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Field-induced ferrohastatic phase in cubic non-Kramers doublet systems
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Cubic Pr-based compounds with �3 non-Kramers doublet ground states can realize a novel heavy Fermi liquid
with spinorial hybridization (“hastatic” order) that breaks time-reversal symmetry. Several Pr-“1-2-20” materials
exhibit a suggestive heavy Fermi liquid stabilized in intermediate magnetic fields; these provide key insight into
the quadrupolar Kondo lattice. We develop a simple yet realistic microscopic model of ferrohastatic order and
elaborate its experimental signatures and behavior in field, where it is a good candidate to explain the observed
heavy Fermi liquids at intermediate fields in Pr(Ir, Rh)2Zn20. In addition, we develop the Landau theory of
ferrohastatic order, which allows us to understand its behavior close to the transition and explore thermodynamic
signatures from magnetic susceptibility to thermal expansion.
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I. INTRODUCTION

The complex interplay of spin and orbital degrees of free-
dom underlies many unusual properties of correlated elec-
tron systems. This interplay is especially relevant in heavy
fermion materials, where it leads to exotic phenomena from
unconventional superconductivity [1] and quantum criticality
[2,3] to topological insulators [4], spin liquids [5], and hidden
orders [6]. Heavy fermion research has mostly focused on
Ce- or Yb-based compounds, where the 4 f orbital is singly
occupied, and its interaction with conduction electrons is well
described by the single-channel Kondo effect. However, there
are also Pr- and U-based heavy fermion materials that contain
two localized f electrons and the many-body ground state of
which is a non-Kramers doublet protected by crystal, not time-
reversal, symmetry. These materials offer up a whole new
host of behaviors driven by quadrupolar degrees of freedom
and the two-channel Kondo effect. While these systems may
form magnetic or quadrupolar order, become superconducting
[7,8], or realize a non-Fermi liquid [9,10], their Kondo physics
is particularly interesting. Here the doubly occupied ground
state fluctuates to a singly (or triply) occupied excited state.
As the excited state is Kramers degenerate, there are two
distinct channels in which valence fluctuations may occur.
Heavy fermions may still form, but now require breaking the
channel symmetry. This symmetry-broken heavy Fermi liquid
has been termed either “diagonal composite order” [8,11,12]
or, to emphasize its novel spinorial nature, “hastatic order”
[13–15]. Hastatic order is a fractionalized order [16], with a
spinorial hybridization.

Cubic materials provide a particularly simple setting in
which to study this physics, as here the two-channel Kondo
effect is a Kondo effect for the local quadrupolar moments,
which are screened by conduction quadrupolar moments
in two different spin channels. Indeed, the physics of the
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quadrupolar Kondo lattice is a long standing problem. In
particular, its two-channel nature and relevance to the non-
Fermi liquid and unconventional superconductivity in UBe13

[9,10] are not fully understood. However, discerning its role
in actinide materials is challenging due to difficulties in
resolving the valence and crystal-field ground states. The re-
cently discovered cubic Pr-based 1-2-20 materials provide an
important opportunity to study these phenomena in a simpler
system. These materials exhibit Kondo physics at high tem-
peratures [17–23], along with quadrupolar [17,18,20,24–30],
superconducting [20,21,31–33], non-Fermi-liquid [22,33,34],
and unidentified low-temperature phases [21,35–37]. Unlike
in the actinides, the ground state is known to be the 4 f 2 �3

[17,18,20], which imposes two-channel Kondo physics. These
materials provide an ideal setting to resolve the role of the
quadrupolar Kondo effect and explore hastatic order within
a simpler setting. Several exhibit a dome of heavy Fermi
liquid at finite magnetic fields [36,37] that is consistent with
field-induced hastatic order.

While our previous work has explored cubic hastatic order
in a simple two-channel Kondo model [15], comparison to
experiment requires a more realistic model. To this end, we
treat uniform or “ferrohastatic” (FH) order in the realistic
cubic two-channel Anderson model with a combination of a
microscopically motivated mean-field theory (justified within
large N and expected to work well at low temperatures) and
a phenomenological Landau theory (which can capture the
nature of the phase transition). Neither approach captures the
whole story, but together they give significant insight. Finally,
we argue that the intermediate-field regions in Pr(Ir, Rh)2Zn20

are ferrohastatic and give concrete experimental tests, includ-
ing induced dipole moments in magnetic field, signatures in
magnetostriction and thermal expansion, spin-resolved spec-
troscopies, and symmetry-breaking hybridization gaps.

A. Pr-based 1-2-20 materials details

Kondo physics in Pr-based materials is rare, but the
1-2-20 materials, PrT2X20, have atypically strong c- f
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hybridization [17,38], as the Pr ions sit within Frank-Kasper
cages of 16 X = Al or Zn atoms. Cubic crystal fields select a
�3 ground-state doublet [17,18,20], and there is considerable
evidence for Kondo physics: at high temperatures, experiment
shows partial quenching of the R ln 2 entropy [17], logarith-
mic scattering terms in the resistivity [21], large hyperfine
coupling due to c- f hybridization [38], enhanced effective
masses [22], and a Kondo resonance in photoemission [19].
At low temperatures, all of these materials order in some fash-
ion and become superconducting at very low temperatures:
PrTi2Al20 and PrIr2Zn20 order ferroquadrupolarly and antifer-
roquadrupolarly at TQ = 2 and 0.11 K, respectively [17,18],
while the ordering in PrV2Al20 [17] and PrRh2Zn20 [20] is
still undetermined, although octupolar order seems likely in
PrV2Al20 [39–41]. Quadrupolar order can be suppressed both
with pressure (PrTi2Al20 [33]) and with field [Pr(Ir, Rh)2Zn20

[18,20] and PrV2Al20 [17]], leading to an extended non-
Fermi-liquid region at higher temperatures. Pressure enhances
the superconductivity in PrTi2Al20 [33], which is likely un-
conventional. The in-field phase diagrams are even more in-
teresting, as there is a heavy Fermi-liquid region sandwiched
between the zero-field order and a polarized high-field state
where Kondo physics is lost [36,37].

B. Structure of the paper

Ferrohastatic order and the generic infinite-U two-channel
Anderson model is introduced in Sec. II. Section III fleshes
out the details of the microscopic Anderson model and solves
it within a large-N mean-field theory for both FH and the
competing antiferrohastatic (AFH) orders, and also considers
interactions with the competing antiferroquadrupolar (AFQ)
order. In Sec. IV, we develop the Landau theory of cubic
ferrohastatic order; examine its interactions with field, strain,
and AFQ order; and discuss the thermodynamic signatures.
Finally, in Sec. V we summarize and expand upon the experi-
mental signatures of FH order and how it may be distinguished
from quadrupolar orders, before concluding in Sec. VI.

II. FERROHASTATIC ORDER

Hastatic order is a natural candidate for materials with an
even number of f electrons and doublet crystal-field ground
states. The cubic �3 doublet is the simplest of these, with
no dipole moments, 〈 �J〉 = 0, but finite quadrupolar (Ox2−y2 ,
O3z2−r2 ) and octupolar (Txyz) moments [10], and it is protected
by cubic, not time-reversal, symmetry. Overlap between the
non-Kramers �3 states and conduction electrons leads to
valence fluctuations, shown in Fig. 1, in which a 4 f electron
escapes into the conduction sea, leaving an excited 4 f 1 state,
here the �7 Kramers doublet [42]. These valence fluctuations
are mediated by a �8 quartet of conduction electrons, and
thus two conduction channels screen a single f moment.
We consider a simple cubic lattice with two eg conduction
bands that have the required �8 = eg ⊗ 1/2 symmetry, from the
orbital and spin degrees of freedom, respectively [43]. The �3

states are labeled by their quadrupole moments, α, while the
excited �7 are labeled by their dipole moments, μ. μ is the
channel index in a two-channel Anderson lattice model [10],
while α represents the screened pseudospin.

FIG. 1. Atomic level diagram illustrating valence fluctuations
out of a 4 f 2 non-Kramers (�3) doublet to a 4 f 1 excited �7 Kramers
doublet via the conduction-electron quartet, �8. The form factors of
each state are shown, with the �7 and �8 orbitals possessing an extra
dipolar moment (indicated by the arrows).

