ ε1/2 assuming Z∗ =
3 valence electrons. The band structure contribution to the
energy is given, at low temperature, by the familiar expansion

π2

6
n(εF )(kBT )2 + O(kBT )4 (31)

and the chemical potential μ by

μ − εF = −π2

12

(kBT )2

εF
+ O(kBT )4. (32)

We recall the expression of the FEG’s Fermi energy,

εF = 1

2

(
3π2Z∗

V

)2/3

. (33)

Let us denote the electron density as

ρFEG = 3Z∗

4πR3
= Z∗

V
= (2εF )3/2

3π2
. (34)

Suppose now that, by the effect of compression, the bottom
of an 
 = 2 d band moves down below the Fermi energy εF ,
making possible the transfer of a small part of the Z∗ electrons
on it, and let us introduce the following perturbation to the
ideal FEG:

δρ(r) = −δρ0(r) − δρ1(r) + δρ2(r). (35)

The perturbed electron density is then

ρ(r) = ρFEG + δρ(r). (36)

Under this perturbation the Coulomb contribution to internal
energy reads

Uc = −1

2

∫∫
r,r′�R

ρ(r)ρ(r′)
|	r − 	r ′| d3r d3r′

≈ −1

2

∫∫
r,r′�R

ρ2
FEG

|	r − 	r ′|d3r d3r′

− 1

2

∫∫
r,r′�R

ρFEG(δρ(r) + δρ(r′))
|	r − 	r ′| d3r d3r′, (37)

where the perturbation is assumed to be small enough to
allow us to neglect δρ(r)δρ(r′) terms. Perturbation δρ(r)
decomposes further as a cold contribution (i.e., a T = 0 K
contribution) and a thermal one,

δρ(r) = δρ0(r) + δρT (r), (38)

with

δρ0(r) = − 3Z0
0

4πR3
− 5Z0

1

4πR5
r2 + 7Z0

2

4πR7
r4. (39)

The total number of electrons in the valence band remains
equal to Z∗, so that

Z0
2 = Z0

0 + Z0
1 . (40)

Equation (27) reads then

δρT (r) = π2

6

(kBT )2

εF
[−δρ1(r, εF ) + 2δρ2(r, εF )], (41)

where

δρ2(r, εF ) = Z0
2

4π

49

2εF R7
r4 (42)

and

δρ1(r, εF ) = − Z0
1

4π

25

2εF R5
r2. (43)

After integration over the angular coordinates, we obtain,
for the cold contribution (i.e., the T = 0 K contribution) to Uc,

U 0
c = 3Z∗

5
εF − 4π

3Z∗

R3

{∫ R

0
r2

∫ R

r
r′δρ0(r′)dr′dr

+
∫ R

0
r2δρ0(r)

∫ R

r
r′dr′dr

}
, (44)

where the first term of the sum comes from the unperturbed
FEG and the second from the perturbation. We will note this
latter term δU 0

c . Introducing δρ0(r) [given by Eq. (39)], we
get

δU 0
c = −3Z∗

R

(
−2

5
Z0

0 − 8

21
Z0

1 + 10

27
Z0

2

)
, (45)

and finally, using the constraint Z0
0 + Z0

1 = Z0
2 , and introduc-

ing the fraction α = Z0
1 /Z0

2 of d electrons coming from p
states, we get

δU 0
c = 2Z∗Z0

2

5R

(
2

9
− 1

7
α

)
. (46)

The thermal contribution to Uc,

U T
c = −4π

3Z∗

R3

{∫ R

0
r2

∫ R

r
r′δρT (r′)dr′dr

+
∫ R

0
r2δρT (r)

∫ R

r
r′dr′dr

}
(47)

is obtained in the same way. Adding it to the familiar Sommer-
feld term, which accounts for the energy spectrum, the thermal
contribution to the electronic internal energy reads

ET
int = π2

6
(kBT )2

[
n(εF ) − 2Z∗Z0

2

ε2
F R

(
35

9
− 10

7
α

)]
+ O(kBT )4. (48)
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5 10 15
 ρ (g/cm3)

0

0.5

1

1.5

Z 20

Paradisio
0.57714 ln(ρ/ρ0)+0.14974

FIG. 1. Fit of the average-atom occupation number of the 3d
states in aluminum at densities ρ � ρ0.

To sum up, we have expressed the contribution to the
internal energy of sp-type- to d-type-band electronic transfer
in terms of the α fraction of d electrons coming from p-type
states and of the resulting Z0

2 occupancy of the former states.
The variation of Z0

2 with the compression rate can be obtained
using our average-atom code. We fitted the results in Fig. 1 by
the relation

Z0
2 = 0.57714 ln(ρ/ρ0) + 0.14974. (49)

We then obtain the parameter α from experimental data,
and finally check the consistency of our average-atom ther-
mal electronic contributions to the energy with these data.
Before that, we can already give lower and upper bounds
for parameter α by remarking that electron-electron Coulomb
interactions bring negative U 0

c and ET
int contributions to the

energy. Using Eqs. (46) and (48), we get then

14
9 � α � 49

18 , (50)

that is

1.56 � α � 2.72. (51)

The fact that parameter α is greater than 1 means that,
rather than the expected p to d and s to d transfers, we
have actually p to d and p to s ones. Deriving Eqs. (46) and
(48), we write Z0

2 = Z0
1 + Z0

0 with Z0
1 = αZ0

2 and Z0
0 = (1 −

α)Z0
2 . This is strictly the same as using the most appropriate

expressions for p to d and p to s transfers,

Z0
1 = Z0

2 + Z0
0 (52)

with Z0
2 = α̃Z0

1 and Z0
0 = (1 − α̃)Z0

1 , where

0.4 � α̃ = 1

α
� 0.6. (53)

All the preceding developments rely on the assumption that
the perturbation δρ(r) remains small enough to not signifi-
cantly change the global FEG shape of the DOS. This will be
verified a posteriori once the parameter α is determined.

