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From the dynamics of a broad class of classical mean-field glass models, one may obtain a quantum model
with finite zero-temperature entropy, a quantum transition at zero temperature, and a time-reparametrization
(quasi)invariance in the dynamical equations for correlations. The low-eigenvalue spectrum of the resulting
quantum model is directly related to the structure and exploration of metastable states in the landscape of
the original classical glass model. This mapping reveals deep connections between classical glasses and the
properties of SYK-like models.
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I. INTRODUCTION

Recently, there has been an intense activity focused on
the Sachdev-Ye-Kitaev (SYK) model [1,2], triggered by the
realization that it saturates a quantum bound on the Lyapunov
exponent [3], has nonzero entropy in the limit of zero temper-
ature (taken after the large-N limit) and a temperature-linear
specific heat, just as expected from simple models of black
holes [4]. At the core of the analogy is the fact that the
SYK model has an (almost) soft mode with respect to time
reparametrizations, a fact that is true at low temperatures in
the infrared, low-frequency limit. A near-invariance suggests
the construction of a “sigma model” describing the system in
terms of the cost of reparametrizations. Such a description,
in terms of a “Schwarzian action,” has been constructed [5],
providing the “gravity” counterpart of the fermionic system,
so that the SYK model becomes a toy model of holography.

In this work, we investigate the relationship between the
SYK model and classical glassy physics. A formal connection
appears already at the level of the Hamiltonian, where the
SYK model provides a fermionic analog of the classical p-
spin model which plays an important role in the physics of the
glass transition [6,7].

A more physical and direct connection was pointed out
by Parcollet, Georges, and Sachdev [8–10] who studied the
quantum Heisenberg spin glass, from which the SYK model
emerges as an effective theory. They showed that the critical
behavior captured by the SYK model is actually related to a
spin-glass (or glass) transition at zero temperature. By taking
a rather different path, in what follows we show that this anal-
ogy can be pushed much further, establishing a strong rela-
tionship between SYK behavior and classical glass dynamics.
Remarkable facts taking place in the SYK model, such as
the existence of a finite zero-temperature entropy, a nontrivial
temperature dependence of the specific heat, critical behavior,
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and an approximate reparametrization invariance, all find nat-
ural counterparts within the picture resulting from the manner
in which classical glass physics emerges. In addition, since the
same kind of time-reparametrization quasi-invariance which
exists in the SYK model also appears in models of glassy
dynamics, the relationships we expose provide very fruitful
tools for addressing major problems in glassy dynamics.

Main results

Our main idea is to establish an analogy between SYK
and glass physics not directly based on the free energy of the
respective models, but rather through the mapping between
stochastic dynamics and a quantum Hamiltonian. Such a cor-
respondence has been used already several times in the past in
condensed matter physics (notably by Rokhsar and Kivelson
[11]), in quantum field theory (for example, in stochastic
quantization), and in statistical in physics [12]. The classical-
quantum mapping has also been used to construct quantum
Hamiltonians from the Fokker–Planck operator associated
with classical glasses [13–16], as is done in this work.

(1) Strange quantum liquid. Following this mapping,
we shall consider quantum Hamiltonians obtained from
the Fokker-Planck operators associated with the classical
Langevin dynamics of mean-field glassy systems. The eigen-
values of the Fokker-Planck and its associated Schrödinger-
like operators are in one-to-one relation to the metastable
states of the original diffusive model, the eigenvalue of the
former with the inverse lifetime of the latter. Moreover, if
one considers the sum over periodic trajectories of period
βq = 1/Tq of this dynamics, one obtains a partition function
of the quantum form, whose value equals the number of
metastable states of lifetime βq of the diffusive system. The
resulting quantum model displays at low temperature a series
of remarkable properties, that we can connect precisely to
those of glassy dynamics. For instance, the resulting quantum
models have a nonzero entropy at zero temperature, which
is directly related to the large number of metastable states
of the parent classical glassy system. They have a critical
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behavior approaching zero temperature that is linked to the
critical properties of glassy dynamics.

(2) Time-reparametrization invariance. Time-
reparametrization (quasi)invariance was initially encountered
in the earliest studies of spin-glass dynamics [17] and,
implicitly, in the mean-field dynamical framework of glassy
behavior known as mode-coupling theory (MCT) [18–20].
Later, when the out-of-equilibrium dynamics of model
mean-field glasses was analytically treated [21], an exact
solution was found up to reparametrizations with the
precise matching of solutions left undetermined. Apart from
this inconvenient matching problem, the question of the
physical meaning of time-reparametrization invariance in
the glassy context arose. Physically, the soft mode in the
dynamics of a system near or below the glass transition
is related to the correlated motion of larger and larger
clusters of particles, a process called dynamical heterogeneity
[22,23]. The divergence of the length scale associated
with dynamical heterogeneity at the (dynamical) glass
transition is quantified by the divergence of a particular
four-point function called χ4(t ) [24], which also diverges
at zero temperature in the SYK model [5]. At the same
time, the system develops a growing susceptibility towards
certain perturbations, such as shear, which have the effect
of dramatically reparametrizing the time-dependence of
correlation and response functions. This phenomenon was
actually used to probe correlated motion in experiments via
nonlinear responses [25]. In a series of papers [26–31], it was
emphasized that reparametrization invariance is a central fact
of glassy dynamics, and a detailed investigation of realistic
glass models was performed, culminating in the proposal of
an expression for an action playing the role of the Schwarzian
theory in the SYK model. It takes into account the spatial,
but not temporal, dependence of reparametrizations, see
Eq. (30) of Ref. [30]. The strange quantum liquid obtained
through the mapping with classical glassy dynamics displays
time-reparametrization (quasi)invariance just as the SYK
model does. This fact allows us to bridge the gap between
these two different incarnations of time-reparametrization
invariance and offers a promising route to follow to develop a
full theory of dynamical fluctuations in glasses.

The theoretical analysis we develop in this work shows
that, all in all, glassy dynamics leads us to a (nonfermionic)
quantum model of what we call a “strange quantum liquid”
with finite entropy in the low-temperature limit, a critical
(gapless) point at zero temperature, time-reparametrization
quasi-invariance, and possible quantum effects related to
chaotic scrambling. To this extent, some of the remarkable
properties of the SYK and related models appear to be already
embedded in the manner in which mean-field classical glasses
explore their energy landscape.

II. MODELS AND QUANTUM TO STOCHASTIC
DYNAMICS MAPPING

The purpose of this section is to introduce the models that
are central to this work and the mapping from stochastic to
quantum dynamics that we will use to relate the SYK model
to classical glassy physics. This section provides background
and sets the stage for the following analysis.

A. The Sachdev-Ye-Kitaev model

Sachdev and Ye [1] introduced a disordered fermionic
model which becomes gapless at T = 0, providing an explic-
itly solvable model of a quantum Heisenberg spin glass. Later,
Parcollet, Georges, and Sachdev [8–10] studied more general
spin representations leading both to fermionic and bosonic
models. They made the observation that low-temperature
properties of such models have analogies to those of a confor-
mal theory, and identified time reparametrization as the origin
of this coincidence. The situation captured the attention of
a larger community when Kitaev [2] discovered that indeed
soft reparametrization modes are responsible for the system
generating a behavior that mimics that of a “toy” model of
a black hole, in particular low-temperature dynamics that
saturates a quantum bound on chaotic scrambling [3]. He did
this employing a slightly simplified variant of the Sachdev-Ye
model, with Majorana rather than complex fermions, which
makes calculations easier.

The Hamiltonian of the Sachdev-Ye-Kitaev model reads

HSYK = (i)
q
2

∑
1�i1<···<iq�N

Ji1,...,iqχi1 . . . χiq , (1)

where χi are N Majorana fermions. The couplings Ji1,...,iq
are independent, identically distributed Gaussian random vari-
ables with zero mean and variance N1−qJ2(q − 1)!.

In order to study the thermodynamics, one has to compute

ln Z = ln Tr[e−βHSYK ], (2)

where the overbar denotes an average over the couplings. This
is usually done by replicating the system n times and then
continuing to n → 0. It turns out, however, that due to the
Grassmannian nature of the degrees of freedom and the lack of
a glass transition, order parameters coupling different replicas
vanish, and the result (at least, to leading order in N) coincides
with the annealed average,

ln Z = ln Tr[e−βHSYK ]. (3)

The partition function (3) may be expressed as a path integral,
and after averaging over the J’s, all fermionic degrees of
freedom may be integrated out, resulting in an action purely
in terms of the correlation function

G(t ) =
∑

i

〈T χi(t )χi(0)〉. (4)

Thus one obtains

ln Z = ln
∫

D[G]e−NS[G], (5)

with

S[G] = 1

2

∫
dtdt ′

[
∂G(t, t ′)

∂t
− J2

q
G(t, t ′)q

]
+ 1

2
Tr ln G,

(6)
where the logarithm and the trace are for G considered as
an operator with convolutions. The large N limit allows for
a saddle point evaluation, and one finds, after convolving with
G, that the saddle-point value of G satisfies the following
equation:

∂G(t1, t2)

∂t1
− J2

∫ β

0
dt G(t1, t ) G(t, t2)q−1 = δ(t1 − t2). (7)
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The same result can be obtained by a consideration of the N
dependence of diagrams in the expansion of the self-energy
for which only melonic terms remain at large N .

The analysis of these equations have revealed three main
properties [2,5,8,32,33].

(1) Zero-temperature criticality: The large t solution of (7),
for T → 0, is found to be

G(t1, t2) ∼ b

|t1 − t2|2/q
sgn(t1 − t2), (8)

where b is a constant depending on J and q [5]. This critical
power-law behavior is cut off at small temperature on a
timescale of the order of β.

(2) Nonstandard thermodynamics. The specific heat is
linear at low temperature and the model displays a positive
zero-temperature entropy.

(3) Reparametrization (quasi)invariance. Equation (7) has,
to the extent that we may neglect the time-derivative term, the
approximate reparametrization invariance:

G(t1, t2) → |ḣ(t1)ḣ(t2)|1/qG(h(t1), h(t2)). (9)

Substituting G̃(t1, t2) = ∫ t1
t2

dt
∫ t

t2
dt ′ Gq(t, t ′) into the above

form yields G̃(t1, t2) → G̃(h(t1), h(t2)).
In reality, only one specific parametrization corresponds to

the true minimum of the action.
As noted by Parcollet and Georges [8], in analogy with the

case of conformal field theories [34], the reparametrization
ta → tan ( πta

β
) (a = 1, 2) maps (8) into a time-translational

invariant function of period β,

Gβ (t1 − t2) = b

[
π

β sin π (t1−t2 )
β

]2/q

sgn(t1 − t2), (10)

so that the low-temperature behavior is obtained by
reparametrization of the zero-temperature one.