We consider an infinite-U two-channel Anderson model
with the Hamiltonian

H = Hc + H f + HVF. (1)

The valence fluctuation Hamiltonian is

HVF = V
∑
jμα

μ̃| j, �3, α〉〈 j, �7,−μ|ψ j,�8μα + H.c. (2)

The Hubbard operators | j, �3, α〉〈 j, �7,−μ| transition the
f -electron system between the ground and excited states,
while ψ j,�8μα annihilates a �8 conduction electron. V is the
bare hybridization strength and μ̃ = sgn(μ) imposes a singlet
state of the conduction and f electrons. The conduction and
f -electron terms are

Hc =
∑
kσαβ

εkαβc†
kσαckσβ, (3)

H f =
∑

jμ

�E | j, �7, μ〉〈 j, �7, μ|, (4)

where ckσα annihilates a conduction electron in channel σ

with pseudospin α = {+,−} (εkαβ is the conduction-electron
dispersion). Here �E > 0 is the energy of the excited 4 f 1

state and | j, �7, μ〉〈 j, �7, μ| is the projector onto this state.
To proceed, we replace the Hubbard operators with slave

bosons b jμ and fermions f jα [44,45]. b jμ represents the
excited doublet and f jα represents the non-Kramers doublet.
Other states are forbidden, imposed by the constraint f †

jα f jα +
b†

jμb jμ = 1, where we introduce Einstein summation notation.
The Hubbard operators become

| j, �7, μ〉〈 j, �7, μ| → b†
jμb jμ,

| j, �3, α〉〈 j, �3, α| → f †
jα f jα,

| j, �3, α〉〈 j, �7, μ| → f †
jαb jμ. (5)

In this representation, the Hamiltonian becomes

H =
∑
kσ

εkαβc†
kσαckσβ +V

∑
j

(μ̃ f †
jαb j−μψ j,�8μα + H.c.)

+
∑

j

([λ j + �E ]b†
jμb jμ + λ j[ f †

jα f jα − 1]), (6)

where the Lagrange multipliers λ j enforce the constraint.
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FIG. 2. Schematic of FH order in which the f electron hybridizes
exclusively with the spin-↑ conduction electrons. b represents the
occupation of the excited state or, in the Kondo limit, the Kondo
singlet formed between local moment and conduction electrons.

This model can be solved exactly within an SU (N ) large-N
limit, where α = ±1, . . . , N , while μ =↑,↓ remains SU (2).
In this mean-field limit, the slave bosons condense, 〈bjμ〉 	= 0
below the transition temperature TK . On account of the two de-
generate excited levels (corresponding to the channels labeled
by μ), the hastatic order parameter b forms a spinor:

b =
(

b↑
b↓

)
. (7)

As b↑ and b↓ assume definite values in the hastatic state,
the system necessarily breaks time-reversal and spin rotation
symmetry. While these are also broken in an ordinary mag-
netic system, hastatic order additionally breaks double time-
reversal symmetry, due to the spinorial nature of the order
parameter. Microscopically, we may think of hastatic order
as consisting in a choice of hybridization spinor (magnitude
and direction) for each site in the lattice. This leads to various
realizations of hastatic order similar to the forms of magnetic
order (ferromagnetic, antiferromagnetic, etc.) determined by
the arrangement of spins in a magnetic system. We term
the simplest possibility, namely, a uniform magnitude and
direction of the spinor at each site, ferrohastatic order, in
analogy with the magnetic case. A particular FH Ansatz,
in which the f electrons exclusively hybridize with spin-↑
conduction electrons, is shown in Fig. 2.

The large-N phase diagram of the two-channel Kondo limit
shows that FH order is favored in a range around half filling,
with AFH order favored for smaller fillings [15]. Strong-
coupling analysis yields a similar picture, where the strong-
coupling limit of our model is the two-channel Kondo lattice
with JK = V 2

�E . As JK → ∞, conduction electrons added to
the system form Kondo singlets until all of the local moments
are screened, which occurs at quarter filling. These Kondo
singlets carry the channel (physical spin) index and can be
treated as hard-core bosons [46]. Exactly at quarter filling,
these spinful Kondo singlets are the only degree of freedom
and order antiferrohastatically due to superexchange (∼t2/JK )
from virtual hopping (t) of the conduction electrons. Adding a
single conduction electron forces the Kondo singlets to be FH
in order to maximize kinetic energy (≈t), in analogy with the
infinite-U Hubbard model [47]; as in the Hubbard model, we
expect the AFH region to extend some distance above quarter
filling for finite JK . FH order also wins at half filling, as it
again maximizes the kinetic energy. Note that hastatic order is
always stabilized over quadrupolar order at strong coupling,
as the local Kondo singlet lowers its energy via quantum

fluctuations, while AFQ order freezes the local f moment.
On site, the energy of the Kondo singlet is −JK S(S + 1) =
−3JK/4, while the frozen f moment minimizes its energy
with two conduction electrons per site: c†

↑+ f †
−c†

↓+|0〉, with
energy −2JK S2 = −JK/2. In Sec. III, we solve our Anderson
model within the SU (N ) large-N limit and find that FH
order is found in a large region around half filling of the
conduction electrons, similar to what is expected from this
strong-coupling analysis and what was found in the Kondo
limit. Additionally, we shall see that as FH order contains
small magnetic moments it is favored by magnetic field, as
is also the case in the Kondo limit [15].

III. MICROSCOPIC MODEL AND PHASE DIAGRAMS

Now we return to our microscopic Anderson model to flesh
out the details and solve it within the large-N limit. As we are
particularly interested in the effect of magnetic field, we first
examine this coupling in detail.

Magnetic field affects Kramers and non-Kramers compo-
nents differently, coupling linearly to the conduction electrons
and the excited �7 state, as shown in the Hamiltonian below,
where the magnetic field �B = Bẑ. �3 does not couple to B
directly, but acquires a small moment linear in B due to virtual
transitions to the excited triplet states at energy �, leading
to an O(B2/�) splitting [15]. For simplicity, we consider
transitions only to the excited �4 triplet [23], which affects
only |�3,+〉. The magnetic field part of the Hamiltonian is
therefore

HB = −
∑
kσαβ

σ̃μBBc†
kσαckσβ

−
∑

j

(γ B2δα,+ f †
jα f jα + μBgLB〈Jz〉�7μ̃b†

jμb jμ). (8)

μB is the Bohr magneton, gL is the Landé g factor, and 〈Jz〉�7

is the Jz angular momentum of the �7 state. γ = 6 gives the
nonlinear coupling of |�3,+〉 to B2. In finite field, the |�3,+〉
state develops a dipole moment linear in field,

m f = μB

[
12

μBB

�
− 130

(
μBB

�

)3
]
〈ng〉 + O

[(
μBB

�

)5
]
,

(9)

for μBB  �, where 〈ng〉 is the ground-state (�3+) occupa-
tion.

The slave boson Hamiltonian is then

H =
∑
kσ

(εkαβ − μBBσ̃ )c†
kσαckσβ

+ V
∑

j

(μ̃ f †
jαb j−μψ j,�8μα + H.c.)

+
∑

j

([λ j + �E − μBBgL〈Jz〉�7μ̃]b†
jμb jμ

+ [λ j − γ B2δα,+] f †
jα f jα − λ j ). (10)

The �8-symmetry electrons, ψ j,�8μα , appearing above are f
states, but they have a finite overlap with the conduction-
electron bands of whatever type, which can be incorporated
via a Wannier form factor �; here this describes the overlap
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between the odd-parity �8 and the even-parity d states at
neighboring sites:

ψ j,�8μα =
∑
kσα′

eik·R j �σα′
μα (k)ckσα′ . (11)

For simplicity we consider Pr 5d states; f electrons in
PrT2(Al, Zn)20 are more likely to hybridize with Al or Zn
p states, leading to different form factors but qualitatively
similar physics. Our bands mirror those of SmB6, where the
�8 ground state couples to eg conduction electrons [48,49],
although the nature of our (spinorial) hybridization is clearly
different. We consider generic nearest-neighbor conduction-
electron dispersions εk and hybridization form factors � with
cubic symmetry. Both of these are matrices: εk is a matrix in α

and σ space and is derived similarly to the hybridization form
factor, shown in Appendix A:

εk = − t

[
(cx + cy)

(
1

2
+ 3

2
ηc

)
+ 2cz

]
(σ0 ⊗ α0)

−
√

3

2
t (cx − cy)(1 − ηc)(σ0 ⊗ α1)

− μBB(σ3 ⊗ α0) (12)

where ci ≡ cos(kia) (i = x, y, z) and μ is the chemical po-
tential. For our numerical calculations we set the nearest-
neighbor spacing a = 1 and the overall hopping magni-
tude t = 1, effectively measuring everything else in units
of t . The conduction-electron bandwidth D = 12t . There is
a single free parameter, ηc, that tunes the degeneracies and
anisotropies of the bands. We fix the number of conduction
electrons above the transition, nc0, and allow μ to vary to
preserve the total charge. The hybridization form factors �

are given below, but are similarly described by an overall
magnitude V and free parameter ηV .

A. Slave boson theory for ferrohastatic order

In this section, we give the full detailed mean-field Hamil-
tonian for the FH ansatz with the hastatic spinor oriented
along ẑ, b̂ j = (b, 0)T :

H =
∑

k

εkαβc†
kσαckσβ + N (�E − μBBgL〈Jz〉�7 )|b|2

− V b
∑

j

( f †
jαψ j,�8↓α + H.c.)