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
α

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

γ e

FIG. 2. Electronic Grüneisen constant as a function of the frac-
tion α of p electrons that transfer to the d band (straight line). α must
be greater than 1.7 to keep γe within the experimental uncertainty
1.4 ± 0.3 marked out by the two horizontal dashed lines.

III. LINK WITH EXPERIMENTAL DATA

A. Electronic Grüneisen parameter

As mentioned before, electronic Grüneisen parameter is
defined as the derivative

γe = −∂ ln ET
int

∂ ln ρ
. (54)

Applying Eq. (48), we obtain

γe = 2

3
×

1 − 2Z0
2

εF R

(
1 − d ln Z0

2
d ln ρ

)(
35
9 − 10

7 α
)

1 − 4Z0
2

3εF R

(
35
9 − 10

7 α
) , (55)

that is, for aluminum at density ρ0

γe = 2

3
× 1 + 0.6676

(
35
9 − 10

7 α
)

1 − 0.1559
(

35
9 − 10

7 α
) , (56)

using Eq. (49) for Z0
2 . According to the most recent experi-

ments from which

γ exp
e = 1.4 ± 0.3, (57)

the interval given by Eq. (50) can be further restricted to (see
Fig. 2)

1.7 � α � 2.2. (58)

B. Experimental cold curve from shock Hugoniot data

The cold (i.e., the T = 0 K isotherm) contributions Ec(ρ),
Pc(ρ) to the EOS can be determined from shock Hugoniot data
[35–38] assuming a Mie-Grüneisen type EOS

P(ρ, E ) = Pc(ρ) + γ ρ[E (ρ, T ) − Ec(ρ)], (59)

where γ denotes the Grüneisen coefficient defined as

γ = d ln �

d ln ρ
, (60)

� being the Debye temperature. Replacing P and E by pres-
sure PH and energy EH on the Hugoniot curve and using the
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preceding definition of γ and the relation Pc(ρ) = ρ2 dEc/dρ,
one gets

Ec(ρ) = �(ρ)

(
Ec(ρ0)

�(ρ0)
+

∫ ρ

ρ0

PH (x) − xγ (x)EH (x)

x2�(x)
dx

)
.

(61)

To obtain Ec(ρ) from experimental Hugoniot data, one
needs a γ (ρ) relation and the Debye temperature at density
ρ0. We take the value �(ρ0) = 428 ± 1 K deduced from low
temperature heat capacity [39]. Many γ (ρ) relations have
been proposed for the purpose of extracting cold curves from
Hugoniot data. For aluminum, two expressions emerge. One
of them is attributed to Burakovsky and Preston [40] and reads

γBP = 1

2
+ γ1

(
ρ0

ρ

)1/3

+ γ2

(
ρ0

ρ

)n

, (62)

with γ1 = 0.6, γ2 = 1.4, and n = 3.5. The second relation is
the one proposed by Jacobs and Schmid-Fetzer [41],

γJS = γ∞ + (γ0 − γ∞)

(
ρ0

ρ

)m

, (63)

with γ∞ = 0.9, γ0 = 2.178, and m = 2.15.
The melting curve obtained assuming a formula for γ is a

good test of its adequacy. Nie et al. [42] obtained comparable
melting curves with the two expressions, both in excellent
agreement with experiments. The two γ (ρ) relations can
only be discriminated on the basis of the second- and third-
order Grüneisen coefficients, which are better recovered with
Jacobs’s expression. One can also notice that γJS(ρ0) = 2.178
is closer to the experimental [38] γexp = 2.14 value than
γBP(ρ0) = 2.5. Despite these observations, we used both γBP

and γJS in Eq. (61). We also tried two other formulations, the
first being the so-called Sesame expression [43]

γS (ρ) = γ0
ρ0

ρ
+ γ∞

(
1 − ρ0

ρ

)
, (64)

with γ0 = 2.14 and γ∞ = 2/3, and the second the Thompson-
Lauson formula [44]

γTL(ρ) = γ0
ρ0

ρ
+ γ∞

(
1 − ρ0

ρ

)2

, (65)

that uses the same γ0 and γ∞.
A great number of Hugoniot points are available for alu-

minum up to density ρ ≈ 6 g/cm3. We fitted in Fig. 3 the
PH (ρ) values from Rusbank database [45] and obtained (PH

in GPa and ρ in g/cm3)

PH (ρ) = 40.934 ρ2 − 216.64 ρ + 291.46. (66)

Figure 4 shows the cold pressures Pc(ρ) obtained with
the four γ (ρ) expressions. The slopes of the cold pressures
obtained with γS and γTL tend to decrease at the highest
densities ρ � 5 g/cm3. As expected according to the work
of Nie et al. [42], γBP and γJS lead to very close curves,
only slightly separating from each other above ρ � 5 g/cm3.
However, the full red curve corresponding to the best γ

according to Nie et al. seems to begin to drop at the highest
densities.

