
PHYSICAL REVIEW B 100, 201405(R) (2019)
Rapid Communications

Shift vector as the geometric origin of beam shifts
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Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts are lateral and transverse displacements of a wave packet
reflecting off a surface. A dramatic real-space manifestation of wave-packet phases, they have traditionally been
analyzed in a model-dependent fashion. Here, we argue that GH and IF shifts admit a general geometrical
description and arise from a gauge invariant geometric phase. In particular, we show GH/IF shifts can be
naturally captured by a shift vector, analogous to the shift vector from shift currents in the bulk photovoltaic
effect. Employing Wilson loops to visualize the scattering processes contributing to the shift vector, we separate
the shift into an intrinsic (depends solely on the system bulk) and an extrinsic part. This enables us to establish
a clear model-independent link between symmetry and the presence/absence of intrinsic and extrinsic GH/IF
shifts.
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Physical phenomena are typically insensitive to phases.
This phase freedom embodies the ability to choose a coor-
dinate system and is apparent in both classical and quantum
systems. Departure from this rule of thumb, however, readily
manifests in crystals with nontrivial Bloch overlaps. When
integrated over a closed loop, wave packets in such systems
can acquire a gauge invariant Berry phase [1,2] that manifests
in a diversity of observables and intrinsic material properties
including quantum oscillations [3], topological edge/corner
states [4–7], and the modern theory of polarization [8].

Another striking example of phase sensitivity occurs when
wave packets reflect off a boundary. On reflection, wave
packets can acquire a reflection phase profile that leads to a
real-space shift between the incident and reflected beam po-
sitions termed Goos-Hänchen (GH) and Imbert-Federov (IF)
shifts (Fig. 1), defying the expectations of conventional ray
optics [9,10]. Such shifts can be found in many wave media
that range from free-space optics [11], photonics [12,13], to
electronics [14–23]. GH/IF shifts have long been thought to
be an “extrinsic” effect, and can be controlled by the particular
superposition comprising the wave-packet beam [11–17] and
boundary properties [16–20]. However, in topological media,
these shifts have recently been found to be sensitive to the
intrinsic characteristics of the bulk Bloch eigenstates. For
example, in a topological Weyl semimetal, IF shifts flip in
sign depending on which Weyl node is used to compose the
incident wave packet [18,19].

To what extent are GH/IF shifts intrinsic or extrinsic? Can
GH/IF shifts also be described by a (unified) gauge invariant
geometrical phase, and if so, which one? At first blush, such
a geometrical description might seem counterintuitive given
that GH/IF shifts seem to result from scattering between
states over an open line path in state space (initial �= final).
In contrast, gauge invariant Berry phases typically accumulate
over closed loops (initial = final). Furthermore, Berry phases
are most commonly used to track the evolution of wave

packets in the intrinsic bulk, and do not typically involve a
boundary.

Here, we set out to address these questions, and argue that
GH/IF shifts can be described in a completely geometrical
fashion. In particular, we find that GH/IF shifts can generi-
cally be characterized by a gauge invariant shift vector that en-
codes both intrinsic (e.g., internal structure from Bloch band
geometry of the periodic media) as well as extrinsic compo-
nents (e.g., details of reflecting boundary) on the same footing.
As we explain below, the twin roles of intrinsic and extrinsic
components in GH/IF shifts naturally arise from a single
gauge invariant geometric phase—namely, a Pancharatnam-
Berry phase that tracks the scattering process—effectively
capturing both boundary and bulk Bloch eigenstate depen-
dence. We note, parenthetically, that even though we focus
on the effects of Bloch band geometry (internal structure) in
periodically structured media, our conclusions apply equally
to beams with other forms of internal structure such as those
from polarization/spinor degrees of freedom.

