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We design an efficient and balanced approach that captures major effects of collective electronic fluctuations in
strongly correlated fermionic systems using a simple diagrammatic expansion on a basis of dynamical mean-field
theory. For this aim we perform a partial bosonization of collective fermionic fluctuations in leading channels
of instability. We show that a simultaneous account for different bosonic channels can be done in a consistent
way that allows to avoid the famous Fierz ambiguity problem. The present method significantly improves a
description of an effective screened interaction W in both charge and spin channels, and has a great potential for
application to realistic GW -like calculations for magnetic materials.
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I. INTRODUCTION

Mean-field theory is a simple and transparent method that
is used for a description of collective fermionic excitations
in a broad range of physical problems from condensed matter
physics to quantum field theory. It allows to capture both mag-
netic and superconducting fluctuations in Hubbard [1,2] and
t-J [3,4] models, as well as spontaneous symmetry breaking
and formation of various condensates in Nambu–Jona-Lasinio
and Gross-Neveu models [5–13]. The underlying idea of the
method is based on a partial bosonization of collective
fermionic fluctuations in leading channels of instability in the
system [14–16]. This allows a simple diagrammatic solution
of the initial problem in terms of original fermionic and
effective new bosonic fields in a GW fashion [17–19].

Theoretical description of many-body effects in a regime
of strong electronic interactions requires more advanced ap-
proaches that are usually based on (extended) dynamical
mean-field theory (EDMFT) [20–25]. DMFT provides an
exact solution of the problem in the limit of infinite dimension
[26] and is found to be a good approximation for single-
particle quantities [27], especially when properties of the sys-
tem are dominated by local correlations. However, collective
electronic fluctuations are essentially nonlocal. For this rea-
son, a number of proposed approaches that treat many-body
excitations beyond DMFT grow as fast as a degree of their
complexity [28]. These new methods provide a very accurate
solution of model (single-band) problems, but are numerically
very expensive for realistic multiband calculations [29–34].

Following the mean-field idea, a partially bosonized de-
scription of collective electronic effects in strongly correlated
systems can also be performed on a basis of EDMFT. Re-
search in this direction resulted in GW +EDMFT [35–41] and
TRILEX [42–44] methods. Although the GW -like extension
of EDMFT is an efficient and inexpensive numerical ap-
proach, it has a significant drawback that is common for every
partially bosonized theory. This severe problem is known as

the Fierz ambiguity [14–16]. It appears when two or more dif-
ferent bosonic channels are considered simultaneously. Then,
the theory becomes drastically dependent on the way how
these channels are introduced. Surprisingly, this issue remains
unsolved even for a standard mean-field theory, let alone the
GW +EDMFT method that is actively used for solution of
realistic multiband [36,45–49] and time-dependent problems
[50,51].

Recently, the authors of TRILEX approach showed that the
effect of the Fierz ambiguity can be reduced using a cluster
extension of the theory [44]. However, this approach is much
more time consuming numerically than its original single-site
version and, in fact, breaks a translational symmetry of the
initial lattice problem. Indeed, the nonlocal in space self-
energy obtained within the cluster becomes different from
the corresponding one between two clusters. All above dis-
cussions suggest that there is no reliable simple theory that
can accurately describe an interacting fermionic system in the
regime of coexisting strong bosonic fluctuations in different
channels.

In this work we introduce a consistent partial bosonization
of an extended Hubbard model that solves the famous Fierz
ambiguity problem without a complicated cluster extension
of the method. We show that the resulting action of the
problem contains only an effective fermion-boson vertex
function, while a fermion-fermion interaction can be safely
excluded from the theory. The derived approach combines a
simplicity of a mean-field approximation with an efficiency
of much more advanced EDMFT-based methods. This allows
to improve many existing extensions of GW method and
include an effect of magnetic fluctuations in a standard GW
scheme in a consistent way. Although the introduced theory is
discussed in a context of an extended Hubbard model, it is not
restricted only to this particular single-band model, and can
be applied to other fermionic problems from different areas of
physics.
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II. PARTIAL BOSONIZATION OF A FERMION MODEL

A. Fierz ambiguity

We start the derivation of a partially bosonized theory
for strongly correlated electrons with the following action of
extended Hubbard model:

Slatt = −
∑
k,ν,σ

c∗
kνσ [iν + μ − εk]ckνσ

+ U
∑
q,ω

nqω↑n−q,−ω↓ + 1

2

∑
q,ω,ς

V ς
q ρς

qω ρ
ς
−q,−ω. (1)

Here, c(∗)
kνσ

is a Grassmann variable corresponding to an-
nihilation (creation) of an electron with momentum k,
fermionic Matsubara frequency νn, and spin projection σ =
↑,↓. We also introduce following bilinear combinations
of fermionic variables ρ

ς
qω = nς

qω − 〈nς 〉 that correspond to
charge (ς = c) and spin (ς = {x, y, z}) degrees of free-
dom with momentum q and bosonic frequency ωm. nς

qω =∑
k,ν,σσ ′ c∗

kνσ σ
ς

σσ ′ck+q,ν+ω,σ ′ , σ c = 1, and σ x,y,z are Pauli ma-
trices in the spin space. U corresponds to a local Coulomb
interaction, V ς

q describes a nonlocal Coulomb and direct
exchange interactions in the charge and spin channels, respec-
tively. Dispersion relation εk can be obtained via a Fourier
transform of hopping matrix elements ti j between lattice sites
i and j. All numerical calculations in this work are performed
for a half-filled two-dimensional Hubbard model (V ς

q ,Y ς
ω =

0) on a square lattice with a nearest-neighbor hopping ampli-
tude t . The half of the bandwidth D = 4t = 1 sets the energy
scale. The temperature is T = 0.1.