+ λ
∑

j

( f †
jα f jα + |b|2−1)

+ μ
∑

j

(c†
jσαc jσα−|b|2−nc,0)−γ B2

∑
j

f †
j+ f j+. (13)

Here, εkαβ is the conduction-electron dispersion matrix given
in Eq. (12). There are two Lagrange multipliers, λ and μ.
The first enforces the average local constraint on the occu-
pations of the localized f -electron orbitals, while the second
enforces the global conservation of charge. The magnetic field
lies solely along the direction of the hastatic spinor, ẑ. In

momentum space, the Hamiltonian is

H =
∑
k,σ

εkαβc†
kσα

ckσβ + N�E |b|2 + λN (|b|2 − 1)

− V b
∑

kσαα′
( f †

k,αck,σα′�σα′
↓α (k) + H.c.)

+ μ

[∑
k

c†
kσα

ckσα − N (|b|2 − nc,0)

]
+ λ

∑
k

f †
kα

fkα

− γ B2
∑

k

f †
k+ fk+ − NgL〈Jz〉�7μBB|b|2 (14)

where N is the number of sites. In a path-integral approach,
the saddle-point approximation [exact in the SU (N ) large-N
limit] leads to the self-consistency equations

∂F
∂b

= 0,
∂F
∂λ

= 0,
∂F
∂μ

= 0. (15)

The resulting mean-field Hamiltonian can be written as a
matrix:

H =
∑

k

�
†
k

(Hc(k) Vz(k)†

Vz(k) H f (k)

)
�k + const

≡
∑

k

�
†
kH′

k�k + const (16)

with spinor � = (c↑+ c↑− c↓+ c↓− f+ f−)T . Here Hc = εk +
μσ0α0 is a 4 × 4 matrix, H f = λα0 − γ B2(1 + α3)/2 is a
2 × 2 matrix [we use two types of Pauli matrices, σλ and αλ

(λ = 0, 1, 2, 3), to represent the spin and pseudospin degrees
of freedom], and Vz is the 2 × 4 hybridization matrix,

V (k) = −V
∑

μ

μ̃b−μ�σα′
μα (k), (17)

which takes the form, for b̂||ẑ,

Vz(k) = −V b

(
�

↑+
↓+(k) �

↑−
↓+(k) �

↓+
↓+(k) �

↓−
↓+(k)

�
↑+
↓−(k) �

↑−
↓−(k) �

↓+
↓−(k) �

↓−
↓−(k)

)

(18)

= −V b

(
− i(1+3ηv )

2 s+ i
√

3(−1+ηv )
2 s− −2isz 0

i
√

3(−1+ηv )
2 s− − i(3+ηv )

2 s+ 0 −2iηvsz

)
.

(19)

s± = sx ± isy, where si = sin(kia)(i = x, y, z). The free-
energy density F is obtained by integrating out the fermions,
leading to

F = − T
∑
kζ

ln(1 + e−Ekζ /T ) + (λ + �E )|b|2 − λ

− μ(|b|2 + nc,0) − gL〈Jz〉�7μ̃B|b|2 (20)

where Ekζ are the six eigenvalues of the Hamiltonian matrix
H′

k. Within this formalism, we can treat both FH order (b 	= 0)
and paraquadrupolar (PQ) order (b = 0, λ = 0). From the
Kondo limit and strong-coupling analysis, we expect FH order
to be favored near half filling, and as the system gains energy
by aligning the spinor with the external field the uniform
FH case is also favored in field over competing states with
nonuniform arrangements of the hastatic spinor. In Sec. III C,

205122-4



FIELD-INDUCED FERROHASTATIC PHASE IN CUBIC … PHYSICAL REVIEW B 100, 205122 (2019)

nc,0
1.4 2.5

FH AFHAFH

FIG. 3. Phase diagram of FH and AFH orders at T = 0 as a
function of conduction-electron filling. FH order is favored near half
filling, while AFH order is favored near quarter filling, as expected
from the strong-coupling approach. Note that particle-hole symmetry
is absent in the Anderson model approach due to the finite occupation
of the excited f state.

we consider the competition between the FH and the AFQ
Ansätze.

B. Antiferrohastatic mean-field theory

In Fig. 3 we show the mean-field T = 0 phase diagram as
a function of conduction-electron filling nc0 for our model on
the simple cubic lattice. As expected from the strong-coupling
analysis, FH order appears near half filling, while AFH is
found around quarter filling. Here we used the mean-field
theory of the Néel staggered AFH Ansatz to compute the
phase diagram. The two Néel sublattices have the hastatic
spinor oriented oppositely, e.g., b̂A = (b, 0)T , b̂B = (0, b)T . A
one-dimensional version of this AFH order is shown in the
illustration of Fig. 4.

The slave boson expectation value at site j may be
written as

b j = bA

2
(1 + eiQ·R ) + bB

2
(1 − eiQ·R )

= 1

2

[(
b
b

)
+ eiQ·R

(
b

−b

)]
, (21)

where Q = (π, π, π ). The mean-field Hamiltonian for the
AFH case can then be written

H =
∑
k,σ

εkαβc†
kσαckσβ

+ V b

2

∑
k

([
�

↑α

σα′ (k) − �
↓α

σα′ (k)
]
c†

kσα′ fk,α

− [
�

↑α

σα′ (k) + �
↓α

σα′ (k)
]
c†

kσα′ fk+Q,α + H.c.
)

+ λ

[∑
k

f †
kα fkα + N (|b|2 − 1)

]
+ μ

∑
k

c†
kσαckσα

− μN (|b|2 − nc,0) + N�E |b|2 (22)

FIG. 4. Cartoon of AFH order in one dimension, where the
hastatic spinor b̂ is alternately aligned with the +ẑ and −ẑ axes.

where k ranges over the original Brillouin zone. The free
energy is obtained in a similar fashion as in the FH case:

F = − T
∑
kζ

ln(1 + e−Ekζ /T ) + N (λ + �E )|b|2

− Nλ − μN (|b|2 + nc,0), (23)

where Ekζ now ranges over the 12 AFH bands. The free
energy is minimized by solving the saddle-point equations,
∂F/∂b = 0, ∂F/∂λ = 0, and ∂F/∂μ = 0.

The AFH phase has staggered magnetic moments, but no
uniform moments (magnetic or multipolar), and we find that
FH order is quickly favored over AFH in finite magnetic field.
The relative stability of AFH order will be more materials
dependent than FH order, as it depends more strongly on
the details of the crystal structure. Here we analyze the
simple cubic case for simplicity, but the qualitative features
are expected to hold for the diamond lattice applicable to the
Pr-1-2-20 materials.

C. Competition with antiferroquadrupolar order

To capture the competing AFQ orders observed in PrT2X20

materials, we introduce a quadrupolar Heisenberg term to the
Hamiltonian:

HQ = JQ
∑
〈i j〉

�τ f ,i · �τ f , j (24)

where �τ f ,i = 1
2 f †

iα�ταβ f jβ is the �3 pseudospin and �τ is a
vector of Pauli matrices. Within the present mean-field theory,
the decouplings into the two different quadrupolar moments
Qμ ∝ 3z2 − r2 and Qν ∝ x2 − y2 are degenerate at �B = 0. In
finite field B ‖ z, Qμ is favored, and so we use it here to
examine the state which competes most strongly with hastatic
order. We therefore choose the specific mean-field decoupling
of this interaction to yield an AFQ order parameter Q along
the z axis, with the resultant mean-field Hamiltonian:

HQ,MF = −Q
∑

k

[( f †
k+Q,+ fk+ − f †

k+Q,− fk−) + H.c.]

+ 3NQ2

JQ
. (25)

Experiments on PrIr2Zn20 have detected Qν AFQ order, but
the qualitative features of our calculated phase diagrams are
expected to remain the same with this choice as well. Adding
this HQ,MF to our FH mean-field Hamiltonian, we obtain the
free energy and solve the saddle-point equations, ∂F/∂λ =
∂F/∂μ = ∂F/∂b = ∂F/∂Q = 0; note that the AFQ mean
field is not justified within the SU (N ) large-N limit, and this
mean-field theory is therefore not controlled.

At zero and small fields, the Pr(Ir, Rh)2Zn20 compounds
order quadrupolarly, giving way to heavy Fermi-liquid behav-
ior at intermediate fields [36,37]. We qualitatively reproduce
this behavior in our self-consistently calculated mean-field
phase diagrams for FH and AFQ Ansätze in magnetic field,
shown in Fig. 5 for three different sets of JQ and n0

c parameters
that capture three possible behaviors. Near half filling, for
small JQ, there is a large coexistence region with FH order
at low fields [Fig. 5(a)]. By increasing JQ and moving away
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FIG. 5. Three example mean-field phase diagrams for FH (red)
and AFQ (blue) orders in magnetic field, for three different strengths
of quadrupolar exchange coupling: (a) JQ =0.38t , (b) JQ =1.6t , and
(c) JQ =2t . The transition to FH order, TK , initially rises with mag-
netic field and is then suppressed, ultimately becoming a first-order
transition in field. Other parameters for (a): t =1, V =0.8, �E =5.5,
�=4.8, nc,0 =1.9. Other parameters for (b) and (c): t =1, V =0.9,
�E =5.5, �=20, nc,0 =1.6.

from half filling, the coexistence region can be made to
disappear, replaced by a direct transition between the FH and
AFQ phases [Figs. 5(b) and 5(c)], which is reminiscent of
the experimental result, with FH order explaining the heavy
Fermi-liquid region in intermediate fields.