The breaking of reparametrization invariance, which is a
continuous symmetry, leads to the emergence of almost-soft
modes governing low-temperature fluctuations. An effective
theory based on it allows one to compute the main critical
fluctuations, which corresponds to four-point functions, in
particular those related to the quantum Lyapunov exponent
[extracted from the so called out-of-time-order correlation
function (OTOC)].

As we shall show, the relationship with glassy physics
presented in this work will give a context where there is
a natural interpretation of the first two points and unveil
promising connections for the third.

B. The p-spin spherical model

The p-spin spherical model was introduced in Ref. [35]:

E =
∑

i1<···<ip

Ji1,...,ipqi1 . . . qip,
∑

i

q2
i = N, (11)

where qi are N real-valued “soft spins” obeying the spherical
constraint

∑
i q2

i = N , which replace the binary si = ±1 Ising
spins. The couplings are random variables as in the SYK
model (1) (couplings with repeated indices are set to zero).
The model is a generalized spin-glass model introduced in
the early days of spin-glass theory and that later played a

central role in the theory of the structural glass transition,
as we shall briefly recount in the next section for com-
pleteness. Its classical [35] and quantum-mechanical [36,37]
thermodynamics has been studied by the replica method.
Here, although we attempt a connection with the (quantum)
SYK model, we shall only need to restrict ourselves to the
dynamics of the classical glass mimicking the interaction with
a thermal bath of temperature T . This stochastic dynamics,
based on the Langevin equation, can be analyzed using field
theoretical methods such as Martin-Siggia-Rose-Janssen-De
Dominicis (MSRJD) formalism, a path-integral approach for
the evolution of the probability distribution [38–40], see
Refs. [41–43] for introductions to the MSRJD construction.
The equilibration time diverges with N at a temperature Td , the
“dynamical” transition temperature, below this temperature
the equilibration time becomes infinite and we may study the
slow (unsuccessful) approach to equilibrium.

Using the MSRJD path integral approach, one can follow
a procedure very similar to the one sketched in the previous
section for the SYK model. First, one obtains a field theory for
the two-point functions, which can then be solved in the large
N limit by the saddle-point method. One finds an equation
which, in the high-temperature phase T > Td reads, in terms
of the correlation function C(t − t ′) = 1

N

∑
i〈qi(t )qi(t ′)〉,

dC(t1 − t2)

dt1
= − TC(t1 − t2)

− p

2T

∫ t1

t2

dtCp−1(t1 − t )
dC(t − t2)

dt
, (12)

where 〈·〉 means the average over the thermal noise. We
postpone for a later section the discussion of what becomes of
this equation below Td . This “mode coupling” equation (12)
shows a striking similarity with the corresponding equation
of motion for the Green’s function of the SYK model (7). It
should be noted that a diagrammatic approach (which, in the
case p = 4, selects only the “melonic” terms in the large N
limit) also leads to the exact equation (12), see Ref. [44]. A
large body of work has shown that the p-spin spherical model
displays three main properties.

(1) Dynamical criticality. When the temperature ap-
proaches Td the solution of (12) shows a two-step behavior:
the correlation first decays to a plateau value qEA and then
departs from it and decreases to zero. The timescales for these
two decays both diverge approaching Td as power laws, the
latter as τα (ε) ∼ ε−1/2a−1/2b and the former as τβ ∼ ε−1/2a,
where a, b are positive exponents (ε = T − Td ). The approach
and the departure from the plateau value follow power laws:

C(τ ) = qEA + c

τ a
1 � τ � τβ,

C(τ ) = qEA − c′
(

τ

τα

)b

τβ � τ � τα.

A similar dynamical criticality exists also in the out-of-
equilibrium dynamics induced by quenches below Td .

(2) Time reparametrization (quasi)invariance. It is relevant
here to recall how these exponents are obtained [18,19]. Close
to Td one concentrates on the long-time (infrared) behav-
ior and makes use of (i) a Taylor expansion of C(t ) − qEA

and (ii) neglects the time derivative in (12), thus obtaining
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ε

Σ

saddles
→

threshold

FIG. 1. Complexity 
 of the energy landscape [see Eq. (13)].
Below a threshold energy density Eth the number of minima is
exponential in N . Above the threshold the critical points are saddles.
(Inset) Deeper minima have higher curvature, and become marginal
approaching the threshold.

time reparametrization invariance. Combining a uniform time
stretching with a rescaling of the “field” C(t ) − qEA, one
obtains a form C(t ) − qEA = ε1/2g(ε2at ), which works with
a single g(t ) for all T just above Td , i.e., for small ε. The
existence of a scaling form with a universal g is referred to
as the “time-temperature superposition principle” and is a
consequence of reparametrization invariance [18].

The equations for the aging dynamics also display, ev-
erywhere below Td , time-reparametrization invariance at long
times, such that the time derivative may be neglected. Time-
reparametrization invariance is only exact in the zero fre-
quency limit, but remains as a generator of a soft mode gov-
erning long-time dynamical fluctuations [30], in particular, the
ones known as dynamical heterogeneities that are probed by
four-point correlation functions such as what is referred to as
χ4(t ) in the glass literature [45,46]. At Td , χ4(t ) diverges
precisely as it does in the SYK model at T = 0 and for
precisely the same reasons [5,47,48].

(3) Complex energy landscape. The energy of the p-spin
model (11) has a number of minima which is exponential in N ,
see Fig. 1. There is a range of energies between the minimum
Emin and a threshold value Eth where minima exist; for energies
higher than Eth there are only saddles [49]. Both quantities
are “self-averaging,” meaning that their deviation from one
realization of J’s to another vanishes in the thermodynamic
limit. The number of minima grows exponentially with the
energy,

N (E ) = eN
(E/N ), 1/Teff (E ) ≡ N
d


dE
. (13)

The function 
(E ) is known as the “complexity,” and vanishes
abruptly at the threshold (see Fig. 1). Its derivative defines
the effective temperature Teff . The exponential dependence
of the number of minima implies that the vast majority of
minima lie just below the threshold. In conclusion, not only
do the classical p-spin spherical spin glass and the SYK
models display very similar Hamiltonians, but in addition the
stochastic dynamics of the former shows enticing similarities
with the low-temperature imaginary time quantum dynamics
of the latter. Yet, it is not clear how to go beyond these
analogies. Constructing a strong connection between the SYK

model and the classical glassy behavior of (11) is precisely the
purpose of the remainder of our work. We shall accomplish
this by exploiting a mapping from stochastic to imaginary
time quantum dynamics that will be reviewed in the next
section.

C. Classical to quantum: from classical glasses to strange
quantum liquids

We now recall a connection between stochastic and quan-
tum dynamics that has been already used several times in the
past in statistical physics, condensed matter and quantum field
theory [11,12,41]. We consider a system of N coupled degrees
of freedom qi(t ) evolving by stochastic Langevin dynamics

q̇i(t ) = − ∂V

∂qi
+ ηi(t ), (14)

where V is the interaction potential, Ts the (classical) temper-
ature of the thermal bath to which the system is coupled, and
ηi(t ) is a Gaussian white noise with covariance 〈ηi(t )ηi(t ′)〉 =
2Tsδ(t − t ′). The evolution of the probability density is gener-
ated by the Fokker-Planck operator HFP,

∂t Pt (q) =
∑

i

∂

∂qi

[
Ts

∂

∂qi
+ ∂V

∂qi

]
Pt (q) ≡ −HFPPt (q). (15)

The Fokker-Planck operator is not Hermitian, but detailed
balance is satisfied with the Gibbs distribution

eV/Ts HFPe−V/Ts = H†
FP. (16)

Detailed balance allows us to write this in an explicitly
Hermitian form [41,43]. Rescaling time, one can define the
operator

H = Ts

2
eV/2Ts HFPe−V/2Ts

=
∑

i

[
−T 2

s

2

∂2

∂q2
i

+ 1

8

(
∂V

∂qi

)2

− Ts

4

∂2V

∂q2
i

]
. (17)

H has the form of a Schrodinger operator with Ts playing the
role of h̄, unit mass and potential

Veff = 1

8

(
∂V

∂qi

)2

− Ts

4

∂2V

∂q2
i

. (18)

The spectrum of HFP and that of H are the same, up to
the rescaling in (17), and the eigenvectors are related via the
transformation above.

Let us now recall some general facts about stochastic
equations. The spectrum of eigenvalues λi and eigenvectors ψi

of H (or HFP) have a direct relation to metastable states of the
original diffusive dynamics ([50,51], see also Ref. [52]). (1)
The equilibrium state has λo = 0 and the corresponding right
eigenvector of HFP is the Boltzmann distribution associated
with the energy function V (ψ0 is the square root of the
Boltzmann distribution). (2) Given a timescale t∗, the number
of eigenvectors with λi < 1

t∗ is the number of metastable
states of the diffusive model with lifetime larger than t∗. In
particular, the eigenvalues λi → 0 in the thermodynamic limit
correspond to metastable states whose lifetime diverges with
N. (3) The probability distribution within such metastable
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states is given by linear combinations of the corresponding ψi

multiplied by e−V/2Ts . “Pure” metastable states are extremal,
in the sense that they are the minimal combinations which are
essentially greater or equal to zero everywhere.

The partition function of the quantum Hamiltonian H reads

Z (βq) = Tr e−βqH = Tr e− 1
2 βqTsHFP . (19)

It can be represented as a Matsubara imaginary-time path
integral. From the classical stochastic process perspective,
the analogous construction is that of a MSRJD path integral
[38–40], restricted to trajectories that return to the initial
point after a time t∗ = βqTs/2. Indeed such a construction
was presented by Biroli and Kurchan [52],who showed that
the resulting object N (t∗) = Tr e−t∗HFP = Z (βq) counts the
number of states of the system that are stable up to a time
t∗ or longer. The corresponding contribution e−t∗λi is of or-
der one for t∗ � 1/λi, and exponentially small after that. A
more precise description is given by the Gaveau–Schulman
construction [50,52].

We thus have introduced a “quantum” Hamiltonian H ,
which is associated with a quantum temperature Tq = 1/βq.
The original temperature Ts now plays the role of the quantum
parameter, h̄. Likewise, our “quantum energy” is associated
with the eigenvalues of H , which are a measure of the life-
times of the original classical diffusive system.