For a simplified description of many-body effects in the
system, leading collective electronic excitations can be par-
tially bosonized [14–16]. For this aim, the local interaction
term Un↑n↓ has to be rewritten in terms of bilinear combi-
nations of fermionic variables as 1

2

∑
ς U ςρςρς . This allows

to introduce an effective bosonic field for every bilinear com-
bination using the Hubbard-Stratonovich transformation for
the total (local and nonlocal) interaction part of the problem
[52,53]. It should be noted, however, that the decoupling
of the local Coulomb interaction U into different channels
can be done almost arbitrary. As discussed, for instance,
in Ref. [42], a free choice for the bare interaction U c in
the charge channel immediately fixes the U s = (U c − U )/3
value of the spin interaction if all three s = {x, y, z} spin
channels are introduced simultaneously. The Ising decoupling
with U z = U c − U corresponds to the case when only the
z component of the spin is considered. Then, if the initial
problem (1) is solved exactly, the result does not depend on
the way how the decoupling of U is performed. However, an
approximate (mean-field or GW -like) solution of the problem
dramatically depends on the decoupling [44]. This issue is
known as Fierz ambiguity [14–16].

B. Collective electronic effects beyond EDMFT

As follows from the above discussions, the Fierz ambiguity
problem can be avoided if the local interaction term Un↑n↓
stays undecoupled in its original form. However, this form of
the interaction prevents any Hubbard-Stratonovich transfor-
mation. Nevertheless, in this case we still can benefit from

the idea of (extended) dynamical mean-field theory (EDMFT)
[20–26], where all local correlations are treated exactly via an
effective local impurity problem

S(i)
imp = −

∑
ν,σ

c∗
νσ [iν + μ − �ν]cνσ

+ U
∑

ω

nω↑n−ω↓ + 1

2

∑
ω,ς

Y ς
ω ρς

ω ρ
ς
−ω. (2)

The latter is a local part of the lattice action (1), where a dis-
persion relation and nonlocal interaction are replaced by local
fermionic (εk → �ν) and bosonic (V ς

q → Y ς
ω ) hybridization

functions that effectively account for nonlocal single- and
two-particle fluctuations, respectively. In the absence of these
hybridizations, EDMFT reduces to a static mean-field ap-
proximation. Since the impurity model is solved numerically
exactly using, e.g., continuous-time quantum Monte Carlo
solvers [54–57], the Fierz ambiguity problem on the local
level is absent by construction.

Further, we integrate out the impurity problem in order to
exactly account for all local fluctuations in the effective lattice
model. As shown in the dual fermion (DF) approach [58],
this can be done after the nonlocal part of the lattice action is
rewritten in terms of new fermionic variables c(∗) → f (∗). In
addition, we perform a partial bosonization ρς → ϕς of the
nonlocal interaction following the dual boson (DB) scheme
[59,60], which does not lead to the Fierz ambiguity either.
Then, the initial problem (1) transforms to a dual action (see
Ref. [61] and Appendix B)

S̃ = −
∑
k,ν,σ

f ∗
kνσ G̃

−1
kνσ fkνσ − 1

2

∑
q,ω,ς

ϕς
qωW̃

ς−1
qω ϕ

ς
−q,−ω + F̃.

(3)

After the impurity problem is integrated out, bare fermion
G̃kνσ = GEDMFT

kνσ − gνσ and boson W̃ς

qω = W ς EDMFT
qω − wς

ω

propagators are given by nonlocal parts of EDMFT Green’s
function and renormalized interaction [61], respectively.
Thus, they already account for local single- and two-particle
fluctuations in the system via an exact local self-energy 


imp
νσ

and polarization operator �
ς imp
ω of the effective impurity

problem, respectively. Here, gνσ and wς
ω are the full local

Green’s function and renormalized interaction of the impurity
problem.

The interaction part F̃ [ f , ϕ] of the dual action (3) contains
all possible fully screened local fermion-fermion and fermion-
boson vertex functions of the impurity problem [59,60]. Here,
as well as in most of DB approximations, we restrict ourselves
to the lowest-order (two-particle) interaction terms that are
given by the fermion-fermion �νν ′ω and fermion-boson 
νω

vertex functions

(4)

Exact definition of these quantities can be found in Appendix
B. The dual theory with only two-particle interaction terms
has been tested against exact benchmark results showing a
good performance of the theory in a broad regime of model
parameters [62–64]. Moreover, the fact that the screened
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six-fermion vertex function has only a minor effect on the
self-energy of the Hubbard model has been observed in [65].

In the absence of the interaction part F̃ [ f , ϕ] the dual the-
ory (3) reduces to EDMFT [59,60]. However, an account for
vertex corrections beyond the dynamical mean-field solution
is desirable [66–68]. Especially, it is an important problem
for description of spin fluctuations and magnetic polarization
in realistic systems [69,70] as they are not captured by a
standard GW +DMFT scheme [35–41]. While the use of the
fermion-boson vertex in a diagrammatic solution of multiband
problems is possible [44], an inclusion of the fermion-fermion
vertex in realistic calculations is extremely challenging and
time consuming numerically [29–34]. The fermion-fermion
vertex describes the full (renormalized) local fermion-fermion
interaction, so it cannot be simply discarded.

It would be extremely helpful to find an additional trans-
formation of the problem (3) in which the full local fermion-
fermion vertex function �νν ′ω vanishes from the effective
action. Then, the resulting theory will be written in terms of
fermion and boson propagators, and the remaining fermion-
boson interaction 
νω. An effective fermion-fermion vertex
function in this theory appears only after bosonic fields are
integrated out. Such a fermion-fermion vertex is by definition
reducible with respect to a bosonic propagator and serves as an
approximation for the original fermion-fermion vertex func-
tion �νν ′ω. Since irreducible contributions are not contained
in this approximation, the effective fermion-fermion vertex
of the resulting fermion-boson theory becomes drastically
dependent on the way how bosonic fields are introduced. This
fact again leads to the Fierz ambiguity problem.

C. Approximation for the fermion-fermion vertex

We have found a unique form of the bare interaction in
every considered bosonic channel that almost fully suppresses
the effect of missing irreducible diagrams. As a consequence,
an effective reducible fermion-fermion interaction almost ex-
actly coincides with the full local fermion-fermion vertex
�νν ′ω, which automatically solves the Fierz ambiguity prob-
lem. This unique form of the bare interaction can be found
by analyzing the bare fermion-fermion vertex of the impurity
problem. Let us arbitrarily decouple the local Coulomb in-
teraction U of the impurity problem (2) into charge U c and
spin U s parts. This leads to the following bare interaction
Uς

ω = U ς + Y ς
ω in a corresponding bosonic channel. Then,

we rewrite the interaction part of the impurity problem in
an antisymmetrized form of the bare fermion-fermion vertex
� 0

νν ′ω:

S(i)
imp = −

∑
ν,σ

c∗
νσ [iν + μ − �ν]cνσ

+ 1

8

∑
ν,ν ′,ω

∑
ς,σ (′ )

�
0 ς

νν ′ωc∗
νσ σ

ς

σσ ′cν+ω,σ ′c∗
ν ′+ω,σ ′′σ

ς

σ ′′σ ′′′cν ′,σ ′′′ .