2 3 4 5 6 7
ρ (g/cm3)

0

100

200

300

400

500

P H
 (G

Pa
)

Rusbank data
PH= 40.934 ρ2− 216.64 ρ + 291.46

FIG. 3. Fit of Rusbank’s data for aluminum.

Figure 5 presents the cold energies Ec(ρ) deduced from
Hugoniot data. According to the preceding Fig. 4, we trun-
cated the curves obtained with γS and γTL at 5 g/cm3.

Equation (44) does not include contributions from bound
electrons. We used therefore the energy obtained with the
(orbital free) Thomas-Fermi model as a basis to which add
our δU 0

c corrections [Eq. (46)] from Coulomb interactions.
We obtained the best agreement with the experimental curve
deduced from Hugoniot data using the lowest limit α = 1.7
given by Eq. (58). The result is represented by the crosses
and is close to the cold curves obtained using γBP and γJS,
especially at the highest densities. The agreement is poorer at
the lowest densities, but rather good with the two curves ob-
tained with the Sesame and the Thompson-Lauson relations.
The circles represent the results obtained with α = 1.95 (i.e.,
the value giving γe = 1.4) and lie sensitively lower.

C. Comments

In Ref. [28], Giri et al. calculate the electron-phonon cou-
pling parameter λ under pressure for aluminum. Their normal

3 4 5 6
ρ  (g/cm3)

0

50

100

150

200

250

300

P c
 (G

Pa
)

Burakovsky-Preston
Jacobs-Schmid-Fetzer
Sesame
Thompson-Lauson

FIG. 4. Pressure at T = 0 K deduced from shock Hugoniot data
assuming different γ (ρ ) relations.
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 α=1.7
 α=1.95

FIG. 5. Internal energy at T = 0 K deduced from shock
Hugoniot data assuming different γ (ρ ) relations. Crosses and circles
have been obtained using Eq. (46), with respectively α = 1.7 and
α = 1.95.

pressure value λ = 0.46 confirms a previously published one
[23]. At high pressure, the coupling parameter is found to
decrease rapidly. From their figures, one can estimate that its
value is divided by 2 at ρ ≈ 1.2ρ0 (P ≈ 25 GPa), and falls to
λ = 0.12 at ρ ≈ 1.5ρ0 (P = 82 GPa).

Our work mainly concerns thermal electronic properties at
high compression, where electron-phonon coupling vanishes
considerably according to Giri et al. In Fig. 5, a unique value
is chosen for parameter α within the interval (58) by fitting a
high compression quantity, i.e., the T = 0 K electronic energy
curve up to 6 g/cm3, deduced from shock experiments. This
implies that electron-phonon coupling is neglected at the con-
sidered compression rates, which is a reasonable assumption
according to Ref. [28], especially above ρ/ρ0 ≈ 1.5.

Close to density ρ0, neglecting electron-phonon coupling is
highly questionable. The α = 1.7 value that reproduces at best
the T = 0 K energy curve corresponds to the lowest possible
value according to interval (58). The latter interval is based on
the assumption that electron-phonon coupling can be omitted.
Accounting for these effects is beyond the scope of our simple
approach. But we can reasonably think that they will give
other intervals for values of α that very probably contain
α = 1.7 too. Close to ρ0 (i.e., at ρ/ρ0 � 1.2), sp to d elec-
tron transfer with α = 1.7 does not necessary mean that we
have to consider that electron-phonon coupling is negligible.
Although our approach neglecting electron-phonon coupling
is questionable at normal density, we believe that it is globally
a reasonable approximation at higher densities, in which we
are interested in the present study.

D. Conservation of the global FEG behavior of the DOS

We are now able to verify the validity of our main assump-
tion, i.e., that the δρ(r) perturbation does not induce too much
deviation from the FEG n(ε) ∝ ε1/2 behavior of the valence
band. Let us write the perturbed DOS

n(ε) = nFEG(ε) + δn(ε) = nFEG(ε)

(
1 + δn(ε)

nFEG(ε)

)
, (67)
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FIG. 6. (a) Function δn/nFEG, where δn is the deviation from the
nFEG DOS induced by sp to d transfer. (b) The perturbed (nFEG +
δn) DOS (black continuous curve) is compared to the nFEG one (red
dashed curve).

where nFEG is the FEG DOS given by Eq. (30) and δn the
perturbation to the DOS induced by δρ(r). The latter reads

δn(ε) = −3

2

Z0
2 (1 − α)

ε
3/2
F

ε1/2 − 5

2

Z0
2 α

ε
5/2
F

ε3/2 + 7

2

Z0
2

ε
7/2
F

ε5/2.