Finally, one can also establish a relationship between the
zero-temperature quantum correlation function (for a diagonal
Hermitian operator in configuration space) and the equilib-
rium stochastic correlation function [13,53]. Defining

CI
q(τ ) = 〈A(τ )A(0)〉, (20)

the quantum correlation function in imaginary time defined in
the ground state, where τ is the imaginary time, and Cc(τ ) =
〈A(τ )A(0)〉 the classical stochastic correlation function at
equilibrium, one has CI

q(τ ) = Cc(τ ). Moreover, one can write

Cc(τ ) = CI
q(τ ) =

∫ ∞

0

dω

2π
ρq(ω)e−ωt , (21)

where ρq(ω) is the so-called spectral density [54]. Defining
real-time quantum correlation functions in the ground state as
Cr

q (t ) = 1
2 〈A(t )A(0) + A(0)A(t )〉, one finds

Cr
q (t ) =

∫ ∞

−∞

dω

2π
ρq(ω) cos(ωt ). (22)

These results establish a correspondence between dynamical
properties of the stochastic dynamics, and equilibrium prop-
erties of the quantum model. In particular it relates the dis-
tribution of classical relaxation times to the quantum spectral
density. In the following, we shall exploit this connection to
study the low-temperature properties of the p-spin spherical
model and relate it to SYK physics, thus unveiling the con-
nection between SYK-like physics and classical glasses when
considered from the dynamic point of view.

III. A VERY BRIEF HISTORY OF MEAN-FIELD GLASSES

The purpose of this section is to provide a sketch of
the theory of glasses based on mean-field disordered models

emphasizing what is relevant for the connection with SYK
physics. Experts can readily jump to the next section.

Not long after the discovery of the spin-glass transition in
real spin glasses by Canella and Mydosh [55], Edwards and
Anderson proposed their canonical model on a d-dimensional
lattice with nearest-neighbor interactions taking the form
[56,57]

E =
∑

i j

Ji jsis j, si = ±1, (23)

where the Ji j are quenched (nonevolving) random Gaussian
variables with zero mean and unit variance. A mean-field
version of (23) soon followed, introduced by Sherrington
and Kirkpatrick (SK) [58]. This model is the fully connected
version of (23), with Ji j having a variance 1/

√
N , with N the

number of spins. The system has a thermodynamic transition
at a temperature Tc. The thermodynamics of even this mean-
field model turned out to be highly nontrivial to solve for low
temperatures T < Tc. The full solution was achieved by Parisi
in a series of papers [59]. The solution used the replica trick,
but has been recently confirmed by rigorous mathematics
[60,61].

A few years later, Derrida introduced the random energy
model (REM) [62,63], conceived as a toy version of the
(already toy) SK model. It allows for a complete solution
using elementary mathematics. In order to justify the model,
Derrida pointed out that it may be obtained as the large-p
limit of a spin glass related to the SK model, but with p-spin
interactions:

E =
∑

i1<···<ip

Ji1,...,ipsi1 . . . sip, si = ±1. (24)

Here, the Ji1,...,ip have zero mean and variance J2 p!/(2N p−1).
The thermodynamics of the model was later solved by Gross,
Kanter, and Sompolinsky [64] and by Gardner [6].

A remarkable breakthrough came in the late 80’s, when
Kirkpatrick, Thirumalai, and Wolynes (KTW) noted that [65]
that the models with p > 2 differ substantially from the
SK model in that they have a thermodynamic transition at
temperature Tk obtained with replicas, but the equilibration
time diverges with N at a higher temperature Td > Tk , the
“dynamical” transition temperature. KTW then went on to
argue that this is exactly what one should expect of a mean-
field model of a structural glass (i.e. made of particles), which
have a different phenomenology than spin glasses. Their bold
intuition has been confirmed by a long series of works laying
out the exact d = ∞ thermodynamic and dynamics of hard-
spheres which displays the same phenomenology as the p > 2
models [66,67].

It turns out that for p > 2, it is much easier to work with
a system with continuous variables [35] as in (11) where the
spherical constraint

∑
i q2

i = N replaces the binary si = ±1
of the spins. This is the model we introduced in the previous
section and that has a strong resemblance with the SYK
model.

As we have already mentioned, the energy landscape of
the p-spin spherical model has a number of minima that
is exponential in N . The associated entropy function, the
complexity (see previous section), is positive in a range of
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teq t′

teq

t

equilibrium

FIG. 2. In equilibrating systems, correlation functions C(t, t ′)
become time-translational invariant at long times t, t ′ > teq.

energies between the minimum Emin and a threshold value Eth

and stops abruptly at the threshold, see Fig. 1. This implies
that the vast majority of minima lie just beneath the threshold.

The spectrum of the Hessian of the energy in a minimum
depends on its “depth” beneath the threshold Eth − E . It is
a semicircle (as in random matrices [68]) but shifted so
that the lowest eigenvalue is proportional to Eth − E . Hence,
the deeper below the threshold the minima lie, the more
stable they are. States just beneath the threshold—the vast
majority—are marginal and thus the spectrum of their Hes-
sian is gapless. Consistently, the barriers between states are
proportional to the depth beneath the threshold [69].

The interpretation of the dynamical transition at Td is that
the system approaches a temperature at which the threshold
states, essentially finite-temperature versions of the energy
minima, give the main contribution to the Gibbs measure. The
equilibrium dynamics therefore slowly surf over nearly stable
states at T = Td + ε. For quenches below Td starting from
high temperatures, the system does not equilibrate and ages,
again evolving just above the threshold states.

To understand the difference between these two regimes
consider correlations starting from a random (high tempera-
ture) configuration and evolving at T > Td : the situation is
depicted in Fig. 2. There is a time teq such that for (t, t ′)
both larger than teq all two-point functions are stationary,
they depend only on time differences. If instead we do the
same with a bath at T < Td , the outcome is as in Fig. 3.
There are two time regimes: when the time-difference is of
O(1) the situation is akin to equilibrium (denoted in green
in Fig. 3), while for large times, but such that h(t ) and
h(t ′) are comparable (for some growing function h(t ), for
example h(t ) = t), the correlations scale like C(h(t ′)/h(t )),

ln(t − tw)

q

C
(t

,t
w
)

tw

t′

t

aging
regime

aging
regime

FIG. 3. Aging phenomenology: quenching from high tempera-
ture, there is no time teq after which the correlation function becomes
time-translationally invariant.

a situation manifestly impossible in equilibrium. This situa-
tion is called aging in the glass literature. The difference in the
two regimes emerges in more detail comparing the correlation
and response functions,

C(t, t ′) = 1

N

∑
i

〈qi(t )qi(t
′)〉,

R(t, t ′) = 1

N

∑
i

∂〈qi(t )〉
∂bi(t ′)

∣∣∣∣
bi=0

, (25)

where bi(t ′) is a field linearly coupled to qi.
(1) For T > Td it takes a finite time teq for the system

to equilibrate, and for t � teq and t ′ � teq correlation and
response satisfy the fluctuation-dissipation relation (FDR):

TsR(t − t ′) = ∂C(t − t ′)
∂t ′ . (26)

(2) For T < Td as mentioned above, the system never
equilibrates, or rather, it takes a time that diverges with N
to do so, and there is no time teq such that C and R become
stationary and satisfy FDR for all t � teq and t ′ � teq. In
the high-frequency (ultraviolet) regime where t − t ′ is finite,
C and R satisfy FDR and are stationary, but in the aging
low-frequency regime with h(t ) and h(t ′) comparable but
arbitrarily large, FDR never holds. A solution in this regime is
given by

C(t, t ′) = C
(

h(t ′)
h(t )

)
, R(t, t ′) = 1

Teff
ḣ(t ′)C ′

(
h(t ′)
h(t )

)
. (27)

The constant Teff , the asymptotic energy, and the function
C have been calculated [21]. The fact that correlation and
response functions satisfy an FDR with a (model determined)
effective temperature Teff is a surprise, see Ref. [70]. Note that
Teff here is Teff (Eth) of (13), a remarkable fact given that the
system is not in equilibrium on the threshold.

(3) The function h(t ) is well-defined, but has not yet been
computed analytically. This results from the fact that in this
regime there is an approximate reparametrization symmetry
of the problem:

C(t, t ′) → C(h(t ), h(t ′)),
(28)

R(t, t ′) → ḣ(t ′) R(h(t ), h(t ′)),

which becomes more accurate as times become larger, and
relaxation slower. Note that in the aging situation the pa-
rameter governing reparametrization invariance is tw and not
temperature as in the SYK model.

Both the aging regime and the equilibrium dynamical tran-
sition at Td are dynamical critical phenomena characterized by
diverging timescales and correlations. Given that the “order
parameters” for these transitions are two-point correlation
functions, it is natural to expect that critical correlations are
encoded in four point functions. This is indeed the case. In
particular, the fluctuations of the instantaneous correlation
function,

χ4(t, t ′) = N[C2(t, t ′) − C(t, t ′)
2
]

= 1

N

∑
i, j

〈si(t )si(t
′)s j (t )s j (t

′)〉 − C(t, t ′)2 (29)
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have been shown to display critical behavior [24,47,48].
Physically, these fluctuations encode the fact that relaxation
is correlated from one region to the other of the system, a
phenomenon that is observed in experiments and simulations
of glassy liquids and goes under the name of dynamical
heterogeneity [45,46].

The view we follow here is that, as in the SYK model,
critical fluctuations in the four-point functions are due to a
soft mode of the glassy dynamics, which is closely related
to time reparametrization (quasi)invariance. The importance
of this soft mode in the context of the aging dynamics was
already discussed and tested numerically in Ref. [31], and we
will return to this point at the end of the paper.

IV. BRIDGE

The aim of this section is to establish a closer connection
between the SYK model and glassy physics. Our starting
point is the mapping from stochastic to quantum dynamics
described in the previous section.

We consider the stochastic Langevin dynamics of the
spherical p-spin model (11) in which for simplicity the soft
spherical constraint is imposed by a function f (x) with a steep
minimum at x = 1,

V (q) = −
∑

i1<···<ip

Ji1···ipqi1 . . . qip + N f

(
1

N

∑
i

q2
i

)
. (30)

As explained in Sec. II, the Fokker–Planck operator associ-
ated to this stochastic dynamics can be mapped into a quantum
Hamiltonian H with Ts playing the role of h̄, and a potential

Veff = 1

8

∑
i

⎡
⎣ ∑

i2<···<ip

Ji i2...ipqi2 · · · qip − qiλ

⎤
⎦

2

− Ts

2
N f ′(x) − Tsx f ′′(x). (31)

Note that the Laplacian of the p-spin term vanishes. Here we
have set x = 1

N

∑
i q2

i . The last term can be neglected since it
is subleading for large N and we introduced the definition of
the Lagrange multiplier λ = 2 f ′. Our strategy in the following
will be to show that H displays an SYK-like physics which
can be explained in terms of the glassy properties of the
corresponding stochastic dynamics induced by HFP.