Due to the linear coupling of the magnetic field to the
FH moments, we expect magnetic field to initially favor
FH order, leading to increased hybridization and higher TK .
This increase is seen in all three subplots of Fig. 5, most
noticeably in Fig. 5(b). However, as stronger fields split the �3

doublet, the Kondo screening and thus FH order are eventually
destroyed, as seen in the mean-field calculation. AFQ order
is also suppressed as a function of B, leading to a first-order
transition between it and FH order at a critical field Bc. Note
that while the mean-field theory always finds a first-order
transition between FH and PQ states at low temperatures and
high fields we do not expect this to necessarily hold beyond
the mean-field level.

IV. LANDAU THEORY

Large-N theories have been extremely useful in under-
standing Kondo physics at low temperatures, where they work
well [50]. However, these theories are known to have issues
near the Kondo temperature—most notably in predicting a
phase transition in the single-channel Kondo effect. As the
single-channel “order parameter” 〈b〉 breaks only the emer-
gent gauge symmetry, Elitzur’s theorem prevents it from
ordering; indeed, 1/N corrections show that the bosonic ex-
pectation value is not long-range ordered and wash out the
phase transition [51]. In the two-channel case, our bosonic
order parameter 〈bμ〉 breaks a real symmetry in addition to
the gauge symmetry and so the transition must survive.

The key question here is exactly how the hastatic order
parameter breaks the symmetry. Is the order parameter re-
ally spinorial, that is, described by a spinor (double group)
representation? Or is it vectorial, like most known order
parameters? We know the answer in the large-N limit, where
our mean-field theory is strictly correct. The infinite-N order
parameter is spinorial, in the �7 double group irreducible rep-
resentation. In this limit, the order parameter does not couple
linearly to the magnetic field, which has a �4 symmetry, and
there is always a phase transition into the FH phase at TK , even
in finite field. Note that the usual Kondo “order parameter”
also survives in the large-N limit, but is washed out with
1/N corrections. There are strong reasons to believe that the
�7 nature of the order parameter does not survive the 1/N
corrections that wash out 〈b〉 in the single-channel case. The
first is that the conjugate field to the FH order parameter along
ẑ is the breaking of the channel symmetry δJ = J↑−J↓

2 , where
Jσ is the Kondo coupling in each conduction-electron channel.
As soon as the channel symmetry is broken, a heavy Fermi
liquid develops in the strongest channel below a crossover
scale TK ; this heavy Fermi liquid is FH order. We can see
that δJ is the conjugate field to the composite order parameter
by rewriting the two-channel Kondo coupling in terms of
�z = 〈σ̃c†

σ �τcσ · �τ f 〉 [16]:

HK = J
∑

σ

c†
σ �τcσ · �τ f + δJ

∑
σ

σ̃c†
σ �τcσ · �τ f . (26)

Of course, we can also write down conjugate fields that
couple to composite orders in the x and y directions, for
�� = 〈c† �σ [�τ · �τ f ]c〉, and in fact, overall, the composite or-
der parameter forms an SO(5) order parameter that includes
composite pairing, � = 〈c†iσ2[(iτ2�τ ) · �τ f ]c†〉, and �† order
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parameters [7,52], although this SO(5) symmetry is broken
in the cubic Anderson model. In cubic symmetry, �� belongs
to the �4 representation, and so the conjugate field �δJ will
also have �4 symmetry. The Landau order parameter at the
phase transition must therefore be the �4 composite order
parameter, ��, which behaves like 〈b† �σb〉, and not the �7

spinorial order parameter 〈bμ〉. We can also understand the
vector nature of the order parameter by appealing to the Higgs
mechanism in the Kondo effect that locks together the internal
and external gauge fields and gives charge to the composite
fermions. For the single-channel Kondo effect, the phase of
the hybridization plays the role of the Goldstone boson, and is
absorbed to make the difference between internal and external
gauge fields heavy. For the two-channel Kondo effect, we have
an SU (2) spinor:

b j = |b j |eiχ j

(
cos θ jeiφ j/2

sin θ je−iφ j/2

)
. (27)

Here, the Higgs mechanism absorbs the overall phase χ j ,
leaving an SO(3) order parameter defined by two angles (and
the overall amplitude) [53].

The correct FH order parameter is then ��, which has �4

symmetry and couples linearly to the magnetic field, like a
ferromagnet. There are several key differences between FH
and ferromagnetic orders though, which it is important to keep
in mind.

(1) The composite order parameter, ��, and the mixed
valent moment, 〈b† �σb〉, have the same symmetry, but will
typically have very different magnitudes. In the Kondo limit
of integer valence, 〈b〉 = 0, and yet |�| will still be large.
Therefore, the coupling of �� to external field, �h, will typically
be quite small. In this sense, while very close to the phase tran-
sition FH order will look like a ferromagnet, with diverging
susceptibility, whereas further from the phase transition it will
look like the spinorial order parameter, with linear magnetiza-
tion instead of the square-root behavior of a ferromagnet, for
example.

(2) The composite order parameter does not commute with
the Hamiltonian, although it has been shown to retain the
quadratic Goldstone modes [53,54].

(3) The development of a hybridization gap is associated
with hastatic order, with the gap magnitude growing as

√|�|.
Additionally, the originally neutral pseudofermions fα pick up
electric charge via a Higgs mechanism and become part of
the Fermi surface, and so a discrete change in Fermi-surface
volume is expected across the FH transition.

If we want to understand the behavior of FH order near
the phase transition, we need to examine the Landau theory
of the composite order parameter ��, keeping in mind the
weak linear coupling to external field. The Landau theory
should really be thought of as capturing how 1/N corrections
will modify the behavior near the transition, while the low-
temperature physics is still expected to be well described by
our mean-field theory.

To explore these consequences in detail, and the effect on
the thermodynamic responses, we consider a simple Landau
theory. As AFQ order is a natural competitor for FH order,
we will compare the behavior of FH and AFQ orders. As the
theory is complex, we introduce it in stages, but our goal is

a full theory of the interplay of FH and AFQ orders in both
magnetic field and strain. Here, we neglect the possible oc-
tupolar order of the �3 doublet; a Landau theory of quadrupo-
lar and octupolar orders, and their interaction with external
field and strain, was recently developed [40,41].

A. Ferrohastatic order

The allowed terms in a Landau theory are found by con-
sidering products of the representations of the various order
parameters, and taking all the invariant (�1) terms of each
order. The local site symmetry of the Pr atoms is known to be
Td [55], and so the appropriate group for the composite order
parameter, ��, is Td × τ , where τ is time-reversal symmetry.
�� is described by the same �4u irreducible representation as
the external magnetic field �h, and so magnetic field is expected
to smear out the phase transition into a crossover. Here we use
u/g to indicate odd/even behavior under time reversal. We
first find all quadratic terms in both �� and �h:

�4u ⊗ �4u = �1g ⊕ �3g ⊕ �4g ⊕ �5g

= |�|2 ⊕
−→
�2

�3 ⊕ · ⊕
−→
�2

�5

or

= |h|2 ⊕
−→
h2

�3 ⊕ · ⊕
−→
h2

�5

or

= �h · �� ⊕ −→
h��3 ⊕ �h × �� ⊕ −→

h��5 . (28)

Here
−→
φ2

�3 = ( 1√
3
[3φ2

z − |φ|2], φ2
x − φ2

y ) and
−→
φ2

�5 =
(φxφy, φyφz, φzφx ), for φ = h or �, and the �4g �φ × �φ
term vanishes. We also have the mixed terms

−→
h��3 =

( 1√
3
[3hz�z − |h||�|], hx�x − hy�y) and

−→
h��5 = (hx�y +

hy�x, hy�z + hz�y, hz�x + hx�y). These terms can be used
to construct the allowed fourth-order terms with �1 symmetry;
there are no allowed third-order terms due to the time-reversal
symmetry-breaking nature of the order parameter. And so we
construct the Landau theory:

F� = α� |�|2 + u�

2
|�|4 − λ�h · �� + uh� |h|2|�|2. (29)

Here, we neglect several fourth-order terms: there are terms

that pin the hastatic spinor
−→
�2

�3 · −→
�2

�3 and
−→
�2

�5 · −→
�2

�5 —
either to the [111] or [100] directions, respectively. Micro-
scopic calculations show these pinning terms to be quite weak,
and the λ magnetic field coupling will quickly overwhelm
them to pin the hastatic order parameter along the external
field direction. We also drop several second-order terms in
both h and � for the same reason. Remember that the com-
posite order parameter �� is nonzero even in the Kondo limit
where the mixed valent moment b† �σb vanishes, and so the
coupling to external field will be extremely small when the
materials are near integral valence, as is likely the case for
the Pr-based materials.