(68)

Using α = 1.7,

δn(ε)

nFEG(ε)
= Z0

2

3Z∗ (7(ε/εF )2 − 8.5(ε/εF ) + 2.1). (69)

In the next section, we will see that Z0
2 � 0.719, so that

δn(ε)

nFEG(ε)
� 0.719

9
(7(ε/εF )2 − 8.5(ε/εF ) + 2.1). (70)

The function of ε/εF that appears on the right side of
the preceding equation is traced on Fig. 6(a). Figure 6(b)
compares the ideal nFEG to the perturbed (nFEG + δn) one.
Except at values ε/εF � 0.2, δn/nFEG does not exceed 0.05.

The last step of the present work is to check the consistency
of the average-atom thermal electronic energies with the value
α = 1.7.

IV. VALIDATION OF OUR AVERAGE-ATOM RESULTS

A. Case of moderate temperatures (T � TF )

We will first discuss the case of temperatures well below
Fermi temperature, at which we observed strong deviation
from FEG theory with the average-atom code PARADISIO. The
latter results correspond to the squares and circles in Fig. 7,
respectively representing the cases of T = 10 000 K and T =
5500 K. We compare them to the values obtained when we use
Eq. (48) with α = 1.7. Equation (48) also requires Z0

2 values.
We propose to use the fit [provided in Eq. (49)] of the values
we calculated at T = 0 K.
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FIG. 7. Thermal electronic internal energies obtained at moder-
ate temperatures for compressed aluminum with our average-atom
code PARADISIO are compared to the curves (full lines) calculated
using Eq. (48) with α = 1.7. Squares: T = 104 K. Circles: T =
5500 K. Dashed lines correspond to Sommerfeld’s expansion for
FEG.

However, considering the choice we made concerning the
electronic wave functions (i.e., asymptotic form of Bessel
functions), the highest possible number of d electrons is
limited. According to the degeneracy 2(2
 + 1) of the band,
the highest possible electron density reads

ρ
(r, k) = 1

4π
2(2
 + 1)

2k2

π

(kr)2


[(2
 + 1)!!]2
. (71)

Integrating over the volume yields the density of states∫
V

ρ
(r, k)d3r = 2(2
 + 1)

[(2
 + 1)!!]2

2

π

R2
+3

(2
 + 3)
k2
+2; (72)

i.e., for 
 = 2, the density of states reads∫
V

ρ2(r, k)d3r = 4

315π
R7k6, (73)

which finally, after integration over k, gives for the maximal
number of d electrons between ε = 0 and εF = k2

F /2

Zmax
2 = 4

2205π
(kF R)7 = 4

2205π

(
9πZ∗

4

)7/3

= 0.719.

(74)

This value is reached at compression ρ/ρ0 = 2.68, and it
seems to us that this constraint will seriously limit the appli-
cability of Eq. (48) at higher compression rates.

Figure 7 displays a comparison between the thermal in-
ternal electronic energies we obtained with PARADISIO to the
values evaluated with Eq. (48), using Eq. (49) for Z0

2 at
compression ρ/ρ0 � 2.68 and Zmax

2 = 0.719 above. At the
lowest compression rates, applying Eq. (48) with the value
α = 1.7, PARADISIO energies are quite perfectly reproduced.
The figure shows also (dashed lines) the energies obtained
within the FEG approximation.

Above compression ρ/ρ0 ≈ 3, we observe an unexpected
result. The straight lines obtained with Eq. (48) stop their

011
ρ/ρ0

0

1

λ(
k B

T/
ε F)

order (kBT)6 corrections

order (kBT)4 corrections

T = 45000 K

T = 110000 K

FIG. 8. Correction factor to the Coulomb contribution to energy
up to order (kBT )6. Cases of T = 45 000 K and T = 110 000 K.

(ρ/ρ0)−γe decrease because of our constraint Z0
2 � 0.719.

The surprising fact is that PARADISIO’s energies do the same,
but for slightly higher compression, so that we still observe
good agreement between the code’s values and those given by
Eq. (48) in a density range where the latter equation starts to
be more and more questionable.

B. Case of high temperatures (up to TF )

For the purpose of comparisons up to temperatures close to
the Fermi one, we expanded Eq. (48) up to order (kBT )6. At
sixth order in the expansion, the thermal Coulomb part of the
energy must be corrected by a function λ of the ratio kBT/εF

(see Appendix B for details about the calculation):

U T
c = −π2

3

(
kBT

εF

)2 Z∗Z0
2

R

(
35

9
− 10

7
α

)
× λ

(
kBT

εF

)
, (75)

where λ(x) is given by

λ(x) = 1 + x2 × 3π2 (−49/108 + 53α/252)

(35/9 − 10α/7)

+ x4 × 3π4 (−3047/93312 + 6205α/254016)

(35/9 − 10α/7)
.