A. The formalism: mapping and correlation functions

Computing the partition function of the quantum problem
is equivalent to summing over all periodic trajectories of
the stochastic model. This can be done using the MSRJD
formalism and proceeding as for the SYK model by the
saddle-point method [52]. Because trajectories are required to
be periodic, causality is broken. At Ts < Td so is equilibrium,
and we need to consider three, instead of one [as in (12)],

two-point functions:

C(t, t ′) = 1

N

∑
i

qi(t )qi(t
′),

R(t, t ′) = 1

N

∑
i

qi(t )ηi(t
′), (32)

D(t, t ′) = 1

N

∑
i

ηi(t )ηi(t
′) − 2Tsδ(t − t ′),

where C(t, t ′) is the correlation function that we have en-
countered already, and the two other two-point functions
are correlation and response functions that involve the noise
history and its correlations with the trajectories.

The two-point functions appearing in the MSRJD formal-
ism are directly related to quantum correlation functions.
Calling 〈B̃(t )Ã(t ′)〉 the correlation function obtained from the
sum of stochastic periodic trajectories, one has the relation:

〈B̃(t )Ã(t ′)〉 = Tr[B̃e−(β−t ′ )HFP Ãe−t ′HFP ]/Z

= Tr[Be−(β−t ′ )H Ae−t ′H ]/Z, (33)

where the relation between the operators reads

Ã = e±βsV/2 A e±βsV/2, B̃ = e±βsV/2 B e±βsV/2, (34)

and

Z = Tr[e−βH ] = Tr[e−βHFP ]. (35)

Equation (33) establishes the connection between classical
correlation function within the MSRJD formalism and the
quantum ones. In practice, it is convenient to work in the
original basis of the Fokker-Planck operator, because disorder
appears linearly.

B. The mean-field equations for the periodic trajectories
and reparametrization invariance

Since we consider times of order one with respect to N , the
functional integral for (35) is dominated by a saddle point con-
tribution. We shall obtain periodic dynamic solutions which,
in the glassy phase (a) break causality, (b) have nonzero
action, (c) satisfy time-translational invariance, and (d) satisfy
time-reversal symmetry. Defining the expectations C, R, and
D as in (32) in the Fokker-Planck basis, namely the “tilde”
operators in (34), we thus have

C(t, t ′) = C(|t − t ′|), D(t, t ′) = D(|t − t ′|),

and T [R(t − t ′) − R(t ′ − t )] =∂C(t − t ′)
∂t ′ . (36)

Note that (a) and (b) are properties typical of instantons,
while (c) and (d) are not. In the high-temperature phase,
there is a periodic solution with zero action for long times
corresponding essentially to the equilibrium dynamics.

By averaging over the disorder and assuming a diagonal
replica symmetric ansatz, as done for the SYK model, one
obtains a functional integral over C, R, D and a weight of the
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form e−NS[C,R,D] with the action

S = −
∫ t∗

0
dt (∂t R(t, t ′) + λR(t, t ′) − T D(t, t ′))|t ′=t+

+ p

4

∫ t∗

0
dtdt ′(D(t, t ′)Cp−1(t, t ′)

+ (p − 1)R(t, t ′)R(t ′, t )Cp−2(t, t ′))

− λ̂

2

∫ t∗

0
dt (C(t, t ) − 1) + 1

2
Tr ln M, (37)

where the operator M reads

M =
(

R(t, t ′) C(t, t ′)

D(t, t ′) R(t ′, t )

)
. (38)

The trace is over times and components. Note that we have
two Lagrange multipliers λ(t ) and λ̂(t ). The corresponding
saddle-point equations are shown below, see also Ref. [52].

One has to find periodic dynamic solutions of period
Ts/(2Tq) which for Ts < Td , (a) break causality, (b) have
nonzero action, and (c) satisfy time-translational invariance.
The solution for Tq → 0 was worked out in Ref. [52]. It
leads to the result that the trace over periodic trajectories is
equal to the number of states with infinite lifetime, which was
previously obtained through the TAP equations [71–73]. The
analysis of Ref. [52] confirms what we anticipated above. In
particular, it demonstrates that the zero-temperature entropy
of the quantum problem is finite (and equal to the complexity)
and that the quantum dynamics at Tq = 0+ is critical. In order
to obtain information on how criticality is cut off and the
values of the critical exponents, one has to go beyond this
analysis and study small but finite Tq. A complete ansatz for
this regime has yet to be found. In the following, we present
two approximations and discuss later their limitations.

C. Equations

The conditions for stationarity of the action are equivalent
to four equations for the two-time functions (see Ref. [52],
in Appendix A, we review the superspace notation that helps
simplify these calculations):

∂tC(t, t ′) = −λ(t )C(t, t ′) + 2T R(t ′, t ) + p

2

∫ t∗

0
dt ′′Cp−1(t, t ′′)R(t ′, t ′′) + p(p − 1)

2

∫ t∗

0
R(t, t ′′)Cp−2(t, t ′′)C(t ′′, t ′)dt ′′, (39)

∂t R(t, t ′)=−λ(t )R(t, t ′)+2T D(t, t ′)+ p

2

∫ t∗

0
dt ′′Cp−1(t, t ′′)D(t ′′, t ′)+ p(p − 1)

2

∫ t∗

0
dt ′′Cp−2(t, t ′′)R(t, t ′′)R(t ′′, t ′)+δ(t − t ′),

(40)

∂t R(t, t ′) = − λ(t )R(t, t ′) + p(p − 1)

2

∫ t∗

0
dt ′′D(t ′, t ′′)Cp−2(t ′, t ′′)C(t, t ′′) + p(p − 1)

2

∫ t∗

0
dt ′′Cp−2(t ′, t ′′)R(t, t ′′)R(t ′′, t ′)

+ p(p − 1)(p − 2)

2

∫ t∗

0
dt ′′Cp−3(t ′, t ′′)R(t ′, t ′′)R(t ′′, t ′)C(t, t ′′) − λ̂(t ′)C(t, t ′) + δ(t − t ′), (41)

∂t D(t, t ′) = λ(t )D(t, t ′) − p(p − 1)

2

∫ t∗

0
dt ′′D(t ′, t ′′)R(t ′′, t )Cp−2(t, t ′′) − p(p − 1)

2

∫ t∗

0
dt ′′D(t, t ′′)Cp−2(t, t ′′)R(t ′′, t ′)

− p(p − 1)(p − 2)

2

∫ t∗

0
dt ′′R(t, t ′′)R(t ′′, t )R(t ′′, t ′)Cp−3(t, t ′′) + λ̂(t )R(t, t ′). (42)

The spherical condition fixes the values of λ and λ̂, which can be obtained by subtracting Eq. (41) from Eq. (40) for t = t ′

λ̂(t ) = p(p − 2)

2

(∫ t∗

0
dt ′′Cp−1(t, t ′′)D(t, t ′′) + (p − 1)

∫ t∗

0
dt ′′R(t, t ′′)R(t ′′, t )Cp−2(t, t ′′)

)
− 2T D(0), (43)

λ(t ) = p2
∫ t∗

0
Cp−1(t, t ′′)R(t ′′, t )dt ′′ + T

[
R(0+) + R(0−)

]
. (44)

D. Reparametrization invariance

Most terms in the equation above obey a reparametrization
invariance which is essentially the one of the aging regime
(28),

C(t, t ′) → C(h(t ), h(t ′)),

R(t, t ′) → ḣ(t ′) R(h(t ), h(t ′)),

D(t, t ′) → ḣ(t )ḣ(t ′) D(h(t ), h(t ′)), (45)

and
λ(t ) → λ(h(t )), λ̂(t ) → ḣ(t ) λ̂(h(t )), (46)

with now the added reparametrization of D and λ̂, which were
identically zero in causal cases, but not here. This invariance
is broken by underlined terms in the equations, namely, (1) all
derivative terms and (2) the term 2T D(t, t ′) in (40).

Derivative terms are neglected at low frequencies, as usual.
If we assume

∫ βq

0 D(t, t ′) is small and then we may neglect all
terms breaking reparametrization invariance at long times in
the equation of motion. By the same token, the term in the
action∫ t∗

0
dt (∂t R(t, t ′) + λR(t, t ′) − T D(t, t ′))

∣∣
t ′=t+ (47)
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may be neglected. Under these stipulations the partition func-
tion of our “quantum” model has reparametrization invari-
ance, just like in the SYK case.

E. Timescale separation for large βq and the residual symmetry

We shall not try to solve the equations on C, R, D here, but
use alternative techniques to study some particular limits in
the next sections. In the following, we just discuss what form
we expect for the solution.

These equations have been solved by fixing the trajectories
at a given value of the potential V [52], and the results con-
cerning the number of metastable states, previously obtained
through the TAP equations [73], were rederived via a purely
dynamic approach. Here we are interested in the total number
of states of given lifetime βq, a somewhat different and harder
calculation.

We may expect a solution of the form

C(t, t ′) = Cf (t − t ′) + C
(

t − t ′

βq

)
,

R(t, t ′) = −TsC
′
f (t − t ′) + 1

βq
R

(
t − t ′

βq

)
,

D(t, t ′) = 1

β2
q

D
(

t − t ′

βq

)
, (48)

λ(t ) = λ,

λ̂(t ) = 1

βq
λ̂0,

where Cf (t ) is the ultraviolet part, and gives the fast relaxation
channel within a metastable state. The solution in Ref. [52] is
of this form with C, R, and D constants.

F. The residual symmetry

The residual reparametrization symmetries include time
translations, and possibly some residual supersymmetry.
However we have not identified any SL(2) subalgebra as
there is in the SYK model. Similarly, the finite βq solution is
obtained through stretching, rather than a nonlinear function,
as in going from Eq. (8) to Eq. (10).

V. THE p = 2 CASE

In the following, we consider in detail the p = 2 case. This
is a less interesting case since the p = 2 model is essentially
quadratic and falls outside of the class of glass models (p> 2)
which embody the properties focused on in the previous
section. The exercise is however instructive to see how the
mapping works and to spell out some simple results that will
be useful for the analysis of the p = 3 case analyzed later.

For p = 2, both the original (classical) and the modified
(quantum) potentials are quadratic forms in the coordinates.
The classical system undergoes linear stochastic dynamics,
and there is no truly glassy phase with many metastable states,
although there is a phase transition to a low-temperature
regime where equilibration time is infinite. The corresponding
quantum model is a set of harmonic oscillators, aside from
the coupling arising from the spherical constraint. However

the physics of the p = 2 model is not completely trivial: it
has a transition at Tq = 0 where it becomes gapless and the
correlation time diverges as a power law as T −2

q . It is hence
worth presenting it as an introduction to the more complex
p > 2 case.

A. The model

For p = 2 (linear dynamics), the effective potential is
expressed as the quadratic form

Veff = 1
2 (q, Aq) − 1

4 NTsλ, A = 1
4 (J − λI)2 . (49)

The system is a collection of harmonic oscillators, corre-
sponding to the eigenvectors of A, independent except for the
spherical constraint

∑
i 〈q2

i 〉 = N , which fixes the Lagrange
multiplier λ.