While providing an overall unified framework for under-
standing the origins of GH/IF shifts, this geometrical descrip-
tion can also be used as a powerful tool for analyzing the shifts
in a model-independent way. As an illustration, we employ
a pair of Wilson loops to separate the reflection process into
individually distinct and gauge invariant intrinsic and extrinsic
components. We find that the intrinsic contribution depends
entirely on the Berry curvature and appears in systems with
broken inversion and/or time-reversal symmetry. In contrast,
while extrinsic components are generically nonzero, extrinsic
IF shifts vanish in the presence of rotational symmetry. These
provide clear symmetry conditions governing GH/IF shifts.

Shift vector and GH/IF shifts. We begin by constructing
wave-packet beams when they are incident (upon) and re-
flected (from) a boundary. We note that in experiments of (as
well as proposals for observing) GH/IF shifts, wave-packet
beams are typically constructed over a very narrow frequency
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FIG. 1. Schematic Bloch beam shift �r̄ in real space upon total
internal reflection. The Goos-Hänchen (GH) shift is parallel to the
incident plane (blue shaded plane); the Imbert-Fedorov (IF) shift
is perpendicular to the incident plane. Here, the 3D incident wave
vector is (p̄, − p̄z ). The reflecting boundary at z = 0 is parallel to
p̄. As a result, p̄ remains conserved throughout the total internal
reflection, while the wave vector perpendicular to the interface flips
sign as − p̄z → + p̄z.

range [16–27]. These produce real-space intensity patterns
that are static and convenient to image. To replicate this,
we consider wave-packet beams at a single frequency ω0.
This constrains the superposition of Bloch eigenstates, that
form the wave-packet beams, to lie on a surface of constant
frequency.

Incorporating the above constraint, we write a Bloch beam
incident from z = +∞ to z = 0 (see Fig. 1) as

� i(r, z) =
∫

dp f (p)ui(p) exp[ip · r − ipz(p)z], (1)

where p = (px, py) and r = (rx, ry) denote the wave vector
and position in the x-y plane, and we have written inci-
dent Bloch eigenstates with a fixed frequency ω0 as ui(p) ≡
u[p,−pz(p)]. Here, u(px, py, pz ) is the Bloch eigenstates
without a frequency constraint, which encodes the internal
structure (or spinor texture) of the z > 0 region either from
the periodic lattice or from an intrinsic spin-orbit interaction
such as polarization [12,13] or spin [14] degrees of freedom
coupled to momentum, and −pz(p) < 0 denotes its incident
direction as shown in Fig. 1. We emphasize that, for a single
frequency beam (or narrow frequency beam), pz(p) > 0 is
a function of p, as is determined by the dispersion relation
on the constant frequency surface ω(z>0)[p, pz(p)] = ω0. In
Eq. (1) and the following, we will consider a real incident
distribution function f (p) that is well peaked at p̄, i.e., the
three-dimensional (3D) incident wave vector is peaked at
(p̄,−p̄z ) where p̄z = pz(p̄) (see Fig. 1).

At the boundary z = 0, the incident beam undergoes a
reflection. The reflected beam in z > 0 region can be written
as

�r (r, z) =
∫

dp f (p)r(p)ur (p) exp[ip · r + ipz(p)z], (2)

with reflected Bloch eigenstates ur (p) ≡ u[p,+pz(p)], and
the reflection coefficient r(p) which relates the reflected and
incident beam.

The reflection coefficient r(p) can be obtained by re-
quiring continuity of the wave function at the bound-
ary such that � i(r, 0+) + �r (r, 0+) = � t (r, 0−) [16–20],
where � t (r, z) = ∫

dp f (p)t (p)wt (p) exp[ip · r − ipt
z(p)z] is

the transmitted wave. wt (p) ≡ w[p, pt
z(p)] is the eigenstate

in the z < 0 region having the same frequency ω0. Here, t (p)
is the transmission coefficient. We note that similar to that
discussed above, pt

z(p) > 0 is also determined by the dis-
persion relation at the constant frequency ω(z<0)[p, pt

z(p)] =
ω0. Wave-function continuity leads to ui(p) + r(p)ur (p) =
t (p)wt (p). By defining a unique auxiliary state vector v(p)
perpendicular to wt (p), i. e., 〈v(p)|wt (p)〉 = 0, we ob-
tain a simple form for the reflection coefficient as r(p) =
−〈v(p)|ui(p)〉〈v(p)|ur (p)〉−1. Here, v(p) compactly captures
the reflection coefficient [20] as well as the physics of the
states on either side of the boundary [28].