(5)

This procedure can be performed in a standard way (see,
for instance, Sec. II A in Ref. [71]) interchanging indices
of two creation (or annihilation) Grassmann variables in the
interaction term. Charge and spin “z” components of the bare

FIG. 1. Fermion-boson vertex function 
νω in the charge (left)
and spin (right) channels as a function of fermionic νn and bosonic
ωm frequencies. The result is obtained for different values of the local
Coulomb interaction.

fermion-fermion vertex are given by the expressions

� 0 c
νν ′ω = 2Uc

ω −Uc
ν ′−ν −Ux

ν ′−ν −Uy
ν ′−ν −Uz

ν ′−ν

= U + 2Y c
ω − Y c

ν ′−ν − Y x
ν ′−ν − Y y

ν ′−ν − Y z
ν ′−ν,

� 0 z
νν ′ω = 2Uz

ω −Uz
ν ′−ν +Ux

ν ′−ν +Uy
ν ′−ν −Uc

ν ′−ν

= −U + 2Y z
ω − Y z

ν ′−ν + Y x
ν ′−ν + Y y

ν ′−ν − Y c
ν ′−ν, (6)

and spin “x” and “y” components can be obtained by a circle
permutation of spin {x, y, z} indices in the second equation.

As can be seen from Eq. (6), the ladderlike irreducible
contributions to the fermion-fermion vertex �

ς

νν ′ω of the impu-
rity problem originate from the presence of “vertical” bosonic
lines Uς

ν ′−ν in the bare vertex. Dressed by a two-particle lad-
der they become irreducible with respect to the (“horizontal”)
bosonic line Uς

ω and will not be included in the reducible
approximation. As the second line in Eq. (6) shows, the bare
vertex �

0 ς

νν ′ω does not depend on the way how the decoupling
of the local Coulomb interaction is performed. This fact fol-
lows from the exact relation between bare interactions U ς in
different bosonic channels. Therefore, let us include the main
contribution ±U of the charge/spin bare vertex only to the
horizontal line Uς

ω. This immediately leads to a unique form
of the bare interaction U c = −U s = U/2 with the same value
for all s = {x, y, z} spin components that excludes ladderlike
irreducible contributions from the full local fermion-fermion
vertex function. If more complicated nonladder irreducible
contributions to the fermion-fermion vertex become impor-
tant, they cannot be completely excluded from the theory, but
are still strongly suppressed by our choice of the bare interac-
tion. Importantly, this result for the bare interaction cannot
be obtained by any decoupling of the Coulomb interaction
U discussed above. Note that the fermion-boson vertex is by
definition irreducible with respect to the bosonic propagator,
the inclusion of the full local Coulomb interaction U in the
horizontal line leads to a correct asymptotic behavior of this
vertex 
c/s

νω → 1 at large frequencies as shown in Fig. 1.
The best possible decoupling-based approximation for the

fermion-fermion vertex can be obtained for the Ising form
of the bare interaction U c = −U z = U/2 and U x,U y = 0.
This approximation still reproduces the “−U” contribution
to the bare vertex �

0 x/y
νν ′ω via U c and U z terms, but neglects

the screening of this vertex by two-particle fluctuations in x
and y channels. Note that the Ising decoupling leads to a cor-
rect Hartree-Fock saddle point in the mean-field description
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FIG. 2. The sketch of the approximation for the full local
fermion-fermion vertex function �νν′ω introduced in Eq. (7) (left).
The illustration of the TRILEX2 approximation of the nonlocal
self-energy 
̃ of the ladder dual theory that accounts only for the
horizontal (shown in red) contribution to the fermion-fermion vertex
function (right).

of spin fluctuations [72]. Moreover, the Ising decoupling
provides the best possible result for a single-site TRILEX
approach [44]. However, as we show below, the result for
physical observables, such as the self-energy, can be drasti-
cally improved using our unique form of the bare interaction,
which is not based on the decoupling ideology.

After all, a final result for the reducible approximation
of the full fermion-fermion vertex function of the impurity
problem can be written in the following form (see Fig. 2):

�c
νν ′ω = 2Mc

νν ′ω − Mc
ν,ν+ω,ν ′−ν − 3Ms

ν,ν+ω,ν ′−ν,

� s
νν ′ω = 2Ms

νν ′ω + Ms
ν,ν+ω,ν ′−ν − Mc

ν,ν+ω,ν ′−ν, (7)

where

(8)

and the term U ς/2 excludes a double counting of the bare
Coulomb interaction between different channels. Note that in
the case of Ising decoupling of the Coulomb interaction, the
term U ς/2 does not appear in Eq. (8) because this form of
the decoupling is identical for every bosonic channel and does
not lead to a double counting. A detailed derivation of these
expressions can be found in Appendix A.

A simpler parametrization of the fermion-fermion vertex,
which is based on a weak coupling perturbation expansion,
has been derived in Refs. [73–75]. A more advanced approx-
imation that additionally accounts for fermion-boson vertex
corrections 
ς

ν,ω has been later introduced in [76,77]. There,
a decomposition of the local Coulomb interaction in only one
(spin or charge) channel has been considered. Note also that
in these two works the approximation for the fermion-fermion
vertex appears in a nonsymmetrized form that contains only a
horizontal contribution Mς

νν ′ω (8). However, it can be identi-
cally rewritten in the antisymmetrized form of Eq. (7) that has
both horizontal Mς

νν ′ω and vertical Mς

ν,ν+ω,ν ′−ν components.
Our present parametrization (7) improves the idea of

Refs. [76,77] and exploits a unique multiple-channel decom-
position of the fermion-fermion vertex. We find that this
approximation (7) is in a good agreement with the exact
result not only in the weakly interacting regime U = 0.5, but
also at much larger values of the local Coulomb interaction

FIG. 3. Charge and spin components of the exact (�ν,ν′ω) and
approximate (�′

ν,ν′ω) fermion-fermion vertex functions at zeroth
bosonic frequency ω0. The result is obtained for U = 1.0.