The oscillators have frequencies ωμ = |μ − λ|/2, where
μ are the eigenvalues of J. Up to subleading corrections,
J is a GOE random matrix, so in the thermodynamic limit
the distribution of μ’s is the Wigner semicircle law of radius
R = J:

ρ(μ) = 2

πR2

√
R2 − μ2 θ (R − |μ|) . (50)

The density of oscillator frequencies is simply related to this
distribution

ρ(ω) =
∫

dμρ(μ)δ(ω − |μ − λ|/2).

B. Thermodynamics

The partition function at temperature Tq = β−1
q is

Z =
∏
μ

(
e−βqTsωμ/2

1 − e−βqTsωμ

)
eNβqTsλ/4. (51)

The Lagrange multiplier λ is fixed by the spherical constraint

∑
μ

〈
q2

μ

〉 =
∑

μ

Ts

2ωμ

+
∑

μ

Ts

ωμ

e−βqTsωμ

1 − e−βqTsωμ

!= N . (52)

We assume that no oscillator is macroscopically occupied,
i.e., that the 〈q2

μ〉’s do not diverge with N . Then in the
thermodynamic limit the constraint can be expressed in terms
of the integral

1

Ts
=

∫
dμ

ρ(μ)

|λ − μ| coth

(
βqTs

|λ − μ|
4

)
≡ F (λ). (53)

Zero-temperature case. For Tq = 0, the previous equation
simplifies to

1

Ts
=

∫
dμ

ρ(μ)

|λ − μ| . (54)

A solution, λ > R, is found for Ts > Tc = R/2. Instead, for
Ts < Tc, one has to take into account the appearance of a zero
mode in A, which is macroscopically occupied. This is the
same mechanism that leads to Bose-Einstein condensation,
although the constraint is different. To treat this, we consider
that λ is a distance 1/N to the largest eigenvalue of the matrix
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J, and rewrite the spherical constraint as

N
!= Nq +

∑
μ =0

Ts

2ωμ

N→∞−−−→ N[q + TsF (λ)] (55)

and obtain q = 1 − Ts
Tc

, which corresponds to a condensation
into the lowest energy mode. Note that with the usual con-
ventions, Tc = R/2 = J/2, so this condensation is a quantum
phase transition that takes place at strong coupling, J > 2Ts.
For Ts < Tc, the density of oscillator is simply a shifted
semicircle with support [0, 2R]. The spectral density ρq(ω) =
ρ(ω)/2ω therefore diverges as 1/

√
ω as small ω. It is also

possible to show that the zero-temperature entropy is equal to
zero.

Finite temperature case: For Tq > 0, Eq. (53) always has
a solution λ > R for any Ts since now the integral has a
divergence for λ → R. The analysis of Eq. (53) for Tq → 0
is slightly involved and can be found in Appendix B. Calling
z = λ − R one finds that z tends to a finite positive value for
Ts > Tc, it scales as z ∼ Tq for Ts = Tc and as z ∼ T 2

q for
Ts < Tc. The scaling of z with temperature is important to
establish the behavior of the specific heat. In fact, for Ts > Tc,
a finite z implies a gap in the spectrum for Tq = 0 and hence
an exponentially small specific heat, whereas ρ(ω) has a gap
for Ts � Tc which scales to zero faster (for Ts < Tc) or at the
same speed (for Ts = Tc) than Tq. Given that all oscillators
up to frequencies of the order of Tq are excited, their density
is T 3/2

q , and each one gives a contribution of the order Tq.
Thus one finds an average thermal energy that scales as T 5/2

q

and a specific heat that scales as T 3/2
q . A precise derivation is

presented in Appendix B.

C. Dynamics

To study the real-time dynamics, we consider the correlator

C(t ) = 1

2N

∑
i

〈{qi(t ), qi}〉 = 1

N

∑
μ

〈
q2

μ

〉
cos(ωμt ), (56)

where the expectation values are computed in the thermal state
of the harmonic oscillators and {, } is the anticommutator.

Taking into account the macroscopically occupied zero
mode, in the thermodynamic limit, the correlator has the
integral representation

C(t ) = 1

N

〈
q2

0

〉 + Ts

∫
dμρ(μ)

〈
q2

μ

〉
cos(ωμt )

= q + Ts

∫
dμ

ρ(μ)

λ − μ
cos

(
λ − μ

2
t

)
. (57)

Let us first focus on Tq = 0. Above the classical transition
(Ts > Tc), there is no condensation, q = 0, and the gap in ρ(ω)

leads to the behavior

C(t ) ≈ cos(ωmint )

t3/2
, ωmin = z

2
= 1

2Ts
(Ts − Tc)2 . (58)

Below the transition (Ts < Tc), the square root singularity of
ρ(ω) in zero leads to the behavior

C(t ) = q + b

t
1
2

. (59)

The power-law decay is the same at and below the transition
Ts � Tc. See Fig. 4.

The properties of ρ(ω) also fix the behavior of the imag-
inary time correlator CI

q defined in Eq. (20). It displays an
exponential relaxation for Ts > Tc and a power-law approach
to q analogous to (59) for Ts < Tc. As expected, this is exactly
the same behavior of the stochastic correlation function. Thus
the criticality, and its absence, in the quantum problem can be
directly traced back to the dynamical critical behavior (and its
absence) for stochastic dynamics [74,75].

The results for Tq → 0 can also be understood from the
properties of ρ(ω) at nonzero temperatures. For Ts > Tc, the
finite gap in the spectrum leads to the same behavior obtained
at Tq = 0 for real and imaginary time correlators. For Ts < Tc,
there is gap but it scales as T 2

q . As a consequence, in real time,
the correlator shows an intermediate regime 1 � t � β2

q in

which it approaches the constant value q, with a t− 1
2 power-

law decay, but then at t ∝ β2
q the correlator decays from the

plateau to zero. In the imaginary time, this second regime is
instead invisible since times are bounded by 1/Tq and thus
ones finds a power-law approach to the plateau and then a
mirror image for τ > βq/2 as a consequence of periodicity.
A more detailed derivation of all these results is presented in
Appendix B.

D. Summary

The results found for the p = 2 case (summarized in
Table I) show some of the properties of the SYK model
but not all. The specific heat displays a nontrivial scaling
for Tq → 0 but the zero-temperature entropy is zero and the
relaxation timescale diverges at zero temperature as β2

q and
not βq. However, we see at play some of the ingredients that
will emerge as important in the analysis of the p > 2 case.
The criticality (power-law behavior) of the zero-temperature
quantum dynamics is directly related to the criticality of the
corresponding stochastic dynamics for Ts < Tc. Moreover, the
effect of a finite small temperature is to select stochastic
dynamics trajectories, i.e., in imaginary time trajectories for
the quantum problem, which explore the part of configuration
space dominated by metastable states with a finite lifetime.
The lifetime is directly related to the gap in the spectrum of

TABLE I. Summary of results for p = 2.

Ts < Tc Ts = Tc Ts > Tc

q 1 − Ts/Tc 0 0
z T 2

q Tq (Ts − Tc )2/Ts

specific heat T 3/2
q T 3/2

q e−βqTsz/2

dynamics Plateau q + b

t
1
2

for 1 � t � β2
q

b

t
1
2

for 1 � t � βq e−izt/2/t3/2
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FIG. 4. Correlation functions at Tq = 0 in the p = 2 model (57), for some values of Ts (legend on the right). (Left) The correlation functions
approach the plateau (dashed lines) for Ts < Tc, and zero for Ts � Tc. (Right) Scaling above the plateau for Ts � Tc, showing the t−1/2 power
law (black dashed line).

harmonic oscillators, which scales as T 2
q for p = 2. The van-

ishing zero-temperature quantum entropy is directly related to
the number of long-lived metastable states, since this is not
exponential in N for the p = 2 model, the zero-temperature
entropy vanishes for Tq → 0. In order to obtain a different
result, one has to consider classical models with a much
rougher energy landscape. This is what we do in the following
focusing on p > 2.

VI. THE p � 3 CASE

A. The general picture

Armed with what we have learned from the solution of the
p = 2 model and using the general results from the mapping
between stochastic and quantum dynamics, we are now in a
position to study the low-Tq behavior of the quantum model
H , the counterpart of the Fokker-Planck operator of the p = 3
spherical p-spin model.

Henceforth, we consider Ts < Td so that metastable states
are well formed. In computing the partition function, we
are summing over all metastable states of lifetime 1/Tq.
Now, from what we know concerning the metastable state
distribution Fig. 1, the vast majority of stable (in the limit
N → ∞) states fall just below the threshold level. [For this
discussion, terms such as “high,” “low,” “above,” and “below”
refer to the original energy V (q) in the classical model and
not the effective potential Veff of the quantum model)]. For
small but nonzero Tq just above the threshold, there are many
more states with finite lifetime diverging as 1/Tq, with the
higher states having shorter lifetimes. There is thus a tradeoff,
and the natural result is that the temperature Tq selects the
highest—and hence more numerous—metastable states with
lifetime 1/Tq. As Tq → 0, the best one can do is work right
at the threshold. As Tq → 0 the threshold is asymptotically
approached. Only when 1/Tq diverges with N first as a power
law and then as an exponential, metastable states with less
stability are excluded. Therefore we note the important fact
that at Tq = 0+ the entropy of the quantum model is finite
and precisely equal to the complexity of the most numerous
metastable states with an infinite lifetime, namely the thresh-
old states (recall that the energy is related to the inverse of the
relaxation time, hence it is zero for those states).

The second important fact of note is that threshold
states are marginal and thus their Hessian is gapless. As
a consequence, the stochastic correlations, as well as the

quantum imaginary and real time correlations, have a power-
law behavior in time approaching a finite overlap q. At
finite but small Tq, the stochastic trajectories correspond to
metastable states with lifetime 1/Tq, and criticality is expected
to be cut off. Therefore Tq = 0 is a quantum critical point at
which we expect critical thermodynamic and dynamical be-
havior. In order to obtain the critical exponents of the vanish-
ing specific heat and the divergent relaxation time a detailed
analysis is needed. We develop the framework to perform it
below, and present a first step toward a complete solution.

B. Two simple approximations

The saddle-point equations simplify when the Ts → 0 limit
is taken simultaneously with the Tq → 0 one, as shown in
Ref. [52]. Our first step is therefore to analyze the limit Ts →
0, Tq → 0 at fixed t∗ = Ts/(2Tq), and analyze the scaling with
t∗ → ∞. This provides a first approximation, but is different
from the Tq → 0 limit at fixed Ts. From the point of view of the
classical model, it allows one to study the long-time dynamics
at zero classical temperature.