For brevity and following previous work [16–20], in the
main text we focus on a two-band system which possesses
only a single reflected (transmitted) channel; ui,r (p) as well
as wt (p) are two-component eigenvectors. The orthogonal
requirement 〈v(p)|wt (p)〉 = 0 uniquely determines the aux-
iliary state vector |v(p)〉 [up to a U (1) gauge that does not
affect our conclusions, see Supplemental Material (SM) [28]].
The uniqueness of |v(p)〉, and the formal expression for the
reflection coefficient r(p) = −〈v(p)|ui(p)〉〈v(p)|ur (p)〉−1 are
valid beyond two-band systems (see SM).

When the incident frequency ω0 is within the gap of
the medium in the z < 0 region, pt

z(p) → −iκ t
z(p) becomes

imaginary, making wt (p) an evanescent mode with a decay
length 1/κ t

z(p). In this case, total internal reflection occurs,
and the reflection coefficient has to be unitary. As a result,
the reflection coefficient can be expressed as a pure phase
r(p) = exp[iφr (p)] and reads as

φr (p) = arg[〈v(p)|ui(p)〉〈ur (p)|v(p)〉] + π, (3)

where arg[z] denotes the polar angle (mod 2π ) of complex
z, and we used the identity arg [z1z−1

2 ] = arg [z1z∗
2]. In what

follows, we focus on total internal reflection.
When the amplitude profile f (p) is sharply peaked around

p̄ as found in wave-packet beams, the beam peak positions for
both incident and reflected beam intensity profiles |� i,r (r, z =
0)|2 on the z = 0 plane are obtained using a standard station-
ary phase analysis [28]

r̄i = Ai(p̄), r̄r = Ar (p̄) − ∇pφ
r (p)|p̄, (4)

where Ai,r (p̄) = 〈ui,r (p)|i∇pui,r (p)〉p̄ is the Berry connection
restricted to the constant frequency surface ω(z>0)[p, pz(p)] =
ω0. Evidently, the presence of the Berry connection indicates
that the absolute positions of r̄i,r are gauge variant. However,
the differences between the positions r̄i and r̄r that encode the
shift in the position between the incident and reflected beam
(beam shift vector) are gauge invariant,

�r̄ = Ar (p̄) − Ai(p̄) − ∇pφ
r (p)|p̄, (5)

This gauge invariance can be explicitly verified:
For, e.g., making an arbitrary gauge transformation
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ui,r (p) → ui,r (p) exp[iχ i,r (p)], we obtain Ai,r (p) →
Ai,r (p) − ∇pχ

i,r (p). Similarly, using Eq. (3), we
find that the reflection phase transforms as φr (p) →
φr (p) − χ r (p) + χ i(p). As a result, changes to Ai,r (p)
and ∇pφ

r (p) under the gauge transformation cancel, leaving
�r̄ gauge invariant.

The beam shift �r̄ includes both GH and IF shifts. The
GH shift is parallel to the incident plane, and its magnitude is
δr̄GH = (p̄ · �r̄)/|p̄|, while the IF shift is perpendicular to the
incident plane, whose magnitude is δr̄IF = (p̄ × �r̄) · ẑ/|p̄|
(see Fig. 1).

On a physical level, the Berry connection Ai,r (p̄) in Eq. (5)
is related to an intracell coordinate [29,30] for the incident
and reflected Bloch beam intensities at the z = 0 bound-
ary. The difference between the two intracell coordinates
Ar (p̄) − Ai(p̄), in addition to the gradient of phase difference
−∇pφ

r (p̄), the conventional source of the beam shift, gives
the full shift vector for beams possessing an internal structure.