(76)

Taking α = 1.7 we get

λ(x) = 1 − 1.94978 x2 + 1.77569 x4. (77)

We present this correction function along aluminum’s rate
of compression for T = 45 000 K and T = 110 000 K at or-
ders (kBT )4 (dashed lines) and (kBT )6 (straight lines) in Fig. 8.
At T = 45 000 K, sixth-order corrections are negligible. For
T = 110 000 K, they become important at the lowest com-
pression rates ρ/ρ0 � 3. At densities close to ρ0, they prevent
negative corrections and consequently nonphysical positive
U T

c values. But, due to the alternate signs of the successive
orders, corrections above fourth order affect the shape of
the curves, as illustrated by the black straight line at T =
110 000 K. In this latter case, sixth-order corrections create
a minimum in the vicinity of ρ0. Higher order corrections will
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FIG. 9. Thermal electronic energy at T = 110 000 K. Circles:
values from PARADISIO code. Dashed line: order (kBT )2 of Sommer-
feld’s expansion for FEG. Straight line: Eq. (48). Double-dot-dash
line: Eq. (75) with Z∗ = 3. Dot-double-dash line: Eq. (75) using the
Thomas-Fermi ionization expression for Z∗.

introduce oscillations. However, in the case of aluminum, the
observed minimum occurs in a density range where electron-
electron contributions to the thermal energy are rather low in
comparison with band structure contributions.

Figure 9 details fourth- and sixth-order corrections to
thermal energies at temperature T = 110 000 K. The circles
are the average-atom calculations. We notice that, at this
temperature, the FEG behavior is recovered. Coulomb
contributions vanish rapidly as temperature rises. Clearly we
encountered some difficulty to reproduce this effect. At the
lowest densities (i.e., at compression less than 4) one can
suspect the necessity of considering higher order terms in
the temperature expansions. But at compression approaching
10, the sixth-order corrections are rather small even at this
temperature, and so will be higher order terms. However,
in such conditions, ionization by the means of compression
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FIG. 10. Thermal electronic internal energies obtained at high
temperatures. The symbols represent PARADISIO values. Squares:
T = 110 000 K. Diamonds: T = 45 000 K. Straight lines: with
Eq. (75). Dashed lines: Sommerfeld’s expansion for FEG, limited
at order (kBT )2. The case of T = 10 000 K is also recalled (circles).

and probably also by temperature is highly possible. In order
to quantify the consequence of such effects, we replaced
Z∗ = 3 by the Thomas-Fermi ionization number [46] and
obtained the double-dash-dot curve, which “improves”
slightly the double-dot-dash one at the highest compression.
Nevertheless, it seems difficult to obtain more than qualitative
agreement with average-atom PARADISIO results at high
temperature. Figure 10 presents the best results we can obtain
for the time being. But we must remind that the case of high
temperatures is beyond the initial scope of our work.

V. SUMMARY

Aluminum belongs to the class of simple metals, character-
ized by valence bands forming nearly free electron gases. This
view is supported by valence density of states calculations,
which confirm the n(ε) ∝ ε1/2 FEG-like behavior. The dis-
crepancy observed between some experimental values, such
as the electronic Grüneisen constant and the one deduced
from FEG assumption, is, in the case of aluminum, explained
by strong electron-phonon coupling. Our recent average-atom
calculations of thermal contributions to electronic internal
energies along with temperature and compression suggest that
there is also an electronic reason for the high experimental
electronic value of the Grüneisen parameter.

Internal energy contains a band structure term but also
a contribution from electron-electron Coulomb interactions.
Within the FEG approach for the valence band, the latter does
not contribute to thermal energy. However, our PARADISIO

calculations showed that a small part of the valence electrons
transfer to a 3d band that moved below Fermi energy by
the means of the compression. We expected the presence
of d-like electrons among the Z∗ = 3 valence ones to bring
contributions from Coulomb interactions. The aim of the
present work was to examine this possibility.

We therefore developed a simple analytic model for alu-
minum’s valence band in terms of a FEG perturbed by sp
to d transfer, and obtained, using Sommerfeld’s expansion
method, an analytic expression for Coulomb contribution
to thermal energies, as a function of the fraction α of d
electrons coming from the 2p band. The value α = 1.7 was
obtained from T = 0 K energies deduced from Hugoniot data.
Using this value, our simple model perfectly accounts for
the average-atom thermal energies at moderate temperatures
(T � 10 000 K) and therefore validates them, which was our
main objective. Besides that, our work also points out the role
of sp to d transfer in aluminum’s thermal electronic proper-
ties under compression. Particularly, this electronic transfer
induces high electronic Grüneisen constant, well above the
γ FEG

e = 2/3 FEG’s value. However, at ρ = ρ0, we found a
large range of possible values for α. At ρ = ρ0, we therefore
conclude that sp to d transfer may contribute to the high value
of the electronic Grüneisen constant together with strong
electron-phonon coupling, whose role is unquestionable ac-
cording to experiment.

Despite the fact that high temperatures are out of the scope
of our paper, we tested the validity of our simplified approach
at temperatures T 
 10 000 K and proposed some possible
improvements such as inclusion of higher order terms in the
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temperature expansion, or accounting for thermal ionization,
with moderate success.

Besides the fact that we have explained cold energy, the
electronic Grüneisen parameter, and average-atom thermal
energies by electron transfer from sp bands to a d one that
overlaps the former near εF , our work may be useful for
performing fast evaluation of electronic thermal contributions
to EOS of other metals with FEG-type valence bands beyond
the usual Sommerfeld expansion.