From this Landau theory, we can already see that FH
order is a type of ferromagnetism, but with a peculiarly weak
linear coupling to external field. We expect a divergence in
the magnetic susceptibility at TK in zero field, although the
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coefficient [λ2/(2α� )] is small. For finite fields, the suscepti-
bility is nearly constant above the transition and then develops
a linear component, dχ/dT ≈ 2uh�α�/u� , below the transi-
tion, where this equation is exactly true if λ = 0. For λ = 0,
the magnetic moment grows linearly in temperature below TK ,
while finite λ leads to the typical square-root behavior in zero
field. For small λ and finite h, the linear behavior is still
evident slightly away from the transition and the field smears
out the kink. All signatures of the phase transition, like the
specific heat jump, will be similarly smeared out, governed
by λ.

B. Ferrohastatic order and coupling to strain

As the �3 doublet has quadrupolar components O0
2 and O2

2,
including coupling to strain is extremely important. There are
five strain components:

−→ε �3g = (εμ, εν ) =
(

1√
3

[2εzz − εxx − εyy], εxx − εyy

)
,

−→ε �5g = (εxy, εyz, εzx ). (30)

The first two components, −→ε �3g , couple linearly to the pos-
sible ferroquadrupolar (FQ) orderings of the �3 doublet:
�R = (Rμ, Rν ). Here Rμ = 〈O0

2〉 and Rν = 〈O2
2〉 are the two

possible FQ orders. The �5 components will couple to the

�5 combinations of � and h. However,
−→
h��5 requires �h ⊥ ��,

which is forbidden by the pinning of the hastatic spinor to
the external field direction, and so we neglect these strain
components entirely.

The elastic free energy for −→ε �3g is

Fel = c11 − c12

2

(
ε2
μ + ε2

ν

)− g3 �R · −→ε �3g, (31)

where c11 and c12 are elastic coefficients, and we take g3 < 0,
as in PrIr2Zn20 [56]. We can then integrate out the strain,

εμ,ν = g3

c11 − c12
Rμ,ν, (32)

and work directly with the ferroquadrupolar order parameters.
We can again use group theory to determine the symmetries
of different combinations of �R:

�3g ⊗ �3g = �1g ⊕ �2u ⊕ �3g

= |R|2 ⊕ · ⊕
−→
R2

�3

= |R|2 ⊕ · ⊕ (
R2

ν − R2
μ, 2RμRν

)
. (33)

Note that there is no �2u term—the original �3 multiplets
have �3g quadrupolar orders and �2u octupolar order, but this
octupolar order cannot be constructed from the time-reversal
invariant quantities here and must be treated independently, as
has been done recently [41].

The Landau theory for FQ order is

FR = αR|R|2 + uR

2
|R|4 + vR �R ·

−→
R2

�3 − γR �R ·
−→
h2

�3 . (34)

Here, we assume αR > 0 to forbid intrinsic FQ order; it will
be induced by both FH and AFQ orders, as well as finite field.
The third-order clock term pins the FQ order parameter to
the lattice. We know from single-ion physics that magnetic

field favors FQ order via induced magnetic moments, and so
γR > 0.

Finally, we can couple the two orders:

F�R = κR �R · −→
h��3 + νR �R ·

−→
�2

�3 + u�R|�|2|R|2. (35)

Note that FQ order appears to develop immediately with FH
order, due to νR; however, νR vanishes in our microscopic
theory due to the nodal structure of the hybridization. κR

induces FQ order whenever both � and h are nonzero, and
this term is nonzero in the microscopic theory, although likely
to be small, just as λ is.

The thermal expansion α and magnetostriction λ are de-
fined in terms of the fractional change in length, �L/L, along
some direction, which is in turn proportional to strain:

�L

L

∣∣∣∣
z

= 1

3
εB + 1√

3
εμ,

�L

L

∣∣∣∣
x

= 1

3
εB − 1

2
√

3
εμ + 1

2
εν, (36)

where εB is the symmetric volume strain. For specificity, we
consider the magnetic field to be along ẑ, and define

α‖ = 1

L

d�L

dT

∣∣∣∣
z

, α⊥ = 1

L

d�L

dT

∣∣∣∣
x

,

λ‖ = 1

L

d�L

dh

∣∣∣∣
z

, λ⊥ = 1

L

d�L

dh

∣∣∣∣
x

. (37)

None of the order parameters couple linearly to the bulk
εB, and as we consider the Rμ = O0

2 FQ order (so εν = 0),
motivated by experiments on PrIr2Zn20 [56], the relationships
α‖ + 2α⊥ = 0 and λ‖ + 2λ⊥ = 0 always hold. Note that these
are likely violated beyond Landau theory, where changes in
f -electron valence typically result in volume changes. Here,
we focus on the parallel components, with the perpendicular
components understood to be given by these relations.

The coupling of FH and FQ orders leads to negative jumps
in both the thermal expansion and magnetostriction at the
transition into hastatic order if either h = 0 or the couplings λ

and κR are zero. If λ and κR are nonzero and h is finite, as is
expected experimentally, the jumps are slightly smeared. We
show some examples in Fig. 6, where we consider both AFQ
and FH orders.

C. Comparison with antiferroquadrupolar order

A similar analysis for the �3 AFQ order in magnetic field
yields [40]

FQ = αQ(T − TQ)|Q|2 + uQ

2
|Q|4 + wQ|Q|6

+ vQ
(− Q3

ν + 3Q2
μQν

)2 + uQh|Q|2|h|2

+ vQh

−→
Q2

�3 ·
−→
h2

�3 (38)

where Qμ = 〈O0
2〉A − 〈O0

2〉B and Qν = 〈O2
2〉A − 〈O2

2〉B are the
AFQ order parameters comprising the �3 doublet, and we
keep only the lowest-order symmetry-breaking terms. A and
B are the two sublattices of the diamond structure, which de-
scribes the arrangement of Pr ions. The sixth-order term, vQ,
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FIG. 6. Signatures of ferrohastatic and antiferroquadrupolar or-
ders. (a) Example phase diagram in temperature (T) and magnetic
field along ẑ (B). TQ indicates the phase transition into AFQ order,
while T ∗ is the crossover scale for FH order; T ∗ becomes a phase
transition only for B = 0. (b) Thermal expansion (α‖) as a function
of temperature for three different fields. There is a sharp negative
jump upon entering the AFQ phase, and a smeared out jump upon
cooling through T ∗ which is negative for T ∗(B) > TQ(B) and positive
otherwise. Note that the Landau theory captures α‖ only near the
transition—far from the transition, the microscopic physics will lead
to nonmonotonic behavior and eventually α‖ goes to zero as T → 0.
(c) Magnetostriction (λ‖) as a function of magnetic field for three
different temperatures. There is a negative jump upon exiting the
AFQ order that grows with decreasing temperature, but the signature
at B∗ is completely smeared out. Parameters are given in the text.

is the square of the third order in Q term with �2 symmetry.
The coupling to FQ order is given by

FQR = ρ �R ·
−→
Q2

�3 + uQR|R|2|Q|2 (39)

where
−→
Q2

�3 is defined identically to
−→
R2

�3 and couples linearly
to the FQ order parameter �R. We neglect higher-order terms
as subdominant.

Here, ρ leads to jumps in thermal expansion and mag-
netostriction that can take either sign, although ρ < 0 is
indicated by the experimental results, wherein Rμ is induced
by Qν [28,56].

D. Coupling ferrohastatic and antiferroquadrupolar orders

For completeness, the interactions between FH and AFQ
order are captured in

F�Q = u�Q|Q|2|�|2 + κQ
−→
h��3 ·

−→
Q2

�3 + νQ

−→
�2

�3 ·
−→
Q2

�3 .

(40)

Note that νQ also vanishes in our microscopic theory. AFQ
and FH orders suppress one another, and can either coexist
(for sufficiently small u�Q) or phase separate via a first-order
transition (for larger u�Q). We find both cases in our micro-
scopic theory above, for different values of the AFQ coupling,
and show a Landau theory example in the next section.

E. Example phase diagram and thermodynamics

In Fig. 6(a), we show one possible phase diagram in tem-
perature and field. Here, we choose our Landau parameters
to roughly reproduce the experimental phase diagram. The
AFQ order parameter is Qν , while the FQ order parameter (not
shown) is Rμ, and the FH order parameter, ��, points along ẑ.
We similarly choose the magnetic field �h = Bẑ. The Landau
parameters are

TK = 1.1, α� = 1, u� = 7, λ = 0.05, uh� = 1,

αR = 1, uR = 3, vR = 0, γR = 1,

κR = −0.05, νR = −0.25, u�R = 0.5,

TQ = 1.2, αQ = 1, uQ = 3.5, vQ = 0, uQh = 4,

ρ = −0.5, uQR = 0, u�Q = 6, κQ = 0, νQ = 0.