The shift vector in Eq. (5), appearing here in the context
of representing GH and IF beam shifts, echoes phenomena
for Bloch waves in other contexts, for, e.g., a nonlinear shift
current in the bulk photovoltaic effect where a shift vector
enters via induced interband transitions [30–34], as well as
side jumps found in anomalous Hall materials [35]. All of
them can be expressed in terms of a shift vector and have
similar physical origins, namely, the scattering between Bloch
states that results in an intracell coordinate change, as well
as a phase shift gradient which makes the overall shift vector
gauge invariant. We note that while the shift vector for the
nonlinear shift current has a similar form to that found in
Eq. (5), the nonlinear shift current involves interband transi-
tions and is often expressed using interband matrix elements
as well as an interband Berry connection.

Wilson loops and intrinsic/extrinsic separation. While
expressed in terms of Berry connections and reflected phase
gradients in Eq. (5), each part of the shift vector is still
gauge dependent. Can the intrinsic and extrinsic contribu-
tions to the GH/IF shifts be separated in a gauge invariant
way? Furthermore, since GH/IF shifts are a phase-sensitive
phenomenon, what geometric phase do they derive from?
To address these, we note that both the reflection phase in
Eq. (3) as well as the Berry connection can be captured
by transitions between state vectors (Wilson lines/segments).
Indeed, the Berry connection essentially encodes phases
between different Bloch eigenstates 〈ui,r (p)|ui,r (p + q)〉 =
exp[−iAi,r (p) · q + O(q2)], and can be expressed as Ai,r (p) =
− ∇q arg[〈ui,r (p)|ui,r (p + q)〉]|q→0. Using these, we rewrite
the shift vector in Eq. (5) as

�r̄ = ∇q arg[W (p̄, p̄′)]|q→0, p̄′ = p̄ + q, (6)

where the (gauge invariant) Wilson loop

W (p̄, p̄′) = 〈ui(p̄)|ui(p̄′)〉〈ui (p̄′)|v(p̄′)〉〈v(p̄′)|ur (p̄′)〉
·〈ur (p̄′)|ur (p̄)〉〈ur (p̄)|ui(p̄)〉 (7)

encodes the scattering of state vectors from ui(p̄) → ui(p̄′) →
v(p̄′) → ur (p̄′) → ur (p̄) (solid black lines in Fig. 2). In ob-
taining Eq. (7) we have added 〈ur (p̄)|ui(p̄)〉 (last term) that
is q independent; its contribution to �r̄ vanishes under the
action of ∇q in Eq. (6). We note that even without the last
term, the first four terms of Eq. (7) give a Wilson line that

FIG. 2. Schematic showing the separation of intrinsic and extrin-
sic contributions into distinct (gauge invariant) Wilson loops W int

(blue region loop) and Wext (red region loop). Connected solid black
arrows denote the scattering of state vectors from ui (p̄) → ui (p̄′) →
v(p̄′) → ur (p̄′) → ur (p̄), and dashed black arrows represent the
extra q-independent factor 〈ur (p̄)|ui (p̄)〉 which does not affect the
shift vector. Together they form a closed Wilson loop W (p̄, p̄′) (gray
loop). Blue and red arrows on the right-hand side cancel with each
other since arg[z · z∗] = 0.

under the action of ∇q remains gauge invariant as p̄′ always
appears in pairs.

Here, arg[W (p̄, p̄′)] is the (gauge invariant) Pancharatnam-
Berry phase that describes the full scattering process for
the GH/IF shift. We note that in free-space optics, gradi-
ents of a reflection phase are used to describe the GH shift
[11,15]. Equation (6) generalizes this notion to a geometric
description: Both GH and IF shifts are generically captured
by gradients of a Pancharatnam-Berry phase.

