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Topoelectrical circuit octupole insulator with topologically protected corner states
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Recent theoretical studies have extended the Berry phase framework to account for higher electric multipole
moments; quadrupole and octupole topological phases have been proposed. Although the two-dimensional
quantized quadrupole insulators have been demonstrated experimentally, octupole topological phases have not
previously been observed experimentally. Here we report on the experimental realization of a classical analog
of the octupole topological insulator in the electric circuit system. Three-dimensional topolectrical circuits
for realizing such topological phases are constructed experimentally. We observe octupole topological states
protected by the topology of the bulk, which are localized at the corners. Our results provide conclusive
evidence of a form of robustness against disorder and deformation, which is characteristic of octupole topological
insulators. Our study opens a route toward higher-order topological phenomena in three dimensions and paves
the way for employing topolectrical circuitry to study complex topological phenomena.
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Topological phases exhibit some very striking phenomena
in modern physics. A prominent feature of a topological phase
is the emergence of topologically protected edge states, which
are robust against local perturbations and play a crucial role in
the topological functionality of the underlying system [1–4].
Topological insulators as important platforms for realizing
topologically protected boundary states have attracted great
attention in recent years [2–5]. They have been constructed
in various systems ranging from traditional electronic setups
[2–5] to mechanical [6], electromagnetic [7–11], and acoustic
[12–14] structures governed by classical wave equations.

Recently, a class of symmetry-protected topological in-
sulators, the higher-order topological insulator, has drawn
research interest [15–17]. Unlike conventional first-order
topological insulators, two-dimensional (2D) second-order
topological insulators have topologically protected corner
states, and corresponding 3D systems have topological gap-
less modes on the hinges. In some crystalline structures,
the topological corner and hinge states can arise only from
the nontrivial bulk topology when the lattice termination is
compatible with the crystal symmetries. The first prediction
of a second-order topological insulator, based on quantized
quadrupole polarization, was demonstrated in classical me-
chanical [18] and microwave [19] systems, as well as in
electrical circuits [20,21]. The other kinds of second- and
third-order topological phases have also been observed in
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acoustic, photonic, and electronic systems [22–44]. How-
ever, the experimental realization of much higher topological
insulators, such as octupole topological insulators, remains
challenging.

Here we report on the experimental realization of classical
analog of octupole topological insulator using 3D topolec-
trical circuits. The circuits consist of some basic circuit
elements: capacitors and inductors, which are constructed
experimentally. The octupole topological phases, which are
localized at the corners, are observed. The octupole topo-
logical insulators that depend only on the bulk topology are
demonstrated experimentally.

Theoretical design of topolectrical-circuit octupole insula-
tor. LC circuit models are well suited to the implementation
of tight-binding models, because it is possible to establish
a correspondence between individual hopping terms in the
tight-binding model and individual components in its circuit
realization [45–51]. This potential has already been exploited
experimentally to implement conventional and quadrupole
topological insulators [20,21]. Now, we extend the LC cir-
cuit model to study three-dimensional octupole insulator. We
consider a 3D circuit unit cell shown in Fig. 1(a), which a
tight-binding model with quantized octupole insulator can be
constructed by using it.

The unit cell consists of two pairs of capacitors and
inductors, (L1,C1) and (L2,C2), which satisfy the relations
C2 = λC1 and L1 = λL2. So that they have a same resonance
frequency ω0 = (L1C1)−1/2 = (L2C2)−1/2. Here λ is real pos-
itive parameter. The red parts are the groundings in eight
sites. It is worth noting that different values of grounded
capacitors/inductances should be used to make the on-site
potential on each lattice site become zero at the working
frequency (see details in Ref. [52]). So sites 1, 2, 3, and 4 are
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FIG. 1. Circuit model of the octupole topological insulator.
(a) Unit cell of the circuit. The capacitors and inductors are marked
in the figure. Blue and black circuit elements correspond to weak and
strong bonds in a tight-binding or mechanical analog of the circuit.
Red circuit elements connect to the ground for the sites 1, 2, 3, 4, 5,
6, 7, and 8 via inductivities and capacitors. (b) Circuit scheme with
3 × 3 × 3 unit cells. (c) the corresponding marks for inductivities
and capacitors in Fig. 2(b). (d) Enlarged corner region including a
unit cell in (b).

connected to the ground via an inductivity Lg
2 = L1/(1 + λ),

sites 6 and 7 are connected to the ground via an inductivity
Lg

6 = L1/(3 + 3λ), sites 5 and 8 are connected to the ground
via an capacitor Cg

2 = C1 + C2. So, we can use the parameters
ω0 and λ to describe the topological properties of the circuit
unit cell.