APPENDIX A: THE AVERAGE-ATOM CODE PARADISIO

PARADISIO [4] code is based on Liberman’s relativis-
tic quantum-average-atom model INFERNO [30] (see also
Ref. [3]). INFERNO considers an atom as a point nucleus
surrounded by its Z electrons and places it at the center of a
spherical cavity buried in a jellium, i.e., a uniform distribution
of positive charges which takes place of the surrounding ions,
and a constant electron distribution that ensures electrical
neutrality. Electrical neutrality inside the cavity is imposed
too. Electronic structure is then computed on a self-consistent
way. The only needed parameters are the atomic number Z ,
density ρ, and temperature T .

As in the main text, atomic units where e = h̄ = m = 1 are
used throughout the Appendix. We also choose to use speed c
of light instead of hyperfine structure constant α = e2

8πε0a0
.

In a spherically symmetric potential, the one-electron wave
functions, solutions of the Dirac equation, are of the form

ψs(	r) ≡ ψ j
m(	r) =
(

1
r F (r)� j
m(θ, φ)

− i
r G(r)� j
′m(θ, φ)

)
, (A1)

where � j
m and � j′
m are two spinors. j, 
, and m are quan-
tum numbers associated respectively with the total angular
momentum J , to the orbital angular momentum L, and its
projection Lz. We define the quantum number 
′ by


′ =
{

 + 1 if j = 
 + 1/2,


 − 1 if j = 
 − 1/2.
(A2)

The radial functions F and G verify the equations

dF

dr
= −κ

r
F (r) − Veff (r) − c2 − ε

c
G(r),

(A3)
dG

dr
= Veff (r) + c2 − ε

c
F (r) + κ

r
G(r),

where

κ = −(
 + 1) for j = 
 + 1/2,

κ = 
 for j = 
 − 1/2. (A4)

The potential is assumed to be constant outside the cavity
[V (r) = V∞ for r � R]. Therefore, the solutions of Dirac
equation are known for r � R, and the equation has to
be solved for r � R. The inside and outside solutions are
matched at r = R.

The number of bound electrons reads

Nbound =
∑

b

Xb f (εb) (A5)

and the number of free electrons

Nfree =
∑

κ

∫ ∞

0
Xκ (ε) f (ε)dε, (A6)

where f (εi ) is the Fermi-Dirac occupation of state i of either
the bound discrete energy εb or the continuum free one
denoted by ε.

The factor Xi (i = b, κ) is

Xi =
∫

r�R
ψ∗

i (	r)ψi(	r)d3r (A7)

and one has

Xκ (ε) = 2|κ|
∫ R

0
[F 2(r) + G2(r)]dr, (A8)

where

ε = c2

√
1 + k2

c2
or k =

√
2ε

(
1 + ε

2c2

)
. (A9)

The chemical potential is obtained from the electro-
neutrality condition

Nbound + Nfree = Z, (A10)

Z being the atomic number of the considered element. In the
usual regime [typically μ/(kBT ) = βμ less than 250], the
Fermi distribution is far from the step function. In that case,
Eq. (A6) can be split in two parts:

Nfree,0 =
∑

κ

∫ εm

0
Xκ (ε) f (ε)dε (A11)

and

Nfree,1 =
∑

κ

∫ ∞

εm

Xκ (ε)e−β(ε−μ)dε (A12)

with εm = max(0, μ + 10/β ). In Eq. (A12), we can assume
that Xκ (ε) can be approximated using the ideal wave functions
of an electron gas,

F (r) = k

√
k

πε
j
(kr),

(A13)

G(r) = k

√
k

πε
j
′ (kr),

and we get finally in that case

Xκ (ε) = 1 + ε/c2

π2k
k2

(
4

3
πR3

)
, (A14)

with the maximal orbital quantum number 
m ≈ kmR, km

being related to εm through the second identity of Eq. (A9).
The model imposes F = G = 0 at r = 0 and r → ∞. Out-

side the cavity, the radial functions F and G satisfying those
boundary conditions are, for bound states, modified Bessel
functions of the third kind [47], exponentially decreasing, and,
for free states, combinations of Bessel functions of the first
and second kinds, with decreasing amplitudes as r → ∞.

Outside the cavity we have, for ε < V∞ (bound states)

F (r) = a0c
k

V∞ − ε
rK
+1/2(kr),

(A15)
G(r) = a0rK
′+1/2(kr),
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where Kn+1/2 (n being an integer) are modified Bessel func-
tions of the third kind and a0 is the normalization constant
such that: ∫ ∞

0
[F 2(r) + G2(r)]dr = 1. (A16)

Outside the cavity we have, for ε > V∞ (free states)

F (r) = b0c
k

ε − V∞
r[cos(δ
) j
(kr) − sin(δ
)n
(kr)],

(A17)
G(r) = b0r[cos(δ
) j
′ (kr) − sin(δ
)n
′ (kr)],

where the normalization factor b0 and the wave number k are

b0 =
√

2

π

k√
1 + c2k2

(ε−V∞ )2

k =
√

2(V∞ − ε)

(
1 − (V∞ − ε)

2c2

)
.

The matching of the solutions at the cavity radius provides the
spectrum of bound energies and the phase shifts δ
.