We now turn to separating out �r̄ in Eq. (6) into contribu-
tions that explicitly depend on the boundary [extrinsic, i.e., de-
pends on v(p)] and contributions that depend only on the bulk
eigenstates [intrinsic, i.e., independent of v(p)]. This can be
done by noting that the argument of the Wilson loop W (p̄, p̄′)
in Eq. (7) can be decomposed into two smaller loops,
arg[W (p̄, p̄′)] = arg[W int (p̄, p̄′) · Wext (p̄′)], shown schemat-
ically as blue and red region loops in Fig. 2.

The intrinsic Wilson loop (blue region loop, Fig. 2) is

W int (p̄, p̄′) = 〈ui(p̄)|ui(p̄′)〉〈ui(p̄′)|ur (p̄′)〉
· 〈ur (p̄′)|ur (p̄)〉〈ur (p̄)|ui(p̄)〉, (8)

which is purely composed of Bloch eigenstates of the system
bulk in the z > 0 region. On the other hand, the extrinsic
Wilson loop (red region loop in Fig. 2) is

Wext (p̄′) = 〈ui(p̄′)|v(p̄′)〉〈v(p̄′)|ur (p̄′)〉
· 〈ur (p̄′)|ui(p̄′)〉, (9)

which contains information from the boundary, i.e., the auxil-
iary state vector v(p) which is perpendicular to the evanescent
mode wt (p) at z = 0.

Using the identity arg[z1 · z2] = arg[z1] + arg[z2], we ob-
tain separate contributions from the intrinsic and extrinsic
parts to the shift vector as

�r̄ = ∇q arg[W int (p̄, p̄′)]|q→0 + ∇p arg[Wext (p)]|p̄, (10)

where we have noted that Wext (p̄′) depends solely on p̄′ so
that the action of the gradient ∇q = ∇p′ = ∇p.

The above separation is physically meaningful, and as we
show below, enables us to isolate contributions to the shift
vector which are independent of the details of the boundary
condition. To illustrate this and without losing generality, we
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FIG. 3. The (blue) areas (a) Szx and (b) Syz enclosed by the
intrinsic Wilson loop W int (p̄, p̄ + δqx ) and W int (p̄, p̄ + δqy ) in p
space, which correspond to intrinsic GH and IF shifts illustrated in
Fig. 1, respectively. The blue (red) dot represents the peak incident
(reflected) wave vector (p̄,∓ p̄z ). The wave vector for the interme-
diate state ui,r (p̄ + δqx(y) ) in 3D is [p̄ + δqx(y), ∓pz(p̄ + δqx(y) )] =
[p̄ + δqx(y), ∓( p̄z − δqz )] with δqz ∝ δqx(y).

consider an incident Bloch beam, whose incident wave vector
(p̄,−p̄z ) = ( p̄, 0,−p̄z ) is in the z-x plane (see Fig. 1): This
gives a GH shift along the x axis, and an IF shift along the y
axis.

We first focus on the intrinsic contribution. The GH (IF)
shift from ∇q arg[W int (p̄, p̄′)]|q→0 in Eq. (10) is

�r̄int
GH(IF) = limδqx(y)→0

arg[W int (p̄, p̄ + δqx(y) )]

δqx(y)
, (11)

with its Wilson loop parallel to the z-x (y-z) plane enclosing
an area Szx (Syz) (see Fig. 3(a) [Fig. 3(b)]). We note that
the numerator in Eq. (11) is exactly the Pancharatnam-Berry
phase γ̄x(y) ≡ arg[W int (p̄, p̄ + δqx(y) )] enclosed by the Wilson
loop W int (p̄, p̄ + δqx(y) ). Using Stokes’ theorem, we can write
the Berry phase as the Berry flux passing through Szx (Syz) in
p space,

γ̄x(y) =
∫

Szx (Syz )
�(p, pz ) · dS

= ∓δqx(y)

∫ +p̄z

−p̄z

d pz�y(x)(p̄, pz ) + O
(
δq2

x(y)

)
, (12)

where �(p, pz ) is the Berry curvature for Bloch eigenstates
u(p, pz ) in 3D, and the − (+) sign comes from the orientation
of Szx (Syz). Applying Eq. (12) into Eq. (11) yields the intrinsic
GH and IF shifts as

�r̄int
GH(IF) = ∓

∫ +p̄z

−p̄z

d pz �y (x)(p̄, pz ). (13)

Interestingly, Eq. (13) dictates that for a system with zero
Berry curvature (in the presence of both inversion and time-
reversal symmetry), the intrinsic contribution to GH/IF shifts
vanish, leaving only the extrinsic part.