In order to realize an octupole insulator with topologi-
cally protected corner states, the system should have three
anticommuting mirror symmetries [15]. So, the same anti-
commuting mirror symmetries should also be owned by our
classical circuit systems. According to this condition, we
build a classical analog of the electric octupole insulator,
which has three anticommuting mirror symmetries (Mx, My,
and Mz) for modes near a specific frequency ω0. We first
consider an infinite periodic structure realized by the above
circuit unit cell, and study the bulk properties of the system,
before analyzing boundary modes. We then analyze the circuit
with periodic boundary conditions in momentum space. In
circuit systems, we can derive the circuit Laplacian by the
Kirchhoff’s current law [45–51],

J (ω) = iωC − i

ω
W, (1)

where J (ω) is the circuit Laplacian, and C is capacitance, W
is the inverse inductivity W = L−1. The off-diagonal compo-
nents of matrix C are the capacitances Cab between nodes a
and b. The diagonal components of matrix C are total node
capacitances Caa. The matrix W is the same as C. Under
the condition ω = ω0, one of the bonds on each square in
the green cube shown in Fig. 1(a) has a negative sign, and
each square plaque contains π flux in each direction. Using
Fourier transform, the circuit Laplacian J (ω) in Eq. (1) can

be transformed to the following J̃λ(ω0, q) in the momentum
space [52]:

J̃λ(ω0, q) = i

√
C1

L1
[λ sin qy�

′
1 + (1 + λ cos qy)�′

2

+ λ sin qx�
′
3 + (1 + λ cos qx )�′

4

+ λ sin qz�
′
5 + (1 + λ cos qz )�′

6], (2)

where λ = C2/C1, qi(i = x, y, z) is the phase of Block wave
vector propagating along the x, y, and z directions, respec-
tively. �′

i = σ3 ⊗ �i for I = 0, 1, 2, 3, 4, and �′
5 = σ2 ⊗ I4×4

�′
6 = i�′

0�
′
1�

′
2�

′
3�

′
4�

′
5. Here, �0 = τ3σ0, �k = −τ2σk , and

�4 = τ1σ0, for k = 1, 2, and 3. This circuit Laplacian satisfies

M̂xJ̃λ(ω0, qx, qy, qz )M̂x
−1 = J̃λ(ω0,−qx, qy, qz ),

M̂yJ̃λ(ω0, qx, qy, qz )M̂y
−1 = J̃λ(ω0, qx,−qy, qz ), (3)

M̂zJ̃λ(ω0, qx, qy, qz )M̂z
−1 = J̃λ(ω0, qx, qy,−qz ),

where M̂x = σ0 ⊗ σ1 ⊗ σ3, M̂y = σ0 ⊗ σ1 ⊗ σ1 and M̂z =
σ1 ⊗ σ3 ⊗ σ0 represent reflection symmetry operators, which
obey {M̂i, M̂ j} = 0 (i, j = x, y, z and i �= j). Here τi(i =
1, 2, 3) and σi(i = 1, 2, 3) are Pauli matrices, and τ0, σ0 are
the 2 × 2 identity matrices. It is found that besides an overall
factor of i, J̃λ(ω0, q) in our circuit takes exactly the same form
as the Bloch Hamiltonian matrix of the octupole insulator
introduced in Ref. [14]. So that if λ �= 1 the spectrum of
J̃λ(ω0, q) is gapped. When λ > 1, the circuit is an octupole
circuit. If λ < 1, the circuit is a trivial circuit.