At Ts → 0, the trace over periodic trajectories at classical
energy E , or equivalently the entropy density of states of
energy E stable up to t∗ is given by [52]

s(E, t∗) = 1

2

(
1 + ln

p

2

)
− E2 + Re

⎡
⎢⎣1

2

⎛
⎝E ∓

√
E2 − E2

th

Eth

⎞
⎠

2

+ ln
( − E ∓

√
E2 − E2

th

)⎤⎥⎦
−

∫
dωρp(ω + pE ) ln[1 − e−t∗|ω|]

+ t∗
∫ 0

−∞
dωωρp(ω + pE ). (60)

The integrals involve ρp, the semicircle density of radius R =√
2p(p − 1), centered at −pE > 0.
The first line of (60) does not depend on t∗ and counts the

number of saddles (stationary points in the energy landscape)
at energy density E . The second line is a sum of harmonic
contributions, and the density of states ρp coincides with
the spectrum of the Hessian computed at saddles of energy
density E [72,76]. It is interpreted as a harmonic expansion
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FIG. 5. Time dependent, energy-resolved configurational en-
tropy at Ts → 0 for p = 3, reproducing Fig. 4 of Ref. [52].

around the saddles.1 As we show below, if ρp has positive
support, the contribution from the second line is vanishingly
small at large t∗; otherwise, it gives an increasingly negative
contribution, a penalty for expanding around unstable saddles.
The energy at which the edge of the semicircle touches zero
is the threshold Eth = −√

2(p − 1)/p. In Fig. 5, we show the
configurational entropy (60) as a function of E , for increasing
values of t∗.

To recover the partition function of the quantum model, we
are interested in the total number of metastable states at t∗,
regardless of energy. In terms of entropy, this is controlled for
each t∗ by the maximum over E of (60).

For increasing E at fixed t∗, there is a competition between
the two terms: the total number of saddles increases, while
ρp shifts towards negative values, making the contribution
from the integrals more negative. In the t∗ → ∞ limit, the
number of stable states is recovered (black line in Fig. 5), in
agreement with the TAP calculation [73], and the maximum
is at the threshold Eth, with configurational entropy s0 =
s(Eth,∞). For finite t∗, there is a unique maximum EM (t∗),
which approaches the threshold from above.

We are interested in the scaling of EM (t∗) − Eth and of
sM (t∗) − s0 with t∗. To determine these scalings, we consider
(60) in the double scaling limit t∗ → ∞, E → Eth with E −
Eth = At−α for some fixed α. We then determine the exponent
α by comparing the competing contributions in (60). The
calculation is performed in Appendix C. We find the exponent
α = 2/3 independent of p, and

sM (t∗) = s(EM (t∗), t∗) = s0 + cMt∗− 2
3 + O

(
t∗− 4

3
)

(61)

with a p-dependent constant cM > 0, see Eq. (C5).
Using the correspondence between the number of

metastable states in the classical model and the partition
function of the quantum model, we derive from (61) the free
energy of the latter at Tq → 0

−βq f = 1

N
lnN

(
t∗ = Ts

2Tq

)
= s0 + 2−2/3cM (βqTs)−2/3 .

(62)

This shows that the model has finite entropy s0 at zero temper-
ature. Like in the SYK model, this is not due to degeneracy

1The expansion becomes exact at Ts → 0 [41,52]. This is the idea
behind the harmonic approximation presented in the next section.

(the ground state is unique for any finite N), but to the
“accumulation” of an exponential number of stable states at
the threshold. From (62) we also derive the scaling of the
energy density ∝T 5/3

q and specific heat ∝(Tq/Ts)2/3.
Thus, we have reobtained a similar critical behavior of

the p = 2 case but with a finite entropy at zero temperature.
The states contributing to the entropy dominate the low-
temperature specific heat, changing the exponent from that
of the p = 2 case. Clearly the specific heat exponent differs
somewhat also from that of the SYK case.

In order to go beyond this first approach, we consider the
low-Tq scaling at fixed small Ts, using a harmonic expansion
for the low-Ts dynamics, which consists in expanding the
potential around each stationary point and approximating the
degrees of freedom as harmonic oscillators, with frequencies
given by the spectrum of the Hessian. This expansion includes
unstable directions, whose effect is taken into account in the
resulting spectrum. The expansion is presented and discussed
in Chap. 3 of Ref. [41]. As Ts → 0, the expansion becomes
exact and the result (60) is recovered, while for small Ts >

0 it provides an approximation only. The computation is
presented in Appendix C. The final result for the entropy, free
energy and specific heat displays the same scaling with Tq

found above. Within the harmonic approximation one can also
obtain the quantum correlation functions (for Ts = 0 these are
trivial since q = 1). As discussed in Appendix C, the result
is analogous to the p = 2 case but with a different spectral
density ρ(ω).

C(t ) = 1

N

∑
i

〈{qi(t ), qi}〉

=
∫

dω
ρ(ω)

2ω
coth

(
βqTs

2
ω

)
cos(ωt ), (63)

with

ρ(ω) =
∫

dρp(μ)δ

(
ω −

√
1

2
λ̂Ts + 1

4
(λ − μ)2

)
. (64)

At Tq = 0, λ = R, and λ̂ = 0, and the critical behavior is the
same as for p = 2. Note that the critical temperature Tc is
rescaled and p-dependent; since we are working at small Ts,
we are deep in the condensed phase, and q = 1 − Ts/Tc is
close to one.

For Tq > 0, given the semicircle-distributed spectrum for
μ, a change of variables leads to the deformation sketched in
Fig. 6. There are two relevant scales, both vanishing in the
Tq → 0 limit: z = (R − λ)/2 ≈ T 2/3

q and ωmin =
√

λ̂Ts/2 ≈
T 4/3

q � z. For ω � z, there is a one-to-one correspondence
between ω and μ, and the distribution ρ(ω) is very close to
the semicircle centered in λ for ω � z. For lower ω, each
value of ω is obtained from two different μ’s with the edge
of the semicircle “folded back” to positive values, giving a
square-root kink at ω = z. Finally, ωmin acts as a cutoff.

As for p = 2, the behavior of ρ(ω) at small but finite Tq

allows one to obtain the long time behavior of the correla-
tion functions. The real time quantum correlation function
is the same as the Tq = 0 up to timescales t � z−1 ≈ T −2/3

q
where the plateau is approached, for which the system cannot
resolve the difference between the two densities of states.
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FIG. 6. Sketch of the density of states (64) for p > 2, Ts > 0
within the harmonic approximation (distribution of ω, orange line)
compared to the Ts = 0 semicircle [distribution of (λ − μ)/2].

The departure from the plateau takes place on the timescale
∝T −4/3

q , set by the gap ωmin, at which the correlation function
decays exponentially. In the intermediate regime between
those timescales, C remains close to the plateau up to terms
vanishing as power laws of Tq. As for the imaginary time
quantum correlation function, one observes only the first
power-law relaxation toward the plateau which is then folded
back due to periodicity. The second regime is invisible since
it corresponds to frequencies much smaller than 1/βq.

In conclusion, within the approximations presented in this
section, we obtain many of the desired features of the SYK
model, see Table II, in particular a quantum critical point at
Tq = 0+ with finite entropy. It remains to be seen whether the
critical behavior found within the harmonic approximation is
representative of the result for small but finite Ts. The main
concern is that the periodic trajectories are extremely simple
within these approximations and do not explore at all the
rough landscape but remain very close to a given critical point.

VII. GENERALIZATIONS

We now discuss three questions that have arisen naturally
in the context of the SYK model through the lens of classical
glassy dynamics mapping.

Transition to normal quantum liquid. Banerjee and Altman
[77] showed that perturbing the SYK Hamiltonian with a
quadratic term, the zero-temperature entropy is a decreasing
function of the strength, and reaches zero at a critical value, at
which the system becomes gapped. Here the same situation
arises naturally. Consider the original diffusive model, per-
turbed with a “magnetic field” term b

∑
i qi. We know [73]

that the number of stable metastable states is a decreasing
function of b, and reaches zero at a critical field bc, which

TABLE II. Summary of results for p � 3 (Ts → 0).

entropy s0 = 
(Eth )
z T 2/3

q

specific heat (Tq/Ts )2/3

gap ωmin ∝ T 4/3
q

q 1 − Ts/Tc

dynamics plateau q + b

t
1
2

for 1 � t � β
4
3

q

depends on Ts. Above this critical field strength, the system
is no longer glassy, and there are no slow relaxations. This
implies for the “quantum” associated model that the zero-
temperature Tq entropy is a decreasing function of b, and
that above bc the system becomes gapped: the gap being the
inverse of the slowest relaxation time.

More generally, one can consider “mixed” models, with
multiple random couplings with different values of p. This
modifies quantitatively (and to a certain extent qualitatively)
the dynamics of the glassy model: it is still glassy but, for
example, some scaling exponents change [78]. This induces
quantitative (and possibly also qualitative) changes in the
“quantum” model. This is unlike the SYK model, where only
the term with the smallest q is relevant and dominates at long
times.

Nearby replica symmetry breaking transition. Consider
now adding a term to H proportional to the potential:

Hμ =
∑

i

[
−T 2

s

2

∂2

∂q2
i

+ 1

8

(
∂V

∂qi

)2

− Ts

4

∂2V

∂q2
i

]
+ μV (q).

(65)

H has still the form of a Schrodinger operator with Ts playing
the role of h̄, but now the potential is modified as

Veff = 1

8

(
∂V

∂qi

)2

− Ts

4

∂2V

∂q2
i

+ μV (q). (66)

From the form of (66) we can already see that the degeneracy
between saddles is broken. Indeed, if we consider the eigen-
states of H that are quasidegenerate (their value scales with N
in a manner slower than N), then the term μV (q) is the only
relevant term and lifts the degeneracy. In fact, the partition
function is then the one of a classical p-spin model with
inverse temperature βqμ. The system then has a transition
temperature at T crit

q = μTk , where Tk is the thermodynamic
transition temperature of a classical p-spin spin glass (11), at
which the Gibbs measure freezes in the ground state. Note that
(65) with μ = 0 no longer corresponds to a diffusive problem,
but rather to a diffusive problem with branching proportional
to V [41].