U = 1.0 and 1.5. For this reason, Fig. 3 shows the result
for the exact and approximate vertex functions only for U =
1.0, which were obtained for the same impurity problem of
dynamical mean-field theory. Note that the contribution from
the particle-particle channel, which at ω0 is located along the
νn = −ν ′

n line [78,79], is not considered in our approximation.
Although this contribution to the fermion-fermion vertex is
not small itself, it has a minor effect on physical observables,
such as a self-energy, at general fillings [80]. The exclusion
of a particle-particle channel from the approximation of the
vertex greatly simplifies the theory as it does not require the
calculation of the “anomalous” fermion-boson vertex function
with two incoming or two outgoing fermionic lines. However,
if a certain physical problem needs an account for the particle-
particle channel, the latter can be introduced in the theory in
the same way as it is done for the particle-hole (charge and
spin) channel. We have noticed that a similar decomposition
of the fermion-fermion vertex is proposed in [81]. In contrast,
our derivation of an approximate fermion-fermion vertex aims
to explain why irreducible contributions are almost fully
suppressed by the unique choice of the bare interaction. This
is a key ingredient for our study that allows to exclude the
fermion-fermion vertex function from the theory.

Figure 4 shows the cut of the fermion-fermion vertex
function �ν,ν ′,ω obtained for U = 0.5 (top row), U = 1.0
(middle row), and U = 1.5 (bottom row) at zeroth bosonic
frequency ω0 in two most important directions. We find that
the frequency dependence of the exact vertex along ν ′

0 (left
column) and νn = ν ′

n (right column) lines is captured reason-
ably well by the horizontal Mς

νν ′ω and vertical Mς

ν,ν+ω,ν ′−ν

diagrams, respectively. A neglected particle-particle contri-
bution results in a mismatch between the approximate and
exact results for the fermion-fermion vertex in a small region
around the ν−1 point. Since the particle-particle contribution
has a minor effect on the ↑↑ component of the vertex [75], our
approximation provides a reasonably good result for �

↑↑
νν ′ω =

(�c
ν,ν ′,ω + �s

ν,ν ′,ω )/2.

D. Effective fermion-boson model

Further, we make an additional approximation for the
reducible fermion-fermion vertex Mς

νν ′ω 	 
ς
νωw̄ς

ω 

ς

ν ′+ω,−ω
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FIG. 4. Frequency dependence of charge, spin, and ↑↑ com-
ponents of the exact (black triangles) and approximate (lines with
diamonds) fermion-fermion vertex function �ν,ν′ω along ν ′

0 (left
column) and νn = ν ′

n (right column) lines at zeroth bosonic frequency
ω0. Results are obtained for U = 0.5 (top row), U = 1.0 (middle
row), and U = 1.5 (bottom row).

including the term U ς/2 in the propagator w̄ς
ω = wς

ω − U ς/2.
Without this step it would be impossible to find a simple
transformation of the problem (3) that generates the Mς

νν ′ω
correction in order to cancel the full local vertex function
�νν ′ω from the theory. This approximation is justified in the
high-frequency limit where the fermion-boson vertex function

νω is equal to unity (Fig. 1), and also by a good agreement
of the resulting theory with much more elaborate approaches
discussed below. Following recent works [76,77], the Mς

νν ′ω
correction can be obtained with the help of an additional
Hubbard-Stratonovich transformation over bosonic variables
ϕς → bς (for details, see Appendix B). As a result, we get the
final expression for the action of the effective fermion-boson
model

S f -b = −
∑
k,ν,σ

f ∗
kνσ G̃

−1
kνσ fkνσ − 1

2

∑
q,ω,ς

bς
qωW

ς −1
qω bς

−q,−ω

+
∑
k,q

∑
ν,ω

∑
ς,σ,σ ′


ς
νω f ∗

kνσ σ
ς

σσ ′ fk+q,ν+ω,σ ′ bς
−q,−ω. (9)

The bare Green’s function G̃kνσ remains unchanged during the
last transformation, and the bare bosonic propagator becomes

equal to Wς
qω = W ς EDMFT

qω − U ς/2. Note that if the local
Coulomb interaction is considered in the Ising decoupling
form, the bare bosonic propagator of the new fermion-boson
theory coincides with the renormalized interaction of EDMFT
Wς

qω = W ς EDMFT
qω as discussed in Appendix B.

The simplest set of diagrams for the self-energy and polar-
ization operator has the following form:

(10)

Here, G̃kνσ and W ς
qω are full propagators of the derived

fermion-boson problem (9). We prefer to keep fermions in
the dual space, which results in the following connection
between dual and lattice self-energies 
latt

kνσ = 

imp
ν + 
′

kνσ ,
where 
′

kν = 
̃kν (1 + gν
̃kν )−1, as derived in Refs. [59–61].
The last expression excludes the double counting between
contributions of the local 


imp
ν and nonlocal 
̃kν self-energies

to the lattice Green’s function Gkν that arise in the Dyson
equation. Here, gν is the full local Green’s function of the
impurity problem. Although the introduced diagram for the
nonlocal self-energy has a very simple form (10), it effectively
contains the leading “horizontal” part of the two-particle
ladder contribution that is present in much more advanced
DF [58] and DB [54,55] theories (see Fig. 2). Moreover, an
account for this contribution does not require an inversion
of the Bethe-Salpeter equation, which is a big advantage for
numerical calculations.

At first glance, nonlocal diagrams introduced in Eq. (10)
do not obey the Hedin form [17], where the full lattice
fermion-boson vertex function appears only at one side of the
diagram. However, in the resulting action (9) the full local
fermion-boson vertex 
ς

νω is the bare interaction vertex for
an effective lattice problem that consequently enters diagrams
for the self-energy and polarization operator from both sides.
The importance to have the local vertex function at both sides
of dual diagrams has been discussed in details in Ref. [61].