Now, we turn to a circuit with open boundary conditions
as shown in Fig. 1(b) to realize topologically protected corner
modes. To achieve this, two conditions must be satisfied. The
first one is that the symmetries protecting the topological
feature can not be broken by the boundary. The second one
is that the boundary should not cut through the unit cell. To
satisfy the first condition, we let the diagonal elements of
Jλ(ω) vanish at the resonance frequency ω0 to protect the
symmetry of the circuit. The diagonal elements of Jλ(ω) are
the circuit Laplacian in each site including bulk, surface, edge
and corner. So, we fix the circuit elements (capacitor and/or
inductor) that connect each site to the ground to meet this
condition [52]. For the second condition, we let every corner
end at a unit cell to meet it.

With all of the conditions and theories discussed above,
we finally construct a topolectrical-circuit octupole insulator
shown in Fig. 1(b). We terminate each edge of the circuit
with a unit cell. So, the circuit satisfies all the symmetries
Mx, My, and Mz, and topological corner modes could thus
be protected at each corner. To prove the validity of our
circuit, we calculate the spectrum of the circuit Laplacian as
a function of the driving frequency. In the calculation, the
parameters C1 and C2 are taken as 1 and 3.3 nF, respectively,
and L1 and L2 are taken as 3.3 and 1 μH. The results are shown
in Fig. 2(a), where an isolated mode clearly crosses the gap.
It represents the zero-energy eigenvalue of J (ω) at ω = ω0,
which corresponds to the topological corner mode.

Next, we calculate the expected frequency difference be-
tween the impedances of the bulk, edge, surface and corner
modes. The most natural measurement on a circuit is the
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FIG. 2. Comparison of experimental and theoretical results for the circuit spectrum and corner mode. (a) Theoretical spectrum of the circuit
Laplacian J(ω) as a function of the driving frequency. All frequency scales are normalized to the resonance frequency ω0. An isolated mode
crossing the gap, which corresponds to a zero-energy eigenvalue of J(ω) at ω = ω0, is clearly visible. It corresponds to the topological corner
mode. The calculation includes a random disorder of 1% for all capacitors and 2% for all inductors. The values of C1 and C2 are taken as1 and
3.3 nF, and L1 and L2 are taken as 3.3 and 1 μH. (b) Theoretical results of the impedance between two nearest-neighbor sites at the corner,
edge, surface, and in the bulk. (c) The distributions of zero-energy eigenvalues for the sample with 3 × 3 × 3 unit cells. (d) Experimental
results of the impedance corresponding to (b).

impedance response Zab(ω), which is the ratio of the voltage
between two nodes a and b due to a current. Mathematically,
Zab(ω) can be expressed as

Zab(ω) = Gaa(ω) + Gbb(ω) − Gab(ω) − Gba(ω)

=
∑

n

|φn(a) − φn(b)|2
jn(ω)

, (4)

where Gab(ω) = Jab
−1(ω) is the circuit Green’s function, and

jn(ω) is the eigenvalue of Jab(ω), which satisfies Jab(ω) =∑
n jn(ω)|ϕn(a)〉〈ϕn(b)|. We can see that the impedance can be

determined by the smallest eigenvalue jn(ω). From the spec-
trum of circuit Laplacian, we can find that there exist a gap
and zero eigenvalue jn(ω) = 0 in the corner as ω = ω0. This
phenomenon leads to a large impedance for the corner mode,
but not for the other modes. The analysis is agreement with
the simulation of the impedance for the circuit. Figure 2(b)
shows the simulated result of impedances as a function of
the driving frequency. It is seen clearly that the impedance
is extremely high for the corner mode as ω = ω0, which is
different from the low impedances for the bulk, edge, and
surface modes. The distributions of zero-energy eigenvalues
jn(ω) = 0 at ω = ω0, which correspond to the corner mode,
are also plotted in Fig. 2(c). It is shown clearly that strong
zero-energy eigenvalues appear at eight corner positions.

The above discussions only focus on the case with a sample
size. In fact, we have also calculated impedance responses
for the samples of other sizes. With the increase of sample

size, similar phenomena can be found. In addition, we have
also studied the effect of random capacitors and inductors in
the bulk of the sample on the corner modes. Our calculated
results show that strong corner modes always appear when
the capacitors and inductors vary randomly within the sample
or on the surface (except at the corner positions). The most
important property of the topologically protected corner state
is that it is robust against disorders. We note that the corner
state always exists even if the value of used capacitors and in-
ductors on the different positions (except for corners) are ran-
domly varied (the relationships of C2/C1 > 1 and L1/L2 > 1
should be satisfied), which is similar to the case in Ref. [15].
In the following, we provide the corresponding experimental
results.