(41)

Note that λ and κR are nonzero but small, to reflect the
smallness of the moment relative to the magnitude of the
composite order parameter, ��, for nearly integral valence.
For any finite B, the FH phase transition is smeared out by
these parameters. FQ order only turns on via interactions with
other order parameters and magnetic field. The parameters
here were chosen to roughly reproduce the single-ion behavior
of the magnetostriction in magnetic field. The signs of ρ

and νR are chosen to reproduce the negative jump in the
thermal expansion seen in PrIr2Zn20 [56]. νR is zero in our
microscopic theory, but is generically allowed to be nonzero
by symmetry; we take it to be small, but negative to match
the sign of the experimental thermal expansion jump. FH and
AFQ orders have similar zero-field transition temperatures
(which requires fine tuning, of course), and they strongly repel
one another via u�Q. We otherwise set κQ and νQ to zero for
simplicity.
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FIG. 7. Two example FH dispersions to illustrate the nature of
the hybridization. (a) Example dispersion of heavy quasiparticles in
which all conduction bands are hybridized, as seen from the X -R cut,
which is not a high-symmetry line. (b) Example dispersion in which
one conduction-electron band always remains unhybridized; here, we
also use the color scale to show the spin polarization of the heavy
bands. The unhybridized c and f bands (dashed black lines) and
hybridized bands (thick solid lines) are plotted along high-symmetry
lines in the cubic Brillouin zone, near EF = 0. The color indicates
the projection of spin along the z axis; note that 〈Sz〉 = 0 merely
implies that the spins lie in the xy plane. Parameters for (a): t =1,
μ=0, ηc =0.2, λ=0, V =ηv =0.1, bμ = (1, 0). Parameters for (b):
t=ηc=V=1, ηv=−1/3, �E=5.5, nc,0=1.6 [λ, bμ, and μ are determined
self-consistently for (b)].

V. SIGNATURES OF FERROHASTATIC ORDER

Fundamentally, FH order is a heavy Fermi liquid with
a spinorial hybridization that breaks the channel symmetry.
As such, it has two types of signatures: heavy Fermi-liquid
behavior, where half of the conduction electrons hybridize
with the local moments and half remain unhybridized, and
symmetry-breaking signatures, including magnetic moments
and thermodynamic signatures.

A. Heavy Fermi-liquid behavior

In the simplest cases, FH order is a half-heavy Fermi
liquid—one band of conduction electrons hybridizes and
becomes heavy, while the other remains light. Along high-
symmetry lines, or for the simple case of ηc = 1, ηV = 1, this
is true: one light band remains completely unmodified, while
the other hybridizes and becomes heavy. In more generic
cases, however, both bands become hybridized due to the
strong spin-orbit coupling, although one is more strongly
modified [Fig. 7(a)]. In the simple two-channel Kondo model,
for example, the spin-up conduction electrons hybridize and

FIG. 8. The symmetry-breaking hybridization gap has a �3+
angular dependence for b̂ ‖ ẑ. Blue and red indicate positive and
negative values, respectively.

form a heavy band, with a hybridization gap, while the
spin-down conduction electrons remain unhybridized and un-
gapped to form a light band [15]. In the more realistic model
considered here, the spin-orbit coupled hybridization means
that the spin structure of the heavy band varies throughout the
Brillouin zone, as shown in Fig. 7(b).

The heavy band dominates the thermodynamic properties,
and FH order has all the traditional signatures of heavy
Fermi liquids, including a large Sommerfeld coefficient and
AT 2 resistivity. The two bands will have very different ef-
fective masses, which can be probed by quantum oscil-
lations. The resulting “half”-hybridization gap [11] should
be observed in angle-resolved photoemission spectroscopy
(ARPES), scanning-tunneling microscopy (STM), and optical
conductivity measurements. The optical conductivity sum
rule, n(ω) = m

e2

∫∞
0

dω′
π

σ1(ω′), will have a kink at approxi-
mately half of the total weight, as a direct consequence of the
half-hybridization gap pushing spectral weight of the initial
Drude peak above the direct gap. As the �8 form factors
mix spin and orbital angular momentum, the physical spin
structure of both hybridized and unhybridized bands varies
throughout momentum space, as shown in Fig. 7(b); this
structure could be detected in spin-resolved ARPES.

In zero magnetic field, there are generically two types
of hybridization gaps: symmetric gaps that only depend on
the amplitude of the hastatic spinor, Tr[b̂†b̂], and symmetry-
breaking gaps that depend on the direction, Tr[b̂† �μb̂], where
�μ is a vector of channel Pauli matrices. Spin-orbit coupling
implies that the symmetry-breaking gaps break both SU (2)
and cubic symmetries, which we show in Fig. 8(b) for special
parameters that allow an analytic form of the dispersion. Here,
b̂||ẑ and the gap has �3+ symmetry (see Appendix A for
details). Note that in mean-field theory both gaps develop
via a phase transition at TK , but fluctuations will allow the
non-symmetry-breaking gap to develop as a crossover at a
higher T ∗, along with the heavy Fermi-liquid signatures.

B. Symmetry-breaking signatures

Broken time-reversal symmetry manifests as magnetic mo-
ments for both the conduction electrons, �mc, and the excited
doublet, �mb. These are strictly parallel to the hastatic spinor b̂,
and are calculated as

mc = − ∂F
∂Bc

∣∣∣∣
Bc→0

, mb = −μBgL〈Jz〉�7 |b|2 (42)
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FIG. 9. (a) Behavior of conduction-electron (red) and �7 (blue)
moments with temperature; note that each turns on linearly in field,
in contrast to ferromagnetic order. (b) conduction-electron (red),
4 f 3 �7 (blue), and 4 f 2 �3 (orange) moments as a function of field;
in FH order, all moments are strictly parallel to the applied field.
Parameters are t = 1, ηc = 1, V = 0.8, ηV = 1, nc,0 = 1.6, �E =
5.5, with B = 0 for (a) and T = 0.005 for (b). Note that the ground-
state mixed valency for these parameters is 〈b〉2 ≈ 0.3 at B = 0,
and the real materials likely have significantly smaller zero-field
moments.

where Bc is conjugate to mc, coupling only to the conduction
electrons. Both magnetizations turn on linearly below TK ,
as shown in Fig. 9(a), which follows from the BCS-like
temperature dependence of 〈b〉, but is also seen to persist in
the Landau theory for small moments and finite B. The total
magnitude is small, O(TK/D), with D the conduction-electron
bandwidth. While the FH moments are quite small in zero
field, they will grow fairly quickly in finite fields [Fig. 9(b)].
The most straightforward way to positively identify the FH
phase over the competing quadrupolar ordered phases is to
examine the field dependence of the magnetic moments—in
particular, their direction. FH moments will always be pinned
to the field, and so all moments will align with the external
field; by contrast, FQ order induces magnetic moments in field
with a significant perpendicular component for some field di-
rections [24,25,27]. Similarly, AFQ order generically induces
FQ order and will have the same field dependence of the
uniform moments. As quadrupolar order is difficult to detect
directly, due to its weak coupling to the lattice [57], measuring

the in-field moments along several directions is essential to
distinguish between hastatic and quadrupolar phases.

C. Thermodynamic signatures

Broken time-reversal symmetry is also apparent in the
development of a finite magnetostriction in the FH state. For
the hastatic spinor aligned along the z axis, this susceptibility
is given by χms ≡ ∂2F/∂Bz∂εμ 	= 0 ∝ λ‖. Susceptibilities
involving B and strain derivatives along x and y vanish, so
we do expect a small zero-field volume magnetostriction that
increases with decreasing temperature in the FH state. A zero-
field magnetostriction has been observed in PrV2Al20 [41]
preferentially along the [111] direction, as one would expect
for octupolar order; the hastatic magnetostriction would be
relatively independent of the direction of field, as long as field
and strain components are aligned. As we believe FH might
explain the heavy Fermi liquids in Pr(Ir, Rh)2Zn20 at finite
fields, this signature is not practical, as the transition will be
smeared out.

The magnetostriction and thermal expansion expected for
FH order can also be calculated more generally within the
microscopic mean-field model. While we expect that the
behavior near the transition will be modified as indicated
by the Landau theory, the microscopic calculation allows
us to access the behavior away from the phase transition.
Figure 10(a) shows the magnetostriction at fixed temperature
T = 1.2TK,B=0 as a function of field using the parameters
of Fig. 5(b). The self-consistently calculated result exhibits
jumps at the transitions into and out of the FH phase, but
otherwise mostly follows the single-ion physics. Figure 10(b)
compares the thermal expansion calculated in the FH and
PQ phases (using a different set of parameters than the
magnetostriction calculation). As the temperature is lowered,
the thermal expansion exhibits a sharp downward jump upon
entering the FH phase, followed by a superlinear rise. This
jump will again be somewhat smeared out, looking similar
to the downturns seen in the Landau theory. Similar behavior
has been observed in experiment [56], with a dip followed
by a steep rise. The peak in α‖ is much sharper and shifted
to low temperatures compared to the corresponding result
for the PQ phase, which can explain why the experiments
have only measured an increasing α‖ as the temperature is
reduced, having not reached low enough temperatures to see
the inevitable downturn. Note that the valence change asso-
ciated with hastatic order will also have a small contribution
to the volume magnetostriction λ = λ‖ + 2λ⊥, in addition to
the symmetry-breaking contribution discussed above. Recent
magnetostriction measurements on PrIr2Zn20 suggest rela-
tively small changes in valence as a function of field, in the
heavy Fermi-liquid region [56], consistent with the relatively
flat TK seen in Fig. 5(c).