The present approach immediately suggests an improve-
ment for already existing partially bosonized theories. Indeed,
if two or one fermion-boson vertices in Eq. (10) are replaced
by unity, our method reduces to GW +DMFT or TRILEX
approaches, respectively, but with a more accurate Fierz-
ambiguity-free form of the bosonic propagator. Thus, we will
call the introduced set of diagrams (10) for the self-energy
and polarization operator that contains a double-triangular
fermion-boson vertex correction as the TRILEX2 approxima-
tion of the partially bosonized theory.

III. RESULTS

A. Nonlocal self-energy

The performance of the TRILEX2 approach can be tested
against a more elaborate ladder DF method, which is ac-
curate enough in the regime of strong interactions U not
exceeding the bandwidth (U � 2.0) [62–64]. Figure 5 shows
the nonlocal self-energy 
̃kν at zero Matsubara frequency
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FIG. 5. Real and imaginary parts of the nonlocal self-energy 
̃kν

at the first fermionic Matsubara frequency ν0 obtained for the ladder
dual fermion and TRILEX2 (for the “unique” and Ising form of the
bare interaction) approaches. Results are calculated for U = 0.5 (top
row), U = 1.0 (middle row), and U = 1.5 (bottom row).

ν0 for different approaches. The result is obtained within a
single-shot calculation performed on top of the converged
DMFT solution, so that the local self-energy 


imp
ν has the

same value for all compared theories. For numerical solution
of the impurity problem we used the open source CT-HYB

solver [82,83] based on ALPS libraries [84].
We find that the result for the self-energy of the TRILEX2

approximation is in a very good agreement with the one of the
ladder DF approach even in the strongly interacting U = 1.0
regime. A small mismatch between these two results appears
because the TRILEX2 theory does not account for “vertical”
contributions Mς

ν,ν+ω,ν ′−ν to the fermion-fermion vertex that
are present in the DF approach. The absence of these correc-
tions only slightly modifies the result, but greatly simplifies
numerical calculations. The effect of neglected contribution
of vertical diagrams is more visible in the weakly correlated
regime (U = 0.5). This can be explained by the fact that
the horizontal contribution to the vertex function becomes
leading when collective fluctuations in the corresponding
channel are strong [76,77]. In the regime of U = 0.5, charge
and spin fluctuations only start to develop, which results in
a larger mismatch with the exact result for the self-energy.
However, the value of the nonlocal self-energy in this regime

is relatively small, so this inconsistency should not lead to
a serious problem for calculation of physical observables.
At larger value of the interaction (U = 1.5) the contribution
of vertical diagrams becomes more important. As expected,
the TRILEX2

I result, which is based on the Ising decoupling,
provides a less accurate result due to missing diagrams in x
and y spin channels.

B. Metal-to-Mott-insulator phase transition

The present approach also shows a qualitatively good
estimation for a metal-to-Mott-insulator phase transition. The
corresponding phase boundary can be obtained from the
behavior of the local Green’s function at imaginary time
τ = β/2, which approximates the quasiparticle density of
states at the Fermi level [85]. For this aim we perform a
fully self-consistent TRILEX2 calculation using a standard
self-consistency condition on the local part of the lattice
Green’s function

∑
k Gkν = gν to determine the fermionic

hybridization function �ν of the impurity problem. We find
that in our case, the phase transition occurs at much smaller
values of the local Coulomb interaction U 	 1.7 compared
to the DMFT result [86]. The same trend and qualitatively
similar results were previously reported for cluster DMFT
[86] and second-order DF [87] calculations. Surprisingly, the
elimination of one fermion-boson vertex in diagrams (10), as
originally proposed in the TRILEX approach [42–44], drasti-
cally changes the metal-to-Mott-insulator transition point and
shifts it to a larger value of the local Coulomb interaction
compared even to the DMFT result [43]. This can be attributed
to the fact that the fermion-boson vertex at low frequencies
considerably deviates from unity in the strongly interacting
regime as shown in Fig. 1.

IV. CONCLUSIONS

To conclude, the derived fermion-boson theory is a pow-
erful tool for description of many-body effects beyond the
dynamical mean-field level. The main advantage is that the
method does not suffer from the Fierz ambiguity problem,
which is present in all partially bosonized theories. The
TRILEX2 approximation of the theory combines a simplic-
ity of mean-field and GW -like diagrammatic descriptions of
collective excitations with a high performance of the method
comparable to much more elaborate approaches. A rigorous
account for spin fluctuations in this approach provides an
opportunity for a solution of a challenging problem of re-
alistic magnetic GW -based calculations [69,70]. Finally, it
is worth noting that the derived formalism is not restricted
only to diagrams for the self-energy and polarization operator
introduced in Eq. (10), respectively. The effective fermion-
boson action (9) also allows for a more advanced solution
of the problem using, for example, functional renormaliza-
tion group (fRG) [88–93], parquet [94–97], or diagrammatic
Monte Carlo [62,63] methods.
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APPENDIX A: APPROXIMATION FOR THE
FERMION-FERMION VERTEX

In this Appendix we derive an approximation for the full
local fermion-fermion vertex. We start with the expression (6)
for the bare vertex �

0 ς

νν ′ω of the impurity problem (5). Using
the exact relation between charge and spin components of the
bare Coulomb interaction we find that the expression for this
bare vertex does not depend on the performed decoupling of
the local Coulomb interaction and contains the contribution
of the full U in all considered channels. This result is in
agreement with the fact that the bare interaction in the Bethe-
Salpeter equation for the susceptibility is given by the full
local Coulomb interaction [77]. In order to find the origin
of the reducible contribution with respect to a bosonic line
(hereinafter, we will call this contribution w reducible) to the
fermion-fermion vertex, let us dress the bare vertex in the
corresponding “horizontal” particle-hole channel as

�
ς

νν ′ω =
∑
ν ′′,ν ′′′

�
0 ς

νν ′′ω χ
ς

ν ′′ν ′′′ω �
0 ς

ν ′′′ν ′ω, (A1)

where

χ
ς

νν ′ω = −〈(
c∗
ν+ω,σ1

σς
σ1σ2

cν,σ2

) (
c∗
ν ′σ3

σς
σ3σ4

cν ′+ω,σ4

)〉
conn (A2)

is a generalized susceptibility of the impurity problem in
a corresponding channel. After the antisymmetrization, this
screened vertex (A1) together with the bare vertex �

0 ς

νν ′′ω
makes up the simplest approximation for the fermion-fermion
vertex function of the impurity problem

� c
νν ′ω 	 �0 c

νν ′ω + 1
2�

c
νν ′ω − 1

4�
c
ν,ν+ω,ν ′−ν − 3

4�
s
ν,ν+ω,ν ′−ν,

� s
νν ′ω 	 �0 s

νν ′ω + 1
2�

s
νν ′ω + 1

4�
s
ν,ν+ω,ν ′−ν − 1

4�
c
ν,ν+ω,ν ′−ν .