The electronic structure (bound and free states) being
known, the thermodynamic quantities can be calculated. We
compute the internal energy as

E = K + Uc,1 + Uc,2 + E int
xc , (A18)

where the kinetic energy K reads

K =
∑

b

f (εb)(εb − V∞)Xb

+
∑

κ

∫ ∞

0
f (ε)(ε − V∞)Xκ (ε)dε

−
∫

r�R
ρ(r)[Veff (r) − V∞]d3r (A19)

with

ρ(r) = 1

4πr2

∑
i=b,k

f (εi )
[
F 2

i (r) + G2
i (r)

]
. (A20)

The quantity Veff represents the effective potential

Veff (r) = Vc(r) + Vxc(r) − ν if r � R,

Veff (r) = V∞ if r > R
(A21)

with

Vc(r) = −Z

r
+

∫
r′�R

ρ(r′)

|	r − 	r′|d3r′, (A22)

Vxc(r) = μxc[ρ(r), T ], (A23)

and

V∞(r) = μxc[ρ̄, T ], (A24)

where ρ̄ is the density of the jellium. The exchange-
correlation chemical potential functional is

μxc[n, T ] = ∂

∂n
n fxc[n, T ]

∣∣∣∣
n

, (A25)

where fxc is the exchange-correlation free-energy density
functional. PARADISIO uses the finite-temperature exchange-
correlation functionals of Karasiev et al. [48].

Finally, the parameter ν in Eq. (A21) is

ν = fxc[ρ(R), T ] − μxc[ρ̄, T ] + ρ̄

ρ(R)
(μxc[ρ̄, T ]

− fxc[ρ̄, T ]). (A26)

The quantity Uc,1 represents the electron-nucleus Coulomb
interaction energy

Uc,1 = −
∫

r�R

ρ(r)

r
d3r (A27)

and Uc,2 the electron-electron Coulomb interaction energy

Uc,2 = 1

2

∫∫
r�R

ρ(r)ρ(r′)

|	r − 	r′| d3r d3r′. (A28)

E int
xc represents the exchange-correlation electron-electron

energy

E int
xc =

∫
r�R

ρ(r)εxc[ρ(r), T ]d3r, (A29)

with

εxc[n, T ] = ∂

∂β
β fxc[n, T ]

∣∣∣∣
n

. (A30)

More details can be found in Ref. [31]. In particular, a
relativistic stress-tensor formula is given for the pressure due
to bound and free electrons.

APPENDIX B: FOURTH- AND SIXTH-ORDER
TEMPERATURE EXPANSION OF COULOMB

CONTRIBUTION TO ENERGY

1. Up to sixth-order term in the temperature expansion
of the chemical potential

We are seeking for a relation

μ − εF = a(kBT )2 + b(kBT )4 + c(kBT )6. (B1)

In the absence of thermal ionization, the total number of
electrons remains unchanged at finite temperature T so that

∫ εF

0
n(ε)dε =

∫ ∞

0
n(ε) f (ε)dε. (B2)

Consequently, using Eq. (7) with H (ε) = n(ε),∫ μ

εF

n(ε)dε + π2

6
(kBT )2n(1)(μ) + 7π4

360
(kBT )4n(3)(μ)

+ 31π6

15120
(kBT )6n(5)(μ) · · · = 0, (B3)

where

n(i)(μ) = din(ε)

dεi

∣∣∣
μ
.

n(ε) is then expanded as a power series of (ε − εF ),

n(ε) = n(εF ) + (ε − εF )n(1)(εF ) + 1
2 (ε − εF )2n(2)(εF )

+ 1
6 (ε − εF )3n(3)(εF ) + · · · , (B4)
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and used to obtain the integral between εF and μ, as well as the values at μ of the density-of-state’s derivatives. Regrouping
contributions proportional to (kBT )2, (kBT )4, and (kBT )6, and introducing the notation n(i)

F = n(i)(εF ),

(kBT )2

(
anF + π2

6
n(1)

F

)
+ (kBT )4

(
bnF + a2

2
n(1)

F + π2

6
an(2)

F + 7π4

360
n(3)

F

)
+ (kBT )6

(
cnF + ab n(1)

F + a3 + bπ2

6
n(2)

F + π2a2

12
n(3)

F + 7π4

360
a n(4)

F + 31π6

15120
n(5)

F

)
+ O(kBT )8 = 0 (B5)

gives a relation that applies to any temperature, so that coefficients of (kBT )2, (kBT )4, and (kBT )6 must be equal to zero. Since
the DOS for the FEG n(ε) varies as ε1/2, one finally gets a = − π2

12 εF
, b = − π4

80 ε3
F

, and c = − 247π6

25920 ε5
F

.

2. Higher orders in the temperature expansion of electronic densities

We go back to the temperature expansion for partial electronic density,

ρ
(r) = ρ0

 (r) +

∫ μ

εF

ρ
(r, ε)dε + π2

6
(kBT )2 ∂ρ
(r, ε)

∂ε

∣∣∣∣
μ

+7π4

360
(kBT )4 ∂3ρ
(r, ε)

∂ε3

∣∣∣∣
μ

+ 31π6

15120
(kBT )6 ∂5ρ
(r, ε)

∂ε5

∣∣∣∣
μ

+ O(kBT )8. (B6)

The integral and the derivatives in the preceding equation are obtained using the following expansion of ρ
(r, ε) as a power series
of (ε − εF ):