The magnetic field phase diagrams of PrT2Zn20 (T=Ir, Rh),
with their intermediate-field heavy Fermi-liquid regions,
are consistent with our model. PrIr2Zn20 orders antiferro-
quadrupolarly (with O2

2-type moments) for B = 0 [28], but
has a finite field region between 4 and 5 T for B||[100]
with enhanced C/T and A [36], while PrRh2Zn20 has a
similar heavy Fermi-liquid region between 3.5 and 6.7 T
for B||[100] [37]. Note that an earlier review suggested that

205122-11



VAN DYKE, ZHANG, AND FLINT PHYSICAL REVIEW B 100, 205122 (2019)

FIG. 10. Mean-field calculations of magnetostriction and ther-
mal expansion. (a) Magnetostriction vs field for the self-consistent
mean-field solution (green) and for the paraquadrupolar state (dashed
orange); this calculation was done at a relatively large fraction of
T/TK (B). Between Bz ≈ 0.4Bc and Bz = Bc the system is FH. There
are jumps in λ‖ when entering the phase, which show a clear increase
with increasing field; these are expected to be smeared out by
1/N corrections. (b) Thermal expansion vs temperature for the FH
(blue) and paraquadrupolar (dashed orange) phases at intermediate
fields. The jump at T = TK is a signature of the onset of FH order,
while the narrow peak at low T contrasts with the broader one
of the PQ state. Again, the jump is expected to be smeared out
by 1/N corrections. Parameters for (a): t = 1, ηc = 1, V = 0.9,
ηV = 1, � = 20, nc,0 = 1.6, T = 0.168. Parameters for (b): t = 1,
ηc = 1, V = 0.8, ηV = 1, � = 10, nc,0 = 1.9, Bz = 0.8. The vertical
axes of (a) and (b) are scaled such that the minimum value of the
calculated PQ magnetostriction in (a) roughly matches the minimum
experimentally determined value at the lowest measured temperature
[56].

these regions could be composite order [23]; here we propose
specifically that these are FH, justified within a microscopic
model with concrete predictions. Measuring the magnetic
moments for multiple field directions is the best way to
differentiate FH and quadrupolar orders. While the moment
directions alone will not distinguish the FH phase from a
trivial paramagnetic/paraquadrupolar phase in finite field, the
FH phase also possesses the traditional heavy fermion sig-
natures (large linear specific heat, T 2 resistivity, etc.), which
would not be present in an ordinary paramagnet. FH order
will additionally exhibit a half-hybridization gap in optical

conductivity or STM measurements, and Raman measure-
ments of the symmetry-breaking hybridization gap are another
intriguing possibility. PrV2Al20 also exhibits an intermediate
in-field region [22], but more experiments are needed. Other
�3 materials like PrInAg2 [58] and PrPb3 [59], with its high-
field phases, also merit further study.

VI. CONCLUSIONS

To summarize, we have investigated ferrohastatic order in
cubic systems via a realistic two-channel Anderson lattice
model, in combination with a phenomenological Landau the-
ory that accounts for the effect of fluctuations. The develop-
ment of a heavy Fermi liquid necessarily breaks channel sym-
metry, including time-reversal and spin rotation symmetries.
For FH order, this heavy Fermi liquid includes spin-textured
dispersions, symmetry-breaking hybridization gaps, and small
magnetic moments for both the conduction electrons and the
excited f states. Several materials may realize a FH regime
in finite magnetic field [PrT2Zn20 (T=Ir, Rh)], which is also
a possible candidate for PrTi2Al20 once the FQ order is
suppressed under pressure.

The nature of two-channel Kondo lattice superconductivity
is an open question; thus far research has focused on compos-
ite pairing [7,52,60]. Quadrupolarly mediated superconduc-
tivity arising out of the FH state leads to Cooper pairs that
are orbital singlets and spin triplets, at least in the resonating
valence bond limit where the orbital singlets first form among
the spinless f “electrons,” and are transmitted to the spinful
conduction electrons via the hastatic spinor [61]. The resulting
triplet state is reminiscent of the A1 phase of He-3, due to the
asymmetry between ↑↑ and ↓↓ pairs [62]. Further exploration
of AFH order and superconductivity in the hastatic state is left
for future work.
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APPENDIX A: SPIN-ORBIT-COUPLED HYBRIDIZATION

Here we give further details regarding the spin-orbit-
coupled hybridization in our model for FH order. As men-
tioned in the main text, the valence fluctuation term

HVF = V
∑
jμα

[μ̃| j�3, α〉〈 j�7,−μ|ψ j,�8μα + H.c.] (A1)

involves the creation or annihilation of conduction electrons
projected onto the �8 symmetry channel of the localized f
electrons. Explicitly, we consider the overlap of a d-band
conduction electron of eg symmetry with the �8 f -electron
orbital. Using angular momentum eigenstates |l, ml , s, ms〉 for
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the l = 2 d electrons, the eg states are

|eg, σ,+〉 = |2, 0, 1/2, σ 〉, (A2)

|eg, σ,−〉 = 1√
2

(|2, 2, 1/2, σ 〉 + |2,−2, 1/2, σ 〉) (A3)

with σ = ± 1
2 =↑,↓. On the other hand, the J = 5/2 �8

quartet states are expressed using total angular momentum
eigenstates | j, mj〉:

|�8, μ,+〉 = |5/2, μ̃(1/2)〉, (A4)

|�8, μ,−〉 =
√

5

6
|5/2, μ̃(5/2)〉 +

√
1

6
|5/2,−μ̃(3/2)〉 (A5)

with μ̃ = sgn(μ). Since the �8 electrons in our model arise
from the overlap of the eg conduction electrons with f elec-
tron states, the annihilation operators of the former can be
written as

ψ�8, j,μ,α =
∑

j′,σ,α′
〈�8, j, μ, α|eg, j′, σ, α′〉c j′,σ,α′ . (A6)

Here the conduction-electron state sits at a distinct site, j′, as
generically the overlap between d and f electrons at the same
site is zero; we assume that the f electron is located at the
origin, R j = 0. The wave-function overlaps are

〈�8, j, μ, α|eg, j′, σ, α′〉

=
∫

dr〈�8, j, μ, α|r〉〈r|eg, j′, σ, α′〉. (A7)

The eg wave functions are sums of spherical harmonics via

〈r|eg, j′, σ, α′〉 =
∑

m

〈
r − R j′

∣∣∣∣2, m,
1

2
, σ

〉

×
〈
2, m,

1

2
, σ

∣∣∣∣eg, j, σ, α′
〉
, (A8)〈

r − R j′

∣∣∣∣2, m,
1

2
, σ

〉
= Y m

2 (r − R j′ ), (A9)

while the spin-orbit-coupled �8 expressions contain addi-
tional Clebsch-Gordan coefficients:

〈�8, j, μ, α|r〉 =
∑

m

〈�8, j, μ, α| j, m〉
〈

j, m

∣∣∣∣3, m − σ,
1

2
, σ

〉

×
〈
3, m − σ,

1

2
, σ

∣∣∣∣r
〉
, (A10)

〈
j, m

∣∣∣∣3, m − σ,
1

2
, σ

〉
= −2σ

√
7/2 − 2mσ

7
, (A11)〈

3, m − σ,
1

2
, σ

∣∣∣∣r
〉

= [
Y m

3 (r)
]∗

. (A12)

Following the Slater-Koster method [48,49,63], we numeri-
cally calculate the overlaps of wave functions on neighbor-
ing sites and determine how they are related by symmetry.
The following overlaps between neighboring �8 orbitals at
position (rx, ry, rz ) and eg orbitals at (rx, ry, rz + δ) in the z
direction are found to be nonzero and generically distinct,

with their proportionality captured by the factor ηv:

〈eg,↑,+|�8,↑,+〉 = −〈eg,↓,+|�8,↓,+〉 = Ṽ , (A13)

〈eg,↑,−|�8,↑,−〉 = −〈eg,↓,−|�8,↓,−〉 = Ṽ ηv. (A14)

For eg orbitals located at (rx, ry, rz − δ), the signs of each
overlap are reversed. This leads to an odd-parity hybridization
term along the z direction after the Fourier transform to
momentum space [basis (↑ +,↑ −,↓ +,↓ −)]:

Hz
eg−�8

= iṼ

⎛
⎜⎜⎝

−2sz 0 0 0
0 −2ηvsz 0 0
0 0 2sz 0
0 0 0 2ηvsz

⎞
⎟⎟⎠ (A15)

with sz = sin(kz ). Here ηv tunes the relative overlap integrals
between eg and �8. The three-dimensional (3D) hybridization
term with cubic symmetry is then obtained from the one-
dimensional Hz

eg−�8
by applying 2π/3 rotations around a

cubic body diagonal, transforming ẑ → x̂ → ŷ → ẑ:

R2π/3 = e−iπ/4 1

2
√

2

⎛
⎜⎜⎜⎜⎝

−1
√

3 −i i
√

3

−√
3 −1 −i

√
3 −i

1 −√
3 −i i

√
3√

3 1 −i
√

3 −i

⎞
⎟⎟⎟⎟⎠.