(A3)

Since the bare vertex function does not depend on the de-
coupling, this approximation is valid for any decomposition
of the local Coulomb interaction. In the absence of bosonic
hybridizations Y ς = 0, the bare fermion-fermion vertex can
be simply replaced by the bare Coulomb interaction �

0 c/s
νν ′ω =

±U as derived above. Then, the generalized susceptibility
(A2) in the expression for the screened vertex (A1) reduces
to a bosonic susceptibility χ ς

ω , and the approximation for the
full fermion-fermion vertex takes the following simple form:

� c
νν ′ω 	 U + 1

2Uχ c
ωU − 1

4Uχ c
ν ′−νU − 3

4Uχ s
ν ′−νU,

� s
νν ′ω 	 −U + 1

2Uχ s
ωU + 1

4Uχ s
ν ′−νU − 1

4Uχ c
ν ′−νU . (A4)

This approximation fully coincides with the approximation
obtained in the work [75]. The only difference is that here
we do not perform a bosonization of collective fluctuations
in the particle-particle channel as discussed in the main text.

We also note that the susceptibility defined in our work is two
times larger than the one introduced in Ref. [75].

Importantly, in the framework of the fermion-boson theory
the interaction is introduced as the bosonic propagator. Thus,
bare charge and spin interactions that enter the bare fermion-
fermion vertex �

0 ς

νν ′ω have to be considered as “horizontal”
Uς

ω and “vertical” bosonic Uς

ν ′−ν lines. In this case, a simple
replacement of the bare fermion-fermion vertex by the full
local Coulomb interaction is no longer possible. First, let us
isolate the w-reducible contribution in the approximation for
the fermion-fermion vertex (A3). If we take only horizontal
(ω-dependent) terms Uς

ω from the bare vertex �
0 ς

νν ′ω in the
expression (A1), the generalized susceptibility again reduces
to the bosonic one, and the w-reducible part of the screened
vertex (A1) becomes �

ς

νν ′ω = 4Uς
ω χ ς

ω Uς
ω. Other w-reducible

terms in the screened vertex (A1) appear from w-reducible
contributions to the generalized susceptibility χ

ς

ν ′′ν ′′′ω. If the
latter contains at least one horizontal bosonic line Uς

ω on
which it can be cut into two separate parts, the bare vertex
�

0 ς

νν ′ω in the expression (A1) does not necessarily have to be w

reducible in order to make the total expression reducible with
respect to a bosonic propagator. This leads to an additional
fermion-boson vertex correction 
ς

νω to the previously derived
approximation for the screened vertex

�
ς

νν ′ω = 4
ς
νωUς

ω χ ς
ω Uς

ω

ς

ν ′+ω,−ω

+ 2
ς
νωUς

ω

ς

ν ′+ω,−ω − 2Uς
ω. (A5)

The term 2Uς
ω is already contained in the bare vertex �

0 ς

νν ′ω
and introduced here to simplify the expression. We note that
Eq. (A3) is only an approximation for the exact charge and
spin fermion-fermion vertex functions. The exact w-reducible
contribution to the screened fermion-fermion vertex (A1) is
given by the expression

�
ς

νν ′ω = 4
ς
νωwς

ω

ς

ν ′+ω,−ω − 4Uς
ω, (A6)

where wς
ω = Uς

ω +Uς
ω χς

ωUς
ω is the full renormalized inter-

action of the impurity problem, and 
ς
νω is the exact fermion-

boson vertex of the problem. Here, the term 4Uς
ω is again

excluded from the expression since it is already contained in
the (nonsymmetrized) bare interaction.

The remaining part of the generalized susceptibility in
the expression (A3) for the screened vertex is irreducible
with respect to the bosonic propagator. Together with vertical
lines Uς

ν ′−ν from the bare fermion-fermion vertex �
0 ς

νν ′ω it
makes the w-irreducible contribution to the full fermion-
fermion vertex function that is not accounted for by the
fermion-boson theory. As discussed in the main text, the
ladderlike irreducible contributions to the fermion-fermion
vertex function can be fully excluded by a proper choice of
the bare interaction U c = −U s = U/2 that has the same value
for all s = {x, y, z} spin components. Since this unique form
of the bare interaction cannot be obtained by any of the
decoupling of the local Coulomb interaction, we will make
separate decouplings for every bosonic channel to keep the
bare interaction in the proposed form. Then, coming back to
a nonsymmetrized form of the bare fermion-fermion vertex
function (6), we get �

0 ς

νν ′ω = 2Uς
ω + 2Y ς

ω . Together with the
screened interaction �

ς

νν ′ω from (A6), which is also written
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in the antisymmetrized form, it makes the total approxi-
mation for the nonsymmetrized full fermion-fermion vertex
function

1
8�

ς

νν ′ω 	 1
2 Mς

νν ′ω = 1
2

(

ς

νωwς
ω


ς

ν ′+ω,−ω − U ς/2
)
. (A7)

The term U ς/2 appears here because we use separate mutu-
ally exclusive decouplings of the bare Coulomb interaction
in different bosonic channels. This term avoids the double
counting of the bare Coulomb interaction in the bare vertex
� 0

νν ′ω. Note that the same procedure can be performed for
the Ising form of the bare interaction U c = −U z = U/2 and
U x = U y = 0. Since this form of decoupling is identical for
all channels, this does not lead to a double counting of the
local Coulomb interaction. Then, the approximation for the
fermion-fermion vertex in the antisymmetrized form is given
by the expression Mς