Experimental observation of octupole topological phases.
In order to observe octupole topological phases experimen-
tally, the circuit with 3.0 × 3.0 × 3.0 unit cells, corresponding
to the above theoretical scheme, is designed. Image of the
experiment sample is shown in Fig. 3(a). For the convenience
of experiment, we cut the total cube in Fig. 1(b) into six sides.
We make these sides on three printed circuit boards (PCBs) in
order. Capacitors and inductors connect adjacent sides on ev-
ery site. The different connection ways result in the difference
of groundings. Thus, the six sides are divided into two types:
A and B. The images of two different sides A and B are shown
in Figs. 3(c) and 3(d), respectively. The detailed description
is given in Ref. [52]. The fabricated sample has exactly the
same construction shown in Fig. 1(b). This can be seen more
clearly from Fig. 3(b), which shows enlarged image at a corner
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FIG. 3. Experimental sample of the electrical circuit exhibiting
topological corner states. (a) Image of the printed circuit board of the
octupole topological insulator with three unit cells, corresponding
to Fig. 1(b). (b) Enlarged corner region including a unit cell in (a).
(c) and (d) show the images of the printed circuit board for two
different sides A and B, respectively. The impedance distributions
at the frequency ω0 are also shown.

of the PCB. The blue and black parts in Fig. 3(b) represent
the capacitors and inductors on one side. The red parts are
the capacitors and inductors connecting adjacent sides. The
yellow parts are the capacitors and inductors connecting each
site to ground. The line via hole is used to pass wire which
connects adjacent sides on different PCB. The Smp connector
being located at each site is used for measurement. The copper
pillar is connected to ground, which could also support three
PCBs.

As for the design of the PCB, all PCB traces have a rela-
tively large width (0.7 mm) to reduce the parasitic inductance
of the traces. The spacing between lines is large enough to
avoid spurious inductive coupling. The parameters of circuit
elements are taken as identical with the above theoretical cal-
culations. The tolerance of the circuit elements is 1%, which
can avoid the experiment error. We set λ = C2/C1 = L1/L2 to
be 3.3, and the resonance frequency to be 2.77 MHz. We used
a Wayne Kerr precision impedance analyzer to measure the

impedance of the circuit as a function of the driving frequency.
The experimental results are shown in Fig. 2(d). The excellent
agreement between experimental results and the theoretical
predictions have been observed. The theoretical impedance
corner peak is normalized to unity, and the experimental
impedance corner peak reaches 215 
. The red line represents
the corner mode, which is extremely high in the resonance
frequency. The other lines, which are blue, yellow, and green
lines, have a small impedance in resonance frequency. The
experimental results for the impedance distributions at the
frequency ω0 are also provided in Figs. 3(c) and 3(d) for
sides A and B, respectively. The red parts in Fig. 3(c) mean
the appearance of large impedance in the corner. We can
see that only side A has red parts but not B, which means
the large impedance in eight corners, but not in edges, sur-
face, and bulk. This means that our experiment successfully
demonstrates the existence of corner states in the octupole
topological circuit.

In summary, we have provided experimental evidence of
octupole topological phases of matter. Our circuit implemen-
tation of the octupole topological insulator has confirmed
the existence of the theoretically predicted corner modes and
firmly established their origin from the bulk octupole topol-
ogy. Before this work, only quadrupole topological insulator
in 2D has been realized experimentally in many classical
systems, such as photonic, phononic, and electronic circuit
systems [15–21]. However, the octupole topological insulator
in 3D has never been realized due to the difficulty in structural
design and sample fabrication. In this work, we first construct
the 3D octupole topological circuit, and the associated 0 D
corner state has also been observed. Although the extension
of tight-binding lattice modal from 2D to 3D seems direct, the
actual circuit design is not straightforward, e.g., the value of a
grounded capacitor/inductance on different locations (corner,
edge, surface, and bulk) should be designed subtly. In this
case, our study opens a route toward higher-order topolog-
ical phenomena in high dimensions and paves the way for
employing topolectrical circuit to study complex topological
phenomena, offering possibilities to control electrical signals
in unprecedented ways.
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National Natural Science Foundation of China (Grants No.
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