(A16)

Then H3D = Hz
eg − �8

+ R2π/3Hx
eg−�8

(R2π/3)† + (R2π/3)2

Hy
eg−�8

[(R2π/3)†]2, leading to the form factor �σα′
μα (k)

expressing the �8 creation operator in terms of overlaps with
eg conduction electrons:

ψ�8, j,μα =
∑
kσα′

eik·R j �σα′
μα (k)ckσα′ , (A17)

�σα′
μα (k) =

(
Â B̂
B̂′ −Â

)
, (A18)

Â =
(−2isz 0

0 −2iηvsz

)
, (A19)

B̂ =
(

i
2 (1 + 3ηv )s+ − i

√
3

2 (−1 + ηv )s−

− i
√

3
2 (−1 + ηv )s− i

2 (3 + ηv )s+

)
, (A20)

B̂′ = B̂ (s+ ↔ s−) (A21)

where s± ≡ sin(kx ) ± i sin(ky) and sz ≡ sin(kz ). � possesses
an overall amplitude, Ṽ , that we set to 1, as its effect is already
captured by the overall strength of hybridization V . Here the
matrix is written in the basis (↑ +,↑ −,↓ +,↓ −) for σ =
↑,↓ and α = +,−. Similar techniques are used to obtain the
conduction-electron dispersion, εk, used in the main text by
treating the eg-eg hoppings [48,49] [see Eq. (12)].

APPENDIX B: FERROHASTATIC HYBRIDIZATION GAPS

As discussed in the main text, cubic FH order typically pos-
sesses a “half”-hybridization gap, realized by both symmetry-
breaking and non-symmetry-breaking hybridization gaps. As
the Hamiltonian cannot generically be diagonalized ana-
lytically, analyzing the gaps is complicated. We first dis-
cuss the general case, where we keep the direction of the
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hastatic spinor general. Here, we examine the full f -electron
Green’s function, where the symmetry-breaking terms of the
f -electron self-energy can be isolated; these allow us to
clearly discuss the terms entering into the dispersion. Next,
we discuss a special case, where some hybridization matrix
elements vanish from the dispersion and the problem is analyt-
ically tractable. Finally, we discuss how the half-hybridization
gap affects the density of states.

1. f -electron self-energy

The heavy quasiparticle band structure is given by the
solutions of det(ω − H ′

k ) = 0, which do not generically
have a closed form. Still, one may gain insight into the
symmetry-breaking properties of FH order by factorizing the
determinant as

det(iωn − H ′
k ) = det[gc(k, iωn)]−1

× det[iωnα0 − � f (k, iωn)] (B1)

and examining the f -electron self-energy, � f (k, iωn) =
V†

kgc(k, iωn)Vk. In particular, we may determine which com-
ponents of � f break symmetries of the underlying cubic
lattice, and how these couple to the SU (2) symmetry breaking
of the hastatic spinor. The full hybridized f -electron Green’s
function can be obtained from

[G f (k, iωn)]−1 = iωnα0 − V†
kgc(k, iωn)Vk (B2)

where the generic hybridization term is a 4 × 2 matrix,

Vk = V
∑

μ

μ̃b−μ�σα′
μα (k), (B3)

and the bare unhybridized conduction-electron Green’s func-
tion is obtained from

[gc(k, iωn)]−1 = σ0 ⊗ [(iωn − ψ00)α0 − ψ01α1 − ψ03α3]

(B4)

with coefficients given by

ψ00 = 1

4
Tr[Hcσ0 ⊗ α0] = μ − t (1 + ηc)(cx + cy + cz ),

(B5)

ψ01 = 1

4
Tr[Hcσ0 ⊗ α1] =

√
3

2
t (ηc − 1)(cx − cy), (B6)

ψ03 = 1

4
Tr[Hcσ0 ⊗ α3] = t

2
(1 − ηc)(cx + cy − 2cz ). (B7)

Again, we use the Pauli matrices, σλ and αλ (λ = 0, 1, 2, 3),
to represent the spin and pseudospin degrees of freedom.
Inverting,

gc(k, iωn) =
(

1

(iωn − ψ00)2 − ψ2
01 − ψ2

03

)
× σ0 ⊗ [(iωn − ψ00)α0 + ψ01α1 + ψ03α3].

(B8)

Thus we find three nonzero components σ0 ⊗ αi (i = 0, 1, 3)
for gc(k, iωn), and hence also for the f -electron self-energy
� f (k, iωn), which has the matrix structure

V†
kσ0 ⊗ αiVk =

∑
j

V2,i j (k)α j (B9)

with

V i j
2 (k) = 1

2
Tr[V†

kσ0 ⊗ αiVkα j] =
{

V
4 Tr[�(k)†σ0 ⊗ αi�(k)σ0 ⊗ α j] Tr[b̂†μ0b̂], j = 0, 1, 3

−V
4

∑
k Tr[�(k)†σ0 ⊗ αi�(k)σk ⊗ α2] Tr[b̂†μkb̂], j = 2

(B10)

where μk is one of the Pauli matrices representing the excited
Kramers doublet pseudospin. These self-energy terms form a
nontrivial matrix in α space, and so the full dispersion will
contain not only these terms but quartic traces of the form

V i j
4 (k) = Tr[V†

kσ0 ⊗ αiVkσk ⊗ α jV†
kσ0 ⊗ αiVkσk ⊗ α j],

(B11)

where we keep only the nonzero terms. We note that out of
the above terms only V 00

2 (k) explicitly preserves the cubic
symmetry of the underlying lattice for generic values of ηv .
However, only the terms that also break SU (2) symmetry lead
to cubic symmetry breaking in the full dispersion. The other
terms should be considered similarly to the ηc 	= 1 terms in
the conduction-electron dispersion: they lead to band splitting,
but the overall dispersion satisfies cubic symmetry. We have
checked this explicitly by setting the b† �μb terms to zero, while
keeping the b†b terms, and have found that cubic symmetry is
always preserved. In order to analyze the symmetry-breaking
nature of the hybridization gaps that depend on b† �μb, we now
turn to an analytically tractable special case.

2. Analytic expression for ηc = 1, ηv =−1/3, b̂ = (1, 0)T

In this special case, the mean-field Hamiltonian may
then be diagonalized to obtain two degenerate unhybridized

conduction-electron bands and the following four hybridized
bands:

Ek =
⎡
⎣(Eck + λ)

2
±
√[

(Eck − λ)2 + V 2
1k

]
4

± 16
√

γk + δk

9

⎤
⎦

(B12)

where we define

Eck = −2t (cx + cy + cz ) + μ, (B13)

|V1k|2 = 4V 00
2 (k) = 80

9
V 2b2

(
s2

x + s2
y + s2

z

)
, (B14)

γk = V 4b4
(
s4

x + s4
y + s4

z

)
, (B15)

δk = V 4b4
[
2s2

xs2
y − (

s2
x + s2

y

)
s2

z

]
. (B16)

Here, γk has the full (�1) symmetry of the lattice, as does
V1k. δk breaks the cubic symmetry, and has the symmetry
of |�3,+〉, mixing both g-wave (7[2z4 − x4 − y4] − 6[3z2 −
r2]r2) and d-wave (3z2 − r2) components of the same sym-
metry; it is plotted in Fig. 2(b) of the main text. δk is the only
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term that depends on b† �μb, and is proportional to (b†μ3b)2. It
is written in terms of the above traces as

δk = 4
(
V 33

4 + V 11
4 − V 00

4 − V 22
4

)− 4
(
V 32

2

)2
, (B17)

where we have suppressed the k dependence on the right-hand
side. Note that individually each V4 or V 2

2 is positive definite,
and they have different symmetries that are not |�3,+〉; it is

only the combination of these that gives the nodal gap. Rota-
tion of the hastatic spinor to x̂ or ŷ maintains the same shape
of the symmetry-breaking gap component, but with a rotated
quantization axis. Thus, for b̂ along the x̂ axis (=(1, 1)T /

√
2),

the analogous component has the form of Fig. 2(b) of the main
text, but now oriented along the x̂ axis. Essentially, rotating the
hybridization spinor away from ẑ mixes the �3± states.
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