νν ′ω = 
ς
νωwς

ω

ς

ν ′+ω,−ω.
The final expression for the w-reducible approximation of

the full fermion-fermion vertex function can be obtained after

antisymmetrizing the expression (A7):

� c
νν ′ω = 2Mc

νν ′ω − Mc
ν,ν+ω,ν ′−ν − 3Ms

ν,ν+ω,ν ′−ν,

� s
νν ′ω = 2Ms

νν ′ω + Ms
ν,ν+ω,ν ′−ν − Mc

ν,ν+ω,ν ′−ν . (A8)

Note that the w-reducible interaction (A7), which is intro-
duced to exclude the exact fermion-fermion vertex from the
action, does not have a uniform structure due to a presence of
the −U ς/2 term that does not contain fermion-boson vertex
functions. Therefore, the correction Mς

νν ′ω cannot be easily
generated performing transformations of the lattice action
discussed below. Thus, we make a small additional approx-
imation for the w-reducible fermion-fermion vertex Mς

νν ′ω 	

ς

νωw̄ς
ω 


ς

ν ′+ω,−ω including the U ς/2 term in the propagator
w̄ς

ω = wς
ω − U ς/2. After that, the exact (A6) expression for

the reducible contribution to the fermion-fermion vertex func-
tion coincides with the approximate one derived in Eq. (A5).
In addition, the last approximation can be motivated by the
asymptotic behavior of the fermion-boson vertex function

νω → 1 at large frequencies.

APPENDIX B: DERIVATION OF THE EFFECTIVE FERMION-BOSON PROBLEM

In this Appendix we derive an effective fermion-boson problem. We start with two Hubbard-Stratonovich transformations of
the nonlocal part of the lattice action of the extended Hubbard model (1):

exp

{∑
k,ν,σ

c∗
kνσ [�νσ − εk]ckνσ

}

= D f

∫
D[ f ∗, f ] exp

{
−

∑
k,ν,σ

(
f ∗
kνσ g−1

νσ [�νσ − εk]−1g−1
νσ fkνσ + c∗

kνσ g−1
νσ fkνσ + f ∗

kνσ g−1
νσ ckνσ

)}
,

exp

{ ∑
q,ω,ς

1

2
ρς

qω

[
Y ς

ω − V ς
q

]
ρ

ς
−q,−ω

}

= Dϕ

∫
D[φς ] exp

{
−

∑
q,ω,ς

(
1

2
ϕ ς

qωας −1
ω

[
Y ς

ω − V ς
q

]−1
ας −1

ω ϕ
ς
−q,−ω + ϕ ς

qωας −1
ω ρ

ς
−q,−ω

)}
, (B1)

where terms D f = det[gν (�νσ − εk )gν] and D−1
ϕ =

√
det[ας

ω(Y ς
ω − V ς

q )ας
ω] can be neglected when calculating expectation

values. Here, gν is the full local Green’s function of the impurity problem.Uς
ω = U ς + Y ς

ω , and wς
ω are the bare and renormalized

interactions of the local impurity interaction in the corresponding bosonic channel. Factors gν and ας
ω = wς

ω/Uς
ω in the

Hubbard-Stratonovich transformations are introduced for the special reason to express the interaction part of the transformed
action in terms of full local vertex function of the impurity problem [61]. After these transformations, the action takes the
following form:

S′ =
∑

i

S(i)
imp +

∑
k,ν,σ

[
c∗

kνσ g−1
νσ fkνσ + f ∗

kνσ g−1
νσ ckνσ

] +
∑

q,ω,ς

ϕς
qωας −1

ω ρ
ς
−q,−ω

−
∑
k,ν,σ

f ∗
kνσ g−1

νσ [εk − �νσ ]−1g−1
νσ fkνσ − 1

2

∑
q,ω,ς

ϕς
qωας −1

ω

[
V ς

q − Y ς
ω

]−1
ας −1

ω ϕ
ς
−q,−ω. (B2)

The above introduced transformations allow to integrate out the impurity part of the problem as

∫
D[c∗, c] exp

{
−

∑
i

S(i)
imp −

∑
k,ν,σ

[
c∗

kνσ g−1
νσ fkνσ + f ∗

kνσ g−1
νσ ckνσ

] −
∑

q,ω,ς

ϕς
qωας −1

ω ρ
ς
−q,−ω

}

= Zimp× exp

{
−

∑
k,ν,σ

f ∗
kνσ g−1

νσ fkνσ − 1

2

∑
q,ω,ς

ϕς
qωας −1

ω χ ς
ω ας −1

ω ϕ
ς
−q,−ω − F̃ [ f , ϕ]

}
, (B3)
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where Zimp is a partition function of the impurity problem. Here, the interaction part of the action F̃ [ f , ϕ] contains an infinite
series of full vertex functions of impurity problem as discussed in [59,60]. The lowest-order interaction terms are

F̃ [ f , ϕ] 	
∑

k,k′,q

∑
ν,ν ′,ω

∑
ς,σ (′ )

(

ς

νω f ∗
kνσ fk+q,ν+ω,σ ′ ϕ

ς
−q,−ω + 1

4
� σσ ′σ ′′σ ′′′

νν ′ω f ∗
kνσ fk+q,ν+ω,σ ′ f ∗

k′+q,ν ′+ω,σ ′′ fk′ν ′σ ′′′

)
, (B4)

where the fermion-fermion and fermion-boson vertices have the following form:

�νν ′ω = 〈cνσ c∗
ν+ω,σ ′c∗

ν ′σ ′′′cν ′+ω,σ ′′ 〉c imp

gνσ gν+ω,σ ′gν ′+ω,σ ′′gν ′σ ′′′
, 
ς

νω =
〈
cνσ c∗

ν+ω,σ ′ ρ
ς
ω

〉
imp

gνσ gν+ω,σ ′α
ς
ω

. (B5)

Then, the initial lattice problem transforms to the following dual action:

S̃ = −
∑
k,ν,σ

f ∗
kνσ G̃

−1
kνσ fkνσ − 1

2

∑
q,ω,ς

ϕς
qωW̃

ς −1
qω ϕ

ς
−q,−ω + F̃ [ f , ϕ]. (B6)