Models without disorder. The question of substituting a
disordered model by one with similar phenomenology but
with deterministic Hamiltonian arose in the ’90s in the portion
of the glass community working with mean-field models.
Several Hamiltonians were proposed, and techniques were
developed to obtain their disordered counterparts having the
same dynamics. By considering the evolution operator of any
of the models developed then, we obtain a “quantum” version
of strange liquid without disorder, in the spirit of Ref. [79].
Most of the models we shall describe have ±1 spins: we may
make them continuous by using a “soft spin” version with
the addition of a term ∝∑

i(s
2
i − 1)2 to the Hamiltonian, or

simply directly use Glauber dynamics for Ising spins—the
evolution operator of which may also be also represented by
a Hermitian quantumlike operator. Some examples are (1) the
Bernasconi model, originating in information theory [80,81]:

E =
N∑

k=1

(
N−k∑
i=1

sisi+k

)2

. (67)
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(2) The “sine” model [82]:

E =
N∑

k=1

[
N∑

i=1

1√
N

sin

(
2π ik

N
si

)
− sk

]2

. (68)

(3) The Amit–Roginsky model [83], a three-spin model
as (11), with Ji jk a 3 − j symbol, rather than random.
Interestingly this model may be viewed as a classical cousin
of Witten’s tensor generalization of the SYK model [79]. (4)
A matrix model [84], with permutation rather than rotational
invariance:

E = 1

N

∑
ab

(Sa · Sb)p, (69)

where Sa, a = 1, . . . , N are N-dimensional vectors with ±1
entries.

Intriguingly, these models have a landscape with essen-
tially the same density of minima as their random counter-
parts, but the few lowest states are exceptional and related to
number theoretic properties of the specific energy functions.
We may think of these as the “crystals” of the problem.

VIII. CONCLUSIONS

In this work, we have embarked on a program to investigate
and explore connections between quantum SYK-like models
and a broad class of classical glass models. Specifically, mean-
field glassy systems which have obvious similarities to the
SYK class of models already at the level of the Hamiltonian,
exhibit deep connections with SYK when viewed from the
standpoint of their dynamically critical behavior. We have fo-
cused on the p-spin spherical model but the relationship with
glassy dynamics is actually much more general: the evolution
operator of any stochastic problem with detailed balance and
with a glass transition connected to an exponential number
of metastable states presents aspects of SYK-like physics for
the reasons we spelled out in this work. The resulting quan-
tum Hamiltonian displays zero-temperature critical behavior
with a concomitant finite zero-temperature entropy and time-
reparametrization (quasi)invariance of the dynamical equa-
tions for correlations. These properties have natural classical
interpretations. For example, the dense energy spectrum above
the ground state that generates the finite entropy in the SYK
model at T = 0 can be naturally connected to the dense
spectrum of relaxation modes at the “threshold” of the energy
landscape proximal to a dynamical freezing transition where
the configurational entropy of the system jumps to a finite
value. More importantly, time reparametrization, well-known
for many years within the context of classical glasses, is
there associated with a defining physical feature of dynamics,
namely the phenomena of dynamical heterogeneity where
particle motion becomes spatially correlated and an associated
dynamical length scale diverges at the critical point as marked
by the divergence of a particular class of four-point functions.
In this regard, the behavior of the SYK model as T → 0 may
be viewed as connected to a “quantum” type of dynamical
heterogeneity with the divergence of a completely analogous
four-point susceptibility. Such connections, interesting in their
own right, may have the practical benefit of widening the class

of systems that may serve as appropriate duals for models of
black holes.

The euclidean time evolution of the SYK model, as far
as we can determine, cannot be mapped onto a diffusive
problem, but the possibility remains that some heretofore
unknown model with the same properties might. In addition,
some features of what we call “strange quantum liquids”
may differ from those of the SYK model and remain to
be carefully explored. One simple example is the power-
law decay of correlations, whose exponent is a continuous
function of the parameters, unlike those found in the SYK
model. More importantly, the nature of the time evolution of
“out-of-time-ordered” correlators and the bound on chaos in
these systems demand careful scrutiny. There are tantalizing
hints that these systems will, if not saturate the bound, at
least have nontrivial quantum effects on scrambling behavior.
For example, consider Eq. (18): the classical portion of Veff

is zero at saddles of any index and very small along the
gradient lines that connect saddles to other saddles. Such a
“flat bottomed” high dimensional space provides a platform
for classical chaotic motion even as T → 0 because of the
near-zero energetic cost for trajectory spreading [85–87]. It
has been demonstrated that such systems are prime candidates
for maximal quantum chaoticity, displaying a temperature de-
pendence of the Lyapunov exponent λ which follows β h̄λ ∼
T −α with α ∼ 1

2 . Since this behavior violates the bound at
low T , quantum scattering intervenes to cut off the unlimited
growth of β h̄λ at its maximal value [85]. Interestingly, the
second (semiclassical) term in Eq. (18) provides the first clue
as to the quantal mechanism for the reduction of the growth in
λ. This term, proportional to h̄ (i.e., Ts), cancels the zero-point
energy for stable critical points but additively increases the
zero-point energy for unstable saddles (the more so the higher
the saddle index), thereby selecting trajectories that “pass”
low-order saddles.

In conclusion, we have exposed deep and surprising con-
nections between the behavior of classical glasses and quan-
tum models of the SYK variety. By doing so, we have in-
troduced a new class of quantum models that are interesting
in their own right and may provide future inspiration for
developments in, and connections between, classical statisti-
cal mechanics as well as in hard condensed matter and high
energy physics. Future efforts will be devoted exploring these
connections as well as to providing a deeper understanding of
the chaotic properties of these new models.
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APPENDIX A: SUPERSYMMETRY

As is well-known [88], the Hamiltonian (17) may be pro-
moted to supersymmetric quantum mechanics via the use of
fermionic degrees of freedom, their corresponding spaces, and
a term

HSUSY = H − ∂2V

∂qi∂q j
a†

i a j . (A1)

Clearly, the total fermion number is conserved, and the origi-
nal problem is the zero-fermion subspace restriction of the full
SUSY one. Note that, unlike the supersymmetric versions of
SYK [89,90], here the bottom state is bosonic.

There are three reasons why looking at the diffusive prob-
lem from this perspective is interesting [91]. (1) Supersymme-
try implies a relationship between the parameters C, R and D.
They are the equilibrium relations—namely, the fluctuation-
dissipation relations and time-translational invariance. The
glass transition is, in this language, signalled by supersymme-
try breaking. (2) Time reparametrizations are encapsulated in
a single “supertime” reparametrization. (3) More prosaically,
it turns out that taking advantage of the superspace notation
makes calculations easier and more tractable.

We may encode the original variables in a superspace
variable:

φi(1) = qi(t ) + aiθ̄ + a†
i θ + piθ̄ θ , (A2)

which leads us to

Q(1, 2) = 1

N

∑
i

φi(1)φi(2) = C(t1, t2) + (θ̄2 − θ̄1) θ̄1θ2

× R(t1, t2) − θ1θ̄2 R(t2, t1) + θ1θ1θ̄2θ2D(t1, t2)

+ odd terms in the θ̄ , θ . (A3)

Here, θa, θ̄a are Grassmann variables, and we denote the full
set of coordinates in a compact form as 1 = t1θ1θ1, d1 =
dt1dθ1dθ1, etc. The odd and even fermion numbers decouple,
so we can neglect all odd terms in θ, θ̄ . The dynamic action
takes the simple form

S[Q] = − 1

2

∫
d1d2

[
D(2)

1 Q(1, 2) + J2

2
Q(1, 2)p

]

+ 1

2

∫
d1Z (1)[Q(1, 1) − 1] − 1

2
Tr ln Q, (A4)

and the associated equations of motion

D(2)
1 Q(1, 2) + Z (1)Q(1, 2)

+ J2 p

2

∫
d1′Q(1, 1′)p−1Q(1′, 2) = δ(1 − 2) . (A5)

The Lagrange multiplier in superspace encodes for the two
bosonic multipliers

Z (1) = λ(t ) + θ̄1θ1λ̂(t ), (A6)

and the kinetic term operator is given by the commutator

D(2)
1 =

[
∂

∂θ
,

(
∂

∂θ̄
− θ

∂

∂t

)]
. (A7)

Note how close these are, when written in the appropriate
notation, to their SYK counterparts (6,7). Reparametrization
invariance arises from neglecting the first term in (A5).

In general, to the extent that one is allowed to neglect
the “small” terms in the infrared, Eq. (A5) is invariant with
respect to any change of “coordinates” ta, θa, and θ̄a (a =
1, 2, . . . ) with unit super Jacobian [92]. This is a large sym-
metry group, including the time reparametrization:

ta → h(ta), θa → ḣ(ta)θa, θ̄a → θ̄a . (A8)

which encapsulates all of Eqs. (45) and (46).

APPENDIX B: SCALING IN THE p = 2 MODEL

1. Lagrange multiplier

a. Tq = 0

For Tq = 0, the spherical constraint is given by (54). The
integral is well known in random matrix theory, representing
the resolvent of Wigner’s semicircle distribution [68]

F (λ) = 2

R2
(λ −

√
λ2 − R2). (B1)

Therefore, for Ts > Tc = R/2, a solution λ = (T 2
c + T 2

s )/Ts >

R is found, leading to a positive gap.
On the other hand if Ts < Tc, Eq. (54) has no solution. As

in Bose-Einstein condensation, to satisfy the constraint we
must allow for the lowest energy mode to be macroscopically
occupied. To account for this we take the gap to be O(1/N ),
corresponding to a condensation 〈q2

0〉 = Ts/(λ − R) ≡ Nq.
The spherical constraint (55) determines q = 1 − Ts/Tc.

b. Tq → 0 scaling

At any finite temperature Tq > 0, F (λ) in (53) is mono-
tonically decreasing and diverges as λ → R+. Therefore a
solution is found for any value of Ts. There is no condensation
and the spectrum is gapped, z = λ − R > 0. If Ts � Tc, the
gap closes approaching the critical point Tq → 0. Here we
determine the scaling of z with Tq, which governs the critical
behavior of other physical quantities.

If Ts < Tc, Eq. (53) can be rewritten

2
∫ 2R

0
dx

ρ(R − x)

z + x

1

eβqTs (z+x)/2 − 1
= T −1

s − T −1
c + O(

√
z) .

(B2)

The integral in the left-hand side must be of order one. With
a change of variables x′ = x/z, ignoring constant factors and
with c = βqzTs/2, it becomes

2

π

√
2zR− 3

2

∫ +∞

0
dx

√
x

(1 + x)[ec(1+x) − 1]

≈ 2
√

2

πR
3
2

2Tq

Ts
√

z

∫ +∞

0
dx

√
x

(1 + x)2
= 2

√
2

R
3
2

Tq

Ts
z− 1

2 . (B3)

Therefore we find the scaling z ∝ T 2
q . In the first passage, we

assumed that c → 0, i.e., z vanishes faster than Tq. If this were
not the case, the expression would be at most of order T 1/2

q .
At the transition Ts = Tc, the finite part of (B2) vanishes,

and the integral must be of order
√

z. This is indeed the case if
c has a finite value in the Tq → 0 limit, implying that z ∝ Tq.
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2. Specific heat and entropy

The energy density is

ε = Ts

2

∫
dρ(μ)

λ − μ

eβqTs (λ−μ)/2 − 1

= Ts

πR2

( z

c

) 5
2

∫ c(1+R/z)

c
dyy

3
2

√
2R − z

c y

ey − 1
. (B4)

In the critical regime Ts � Tc, the integral on the right-hand
side is of order one. Therefore the energy scales as (z/c)

5
2 =

T
5
2

q , and the specific heat scales as T
3
2

q . Note that while the
scaling of z is different at and below Tc, the scaling of the
energy and specific heat are the same.