While the extrinsic contribution to �r̄ depends on details
of the boundary, as we now discuss, there exist situations
where its contribution to the IF shift vanishes. One such exam-
ple occurs when the overall system (including the boundary)
has continuous rotational symmetry in the x-y plane, i.e.,
Wext (p̄) = Wext (R̂θ p̄), in which R̂θ is a rotation matrix about

the z axis. For an infinitesimal rotation R̂δθ , the difference
(R̂δθ p̄) − p̄ = δqyŷ is perpendicular to p̄. Applying this rota-
tional symmetry to the extrinsic IF shift, we obtain

�r̄ext
IF = limδθ→0

arg[Wext (R̂δθ p̄)] − arg[Wext (p̄)]

|p̄|δθ = 0,

(14)

which vanishes. Here, the denominator |p̄|δθ is the magnitude
of (R̂δθ p̄) − p̄.

Therefore, in the presence of continuous rotational sym-
metry, we conclude that the total IF shift is solely determined
by the intrinsic part in Eq. (13): �r̄IF = �r̄int

IF . Indeed, a total
�r̄IF that follows Eq. (13) coincides with the shift expected
from semiclassical equations of motion in Weyl semimetals
[18,19]. Our model-independent analysis, valid for general
scattering including at a sharp interface (nonadiabatic pro-
cess), unveils how the presence of rotational symmetry is key
for a vanishing �r̄ext

IF and a total �r̄IF that is purely intrinsic.
In such situations, �r̄IF can be used as a real-space map to
extract the Berry curvature �(p) distribution. However, when
continuous rotational symmetry is broken, total �r̄IF gener-
ically departs from Eq. (13). We note, however, even in the
absence of continuous rotational symmetry, there are special
cases when �r̄ext

IF = 0 is protected by discrete symmetries
such as mirror symmetry (see SM) or when Wext (p̄) reaches
certain extremal points.

The extrinsic GH shift �r̄GH is in general nonzero due
to the lack of scale invariance Wext (L̂λp̄) �= Wext (p̄), where
L̂λp̄ ≡ (1 + λ)p̄. Interestingly, for a single ideal Weyl node,
which is a monopole of its Berry curvature, �(p, pz ) is always
parallel to (p, pz ). In this case, �y( p̄, 0, pz ) = 0 and �r̄int

GH =
0, i.e., the GH shift is solely contributed by the extrinsic part
�r̄GH = �r̄ext

GH.
Our work unveils the geometric origin of GH and IF shifts,

namely, the gauge invariant shift vector and Pancharatnam-
Berry phase. Using this generalized description as a powerful
tool for analyzing GH/IF shifts, we separated and identified
the role of intrinsic and extrinsic contributions and establish
clear symmetry requirements for their existence in a model-
free way. While GH and IF shifts can be observed in electronic
systems [16], they can also be observed in photonic [36]
or phononic [27] crystals. In such experimental systems, we
expect weak short-range disorder to play a minor role, only
slightly diffusing the beam as it is reflected while preserving
the beam shift. Perhaps most exciting, however, is the deep
connection between GH/IF shifts and a range of other phe-
nomena that rely on the shift vector [30–35]. Given this shared
geometrical connection, we anticipate the tools developed to
analyze GH/IF shifts here can be readily employed to study a
host of other types of shift vector phenomena such as the shift
current in the bulk photovoltaic effect.
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