Here, bare propagators G̃kνσ = GEDMFT
kνσ − gνω and W̃ς

qω = W ς EDMFT
qω − wς

ω are nonlocal parts of the Green’s function GEDMFT
kνσ

and renormalized interaction W ς EDMFT
qω of EDMFT defined as

GEDMFT −1
kνσ = iν + μ − εk − 
imp

νσ , W ς EDMFT −1
qω = (

U ς + V ς
q

)−1 − �ς imp
ω . (B7)

Here, gν and wς
ω are the full local impurity Green’s function and renormalized interaction of the impurity problem

g−1
νσ = iν + μ − �ν − 
imp

νσ , wς −1
ω = (

U ς + Y ς
ω

)−1 − �ς imp
ω . (B8)

The second transformation of bosonic variables that excludes the fermion-fermion vertex function from the dual action can
be performed as follows. Let us add and subtract the term 1

2

∑
q,ω,ς ϕ

ς
qωw̄ς −1

ω ϕ
ς
−q,−ω in the dual action

S̃ = −
∑
k,ν,σ

f ∗
kνσ G̃

−1
kνσ fkνσ + 1

2

∑
q,ω,ς

ϕς
qωw̄ς −1

ω ϕ
ς
−q,−ω + F̃ [ f , ϕ]

− 1

2

∑
q,ω,ς

ϕς
qωας −1

ω

{[
V ς

q − Y ς
ω

]−1 − χ ς
ω + ας

ωw̄ς −1
ω ας

ω

}
ας −1

ω ϕ
ς
−q,−ω. (B9)

Then, we can perform the following Hubbard-Stratonovich transformation:

exp

{
1

2

∑
q,ω,ς

ϕς
qωας −1

ω

{[
V ς

q − Y ς
ω

]−1 − χ ς
ω + ας

ωw̄ς −1
ω ας

ω

}
ας −1

ω ϕ
ς
−q,−ω

}

= Db

∫
D[bς ] exp

{
−

∑
q,ω,ς

(
1

2
bς

qωw̄−1
ω ας

ω

{[
V ς

q − Y ς
ω

]−1 − χ ς
ω + ας

ωw̄ς −1
ω ας

ω

}−1
ας

ωw̄−1
ω bς

−q,−ω − ϕς
qωw̄−1

ω bς
−q,−ω

)}
.

(B10)

The action transforms to

S̃′ = −
∑
k,ν,σ

f ∗
kνσ G̃

−1
kνσ fkνσ + 1

2

∑
q,ω,ς

bς
qωw̄−1

ω ας
ω

{[
V ς

q − Y ς
ω

]−1 − χ ς
ω + ας

ωw̄ς −1
ω ας

ω

}−1
ας

ωw̄−1
ω bς

−q,−ω

+ 1

2

∑
q,ω,ς

ϕς
qωw̄ς −1

ω ϕ
ς
−q,−ω −

∑
q,ω,ς

ϕς
qωw̄−1

ω bς
−q,−ω + F̃ [ f , ϕ]. (B11)
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Finally, bosonic fields ϕς can be integrated out with respect to the Gaussian bosonic part of the dual action as∫
D[ϕς ] exp

{
−1

2

∑
q,ω,ς

ϕς
qωw̄ς −1

ω ϕ
ς
−q,−ω +

∑
q,ω,ς

ϕς
qωw̄−1

ω bς
−q,−ω − F̃ [ f , ϕ]

}

= Zϕ × exp

{
1

2

∑
q,ω,ς

bς
qωw̄ς −1

ω bς
−q,−ω − F [ f , b]

}
, (B12)

where Zϕ is a partition function of the Gaussian part of the bosonic action. The integration of dual bosonic fields modifies the
interaction that now has the following form:

F [ f , b] =
∑
k,q

∑
ν,ω

∑
ς,σ,σ ′


ς
νω f ∗

kνσ σ
ς

σσ ′ fk+q,ν+ω,σ ′ bς
−q,−ω

+ 1

8

∑
k,k′,q

∑
ν,ν ′,ω

∑
ς,σ (′ )

(
�

ς

νν ′ω − 4Mς

νν ′ω

)
f ∗
kνσ σ

ς

σσ ′ fk+q,ν+ω,σ ′ f ∗
k′+q,ν ′+ω,σ ′′σ

ς

σ ′′σ ′′′ fk′ν ′σ ′′′ . (B13)

The 4Mς

νν ′ω term that was introduced in (A7) is exactly the approximation that excludes the full fermion-fermion vertex � ςνν′ω .
After collecting and simplifying all terms, the action (B11) takes a very compact form

S f -b = −
∑
k,ν,σ

f ∗
kνσ G̃

−1
kνσ fkνσ − 1

2

∑
q,ω,ς

bς
qωW

ς −1
qω bς

−q,−ω +
∑
k,q

∑
ν,ω

∑
ς,σ,σ ′


ς
νω f ∗

kνσ σ
ς

σσ ′ fk+q,ν+ω,σ ′ bς
−q,−ω, (B14)

where the bare bosonic propagator is equal toWς
qω = W̃ς

qω + w̄ς
ω, which can also be rewritten asWς

qω = W ς EDMFT
qω − U ς/2 for

our choice U c/s = ±U/2 of the bare interaction. Since for the Ising decoupling w̄ς
ω = wς

ω, the bare bosonic propagator coincides
with the renormalized interaction of EDMFTWς

qω = W ς EDMFT
qω .

Remarkably, for our unique choice of the bare interaction U ς the renormalized interaction of EDMFT can be identically
rewritten in the form using in FLEX approach [71,98]

W ς EDMFT
qω = 1

2Û ς
q

[
1 − �̂ς imp

ω Û ς
q

]−1
, (B15)

where Û c/s
q = ±U + 2V c/s

q and �̂
ς imp
ω = �

ς imp
ω /2 are the bare interaction and local polarization operator in FLEX notations.

Thus, the introduced theory can be seen as an efficient combination of FLEX approach for local degrees of freedom with
GW -like description of nonlocal fluctuations beyond the EDMFT level and additionally accounts for the fermion-boson vertex
corrections.
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