Above the transition, z is finite and c ∝ 1/Tq diverges. The
integrand in (B4) is bounded uniformly by the exponentially
large denominator, and the specific heat vanishes exponen-
tially ∝e−c.

The free energy is given by

−βq f = −
∫

dρ(μ) ln
(
1 − e−βqTs

λ−μ

2
)

= − 8

πR3/2

(
Tq

Ts

)3/2 ∫ ∞

0
dy

√
y ln(1 − e−c−y)

+O
(
T 5/2

q

)
(B5)

= 4√
πR3

ζ

(
5

2

)(
Tq

Ts

)3/2

+ O
(
T 5/2

q

)
. (B6)

The free energy also vanishes as T 5/2
q . Here we used the fact

that c → 0, therefore the result is valid for Ts < Tc. However,
the integral in (B5) is of order one for finite c, and the scaling
is the same at Ts = Tc.

The classical p = 2 model does not have a complex energy
landscape. Therefore we expect the entropy of the quantum
model to be zero at Tq = 0. This is indeed the case, since s =
βq(ε − f ) ∝ T 3/2

q .

3. Correlation function

At finite Tq, there is no condensation, and the equilibrium
correlation function is

C(t ) = C0(t ) + 2Ts

∫ 2R

0
dx

ρ(R − x)

z + x

cos
(

z+x
2 t

)
eβqTs (z+x)/2 − 1

≡ C0(t ) + C1(t ), (B7)

where C0(t ) is the decaying part of the ground state (Tq =
0) correlation function, Eq. (57). (1) For Ts > Tc, the gap
survives to Tq → 0. The asymptotic behavior is the same as
Eq. (58).

(2) For Ts < Tc, note by comparing Eqs. (B2) and (B7) that
C1(0) = q. With the change of variable x′ = x/z, at low Tq,

C1(t ) ≈ 2Ts

√
z

c

∫ ∞

0
dx

ρ(R − zx)

(1 + x)2
cos

(
1 + x

2
zt

)
. (B8)

Since
√

z ∼ c ∼ Tq, the integral is of order one. Taking the
Tq → 0 at fixed time t ∼ O(1), the time dependence dis-
appears, and C1(t ) = C1(0) + O(T 2

q ) ≈ q. The timescale at
which correlations decay is determined by the gap, zt ∼ O(1),
t ∝ β2

q .

There is an intermediate regime 1 � t � β2
q in which the

system approaches the constant value q, with a t− 1
2 power-law

decay (given by C0). At t ∝ β2
q , the correlator decays from the

plateau to zero.
(3) At the transition Ts = Tc, the situation is similar to Ts <

Tc, but there is no plateau (q = 0), and the different scaling of
z implies that the timescale at which the power law is cut off
is t ∝ βq.

APPENDIX C: ZERO-TEMPERATURE
AND HARMONIC APPROXIMATION

1. Scaling above the threshold at Ts = 0

We analyze Eq. (60) in the double scaling limit with
E − Eth = At∗−α as t∗ → +∞, with constant A and α > 0. To
ease the notation, we drop the ∗ and denote the time by t . We
analyze separately three terms contributing to the entropy: I0

(first row), I1 and I2 (first and second integrals, respectively).
(1) The leading contribution to the first term is the total

number of saddles at energy density E ,

I0 = 1

2

(
1 + ln

p

2

)
− E2

th + ln |Eth| − (
E2 − E2

th

)

+ 1

2
Re

⎡
⎢⎣
⎛
⎝E ∓

√
E2 − E2

th

Eth

⎞
⎠

2⎤⎥⎦
= s0 − 2A

(
Eth − E−1

th

)
t−α + O(t−2α ) . (C1)

(2) The leading contribution to the first integral in (60)
comes from |ω|t � 1. The edge of the semicircle is at
−pAt−α . If α < 1, the contributing region is far from the edge.
Up to exponentially small corrections

−I1 =
∫ c/t

−c/t
dωρp(ω + pE ) ln(1 − e−t |ω|)

=
∫ c

−c

dy

t
ρp(pE + y/t ) ln(1 − e−|y|)

= 2t−1ρp(pE )
∫ c

0
ln(1 − e−y)dy + O(t−2)

≈ − π2 p

p − 1

√
−2AEtht−1−α/2 . (C2)

To go from the first to the second line, we used that ρp(pE +
y/t ) ≈

√
At−α + yt−1 ≈ √

At−α/2 since α < 1. If α > 1, the
t−1 term dominates, and overall I1 ∝ t−1−min(1,α)/2.

(3) The second integral is

I2 = t
2

π p2E2
th

∫ 0

−p(E+Eth )

√
p2E2

th − (pE + ω)2ωdω

= − pt

6πE2
th

⎡
⎣2(E2 + 2E2

th)
√
E2

th − E2

+ 6EE2
th

⎛
⎝π

2
+ arctan

E√
E2

th − E2

⎞
⎠
⎤
⎦

≈ − 8p

15πE2
th

√
−2EthA− 5

2 t1− 5
2 α. (C3)
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Summing the three contributions, the entropy of stable
states at t , E − Eth = At−α is given by

s − s0 = c0t−α − c1t−1−min(α,1)/2 − c2t1− 5
2 α, (C4)

where the c’s are positive coefficients depending on A and p.
As expected from the intuition given in the main text, there

is a competition between the positive contribution from the
first term, and the negative ones from the other two. The
scaling of the maximum is obtained by requiring that the first
and third term have the same exponent (the second is sublead-
ing), fixing to α = 2/3. Maximising the coefficient c0 − c2

fixes A, leading to the scaling,

sM (t ) = s0 + cMt− 2
3 , cM = 3(3π )

2
3 (p − 2)5/3

5 · 2
1
3 (p − 1)

1
3 p2

. (C5)

2. Harmonic approximation

At low Ts and for short enough times, the classical dynam-
ics of the p-spin model can be approximated by expanding the
potential to second order around each stationary point of the
energy landscape.

With the change of basis (17), the Fokker–Planck operator
is mapped to the Hamiltonian of quantum harmonic oscillators
of frequencies

ω2
μ = λ̂Ts + (λ − μ)2. (C6)

The μ’s are the eigenvalue of the Hessian, and are distributed
with a semicircle law of radius R = √

2p(p − 1) [76]. As
discussed in Ref. [41], and noting the role of λ̂, the spectrum
of H is given by

E (μ)
n [λ, λ̂] = Tsωμ

(
n + 1

2

)
− Ts

4
(λ − μ) , (C7)

and the contribution to the partition function from each
mode is

Z (μ)[λ, λ̂] = et∗[λ̂/2−ωμ+(λ−μ)/2]

1 − e−2t∗ωμ
, (C8)

where t∗ = βqTs/2. Note that both stable and unstable clas-
sical degrees of freedom are mapped to quantum harmonic
oscillators, with a spectrum shifted as in (C7).

The total partition function is obtained by the maximisation

ln Z = max
E,λ,λ̂

{
I0(E ) −

∫
dρ(μ)

[
ln(1 − e−2t∗ωμ )

+ t∗
(

ωμ − λ − μ

2

)]
+ λ̂t∗

2

}
, (C9)

over the energy and the two Lagrange multipliers. Maximising
over λ fixes λ = −pE + O(Ts) [52]. In the following, we
show that the spherical constraint fixes the relative scaling of
λ̂ and λ, and that maximising over E ultimately gives the same
scaling above the threshold as in the Ts = 0 case.

a. Spherical constraint

Maximising (C9) over λ̂ leads to the spherical constraint∫
dμ

ρ(μ)

2ωμ

coth

(
βqTs

2
ωμ

)
= 1

Ts
, (C10)

FIG. 7. Scaling of λ̂ at Tq → 0 in the harmonic approximation.
From the numerical solution of (C10) with λ − R ∝ T α

q . For each α,
the dashed line shows the T β

q , β = α + 2 scaling.

which has a form similar to the p = 2 case (53), but with
ωμ given by the harmonic approximation relation (C6). To fix
the relative scaling of the two Lagrange multipliers λ, λ̂, we
consider the Tq → 0 limit with λ − R ∝ T α

q , λ̂ ∝ T β
q . Solving

(C10) numerically we find that β = 2 + α, see Fig. 7.

b. Scaling above the threshold

We now study the scaling above the threshold of (C9),
comparing it with the analysis of the Ts = 0 case (Sec. C 1).
(1) The first term I0(E ) is exactly the same, counting the
number of stable states at energy E .

(2) The first integral corresponds to I1 (C2). Note that
since ω > |λ − μ|/2, the Ts > 0 contribution is smaller than
I1, which was shown to be always subleading in the previous
section,∣∣∣∣

∫
dρ(μ) ln(1 − e−2t∗ωμ )

∣∣∣∣ = −
∫

dρ(μ) ln |1 − e−2t∗ωμ |

< −
∫

dρ(μ) ln |1 − e−t∗|λ−μ|| = |I1|. (C11)

(3) For λ̂Ts → 0, the second integral reduces to I2 (C3).
The correction can be separate into two contributions. The
contribution from |λ − μ| � T β/2

q is bounded by ≈ T β+α/2
q =

T 2+3α/2
q . Expanding the square root for |λ − μ| � T β/2

q ,

≈ 1

Tq

∫
|λ−μ|�T β

q

dρ(μ)
T β

q

|λ − μ| ∝ T
1+ 3

2 α
q ln(Tq) (C12)

and we get a logarithmic correction, which is small compared

to I2 ∝ T
5
2 α−1

q .

(4) The additional term is λ̂Ts
4Tq

∝ T 1+α
q , and is always sub-

leading.
Therefore the scaling (C5) is unchanged within the har-

monic approximation and α = 2/3.

3. Correlation functions

Analysing the model from the classical and quantum points
of view leads to two equivalent constructions for the path
integral (MSRJD and Matsubara, respectively). Both path
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integrals are expressed in terms of correlation functions,
which are different from each other, but related by the change
of basis (34). Note that the function C is the same in both
basis, while R and D change by terms that vanish in the
Ts → 0 limit. Within the harmonic approximation, it is simpler

to work directly on the quantum side, calculating correlation
functions in terms of harmonic oscillators, as for p = 2 (B7).
Real-time correlation functions are obtained as Fourier inte-
grals involving the density of states (63) with the density of
states given in Eq. (64) and Fig. 6.
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