ρ
(r, ε) = ρ
(r, εF ) +
5∑

n=1

1

n!
(ε − εF )n dnρ
(r, ε)

dεn

∣∣∣∣
μ

+ O(ε − εF )6. (B7)

Replacing (μ − εF ) by its expansion

μ − εF = a(kBT )2 + b(kBT )2 + c(kBT )6, (B8)

we obtain ∫ μ

εF

ρ
(r, ε)dε = (kBT )2aρ
(r, εF ) + (kBT )4

{
bρ
(r, εF ) + a2

2

∂ρ
(r, ε)

∂ε

∣∣∣∣
εF

}

+ (kBT )6

{
cρ
(r, εF ) + ab

∂ρ
(r, ε)

∂ε

∣∣∣∣
εF

}
+ O(kBT )8, (B9)

π2

6
(kBT )2 ∂ρ
(r, ε)

∂ε

∣∣∣∣
μ

= π2

6
(kBT )2 ∂ρ
(r, ε)

∂ε

∣∣∣∣
εF

+ π2

6
(kBT )4a

∂2ρ
(r, ε)

∂ε2

∣∣∣∣
εF

+ (kBT )6

{
π2

6
b
∂2ρ
(r, ε)

∂ε2

∣∣∣∣
εF

+ π2

12
a2 ∂3ρ
(r, ε)

∂ε3

∣∣∣∣
εF

}
+ O(kBT )8, (B10)

7π4

360
(kBT )4 ∂3ρ
(r, ε)

∂ε3

∣∣∣∣
μ

= 7π4

360
(kBT )4 ∂3ρ
(r, ε)

∂ε3

∣∣∣∣
εF

+ 7π4

360
(kBT )6a

∂4ρ
(r, ε)

∂ε4

∣∣∣∣
εF

+ O(kBT )8, (B11)

and

31π6

15120
(kBT )6 ∂5ρ
(r, ε)

∂ε5

∣∣∣∣
μ

= 31π6

15120
(kBT )6 ∂5ρ
(r, ε)

∂ε5

∣∣∣∣
εF

+ O(kBT )8. (B12)

Replacing a, b, and c by their values a = − π2

12εF
, b = − π4

80ε3
F

, and c = − 247π6

25920 ε5
F

and using the relation

∂nρ
(r, ε)

∂εn

∣∣∣∣
εF

= ρ
(r, εF )

∏n
i=1(2
 + 3 − 2i)

(2εF )n
, (B13)

the thermal contribution ρT

 (r) to the partial electron density finally reads

ρT

 (r) = εF ρ
(r, εF ) × 


{
X 2

6
+ 14 
2 − 31 
 − 1

720
X 4 + (372 
4 − 3084 
3 + 7791 
2 − 5767 
 − 1782)

181440
X 6

}
+ O(X 8), (B14)
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where we have introduced

X = πkBT

εF
. (B15)

We get then, respectively for 
 = 0, 1, and 2,

ρT
0 (r) = 0, (B16)

ρT
1 (r) = εF ρ1(r, εF )

{
X 2

6
− X 4

40
− 247

18144
X 6 + O(X 8)

}
, (B17)

and

ρT
2 (r) = εF ρ2(r, εF )

{
X 2

3
− 7

360
X 4 − 109

11340
X 6 + O(X 8)

}
. (B18)

3. Thermal electron-electron Coulomb contribution to energy up to order (kBT )6

To obtain these contributions we need the integrals

(4π )2
∫ R

0
ρ1(r, εF )

∫ R

r
ρFEGr′dr′ r2dr + (4π )2

∫ R

0
ρFEG

∫ R

r
ρ1(r′, εF )r′dr′ r2dr = −αZ2(T )Z∗ 20

7R εF
, (B19)

and

(4π )2
∫ R

0
ρ2(r, εF )

∫ R

r
ρFEGr′dr′ r2dr + (4π )2

∫ R

0
ρFEG

∫ R

r
ρ2(r′, εF )r′dr′ r2dr = Z2(T )Z∗ 35

9R εF
, (B20)

where we have introduced a temperature-dependent occupation number Z2(T ) for the d band. Indeed, as long as no thermal
ionization occurs, the total number Z∗ of electrons in the valence band is constant. However, distributions of these electrons on
the s, p, and d bands change with increasing temperatures. The number of d electrons reads

Z2(T ) =
∫ εF

0
n2(ε)dε +

∫ μ

εF

n2(ε)dε, (B21)

with

n2(ε) = 7Z0
2

2ε
7/2
F

ε5/2. (B22)

We need to expand Z2(T ) up to order (kBT )4

Z2(T ) = Z0
2

(
1 − 7

24 X 2 − 77
5760 X 4 + O(X 6)

)
. (B23)

The temperature expansion of the thermal contribution of electron-electron Coulomb contributions to the internal energy follows
straightforwardly:

U T
c = −Z0

2 Z∗

R

{
1

3

(
πkBT

εF

)2(35

9
−α

10

7

)
+

(
πkBT

εF

)4(
− 49

108
+ α

53

252

)
+

(
πkBT

εF

)6(
− 3047

93312
+ α

6205

254016

)}
+ O(kBT )8.

(B24)

We can notice that the introduction of a temperature dependent d band occupation number does not affect the (kBT )2 expansion
presented in the main text.
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