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We study the formation of bound states in a one-dimensional, single-component Fermi chain with attractive
interactions. The phase diagram, computed from DMRG (density matrix renormalization group), shows not
only a superfluid of paired fermions (pair phase) and a liquid of three-fermion bound states (trion phase), but
also a phase with two gapless modes. We show that the latter phase is described by a two-component Tomonaga-
Luttinger liquid (TLL) theory, consisting of one charged and one neutral mode. We argue based on our numerical
data, that the single, pair, and trion phases are descendants of the two-component TLL theory. We speculate on
the nature of the phase transitions amongst these phases.
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Tomonaga-Luttinger liquid (TLL) theory captures the
physics of many one-dimensional (1D) quantum systems such
as spin chains, spin ladders, nanotubes [1], nanowires [2], and
cold atoms confined to 1D tubes [3–7]. In higher-dimensional
systems, TLL is a tool that is often used, e.g., in edge theory
[8] and coupled-wire constructions [9–11].

Recently, there has been significant interest in the study of
1D systems that cannot be described by the standard TLL the-
ory [12–18]. In describing 1D interacting fermions, TLL the-
ory naturally arises through bosonization that maps fermionic
modes to bosonic modes. Nearby phases (i.e., descendants)
such as charge density order appear as instabilities of the
parent TLL theory [19–26]. This approach breaks down at
the weak to strong pairing transition, i.e., the transition to the
p-wave paired liquid. As recently pointed out in Ref. [27,28],
the p-wave pairing phase cannot be described as a descendant
phase of a single-mode TLL; instead the transition is de-
scribed by an emergent mode theory, with the weak and strong
pairing phases being descendants of this theory. Which raises
the question: what other phases, beyond p-wave pairing, can
appear in one-component interacting fermions and how are
these phases connected to some emergent-mode description?

In this Rapid Communication, we investigate the formation
of multifermion bound states in 1D single-component sys-
tems. We perform DMRG numerics on a lattice model with
finite-range interactions, and find liquids of singles, pairs,
trions, etc., in addition to an extended phase with two gapless
modes [two-mode (2M) phase]. We unify these findings by
constructing an effective theory with an emergent mode that
characterizes the 2M phase; the descendants of this theory
describe the liquid phases of single fermions as well as
multifermion bound states (i.e., bound states of 2, 3, 4, . . .

fermions). Our construction [Eq. (4)] is not equivalent to
the band-bending construction in Ref. [28] (see Supplemenal
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Material [29]) but is similar to Ref. [27] (see discussion at the
end of the Rapid Communication).

Microscopic model. We study the lattice Hamiltonian

H =
∑

i

[
−1

2
(c†

i ci+1 + c†
i+1ci ) +

3∑
m=1

Vmnini+m

]
, (1)

where ci and c†
i are the fermion annihilation and creation

operators at lattice site i, ni = c†
i ci is the number operator, and

Vm defines the shape of the fermion-fermion interaction po-
tential. We choose short-ranged attractive interactions (V1 < 0
and V2 < 0) to promote the formation of pairs and trions, but
with V3 > 0 to prevent phase separation [27]. To decrease
the parameter space, we restrict our attention to the subspace
V1 = V2. We expect that extending the range of attractive
interactions will result in more liquid phases of multifermion
bound states. For example, we demonstrate that extending the
attractive interactions to three sites results in a quaternion
liquid phase [29].

We use infinite-system DMRG (iDMRG) [30–32] to study
the ground-state properties of the Hamiltonian (1) with a focus
on the 1/5 filling. The accuracy of iDMRG is controlled by the
bond dimension χ ; the result becomes exact as χ → ∞ [29].
To identify the various phases, we use two types of diagnos-
tics: central charge c and various two-point correlators.

We obtain c as follows. We study the bipartite entangle-
ment entropy S, i.e., the von Neumann entropy of DMRG
ground state traced over either half of the system. Both S
and the correlation length ξ are infinite for the true ground
state, but are cut off by finite χ . The manner in which these
two variables diverge gives the central charge: S = c

6 log(ξ ) +
const [33,34].

We also compute the single, pair, and trion two-point
correlators

G1(r) = 〈c†
i ci+r〉, (2a)

G2(r) = 〈(cici+1)† ci+rci+r+1〉, (2b)

G3(r) = 〈(cici+1ci+2)† ci+rci+r+1ci+r+2〉. (2c)
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FIG. 1. Central charge as a function of interactions in the lattice
model (1) computed at filling fraction 1/5. Four phases labeled are
identified with further analysis of correlation functions. We have
checked that all the reported phases exist for V1 = 2V2 and we expect
the qualitative features of the phase diagram to hold for generic
values of V1 �= V2 in the vicinity of V1 = V2.

In the single phase, all correlators decay algebraically; in
the pair phase, only G2 decays algebraically while G1 and G3

decay exponentially; in the trion phase, G3 is algebraic while
G1 and G2 are exponential. This behavior implies that there
is a bulk gap to adding a single fermion into the pair (trion)
phase but no bulk gap to adding two (three) fermions.

Figure 1 shows c as a function of the interaction parameters
V1 = V2 and V3. The blue regions denote the single-mode
phases with c = 1; we identify these as single, pair, and
trion phases based on their two-point correlators [Eq. (1)].
While we observe a direct transition between the pair and
single phases [27,28], we do not find a direct transition
between the pair and trion phases; instead we find an inter-
mediate phase with c ≈ 2 which we call the 2M (two-mode)
phase. The 2M phase neighbors all other phases and indicates
a parent theory with an emergent mode, which enables a
unified description of the multifermion bound-state phases
and their transitions.

Our strategy for the remainder of the Rapid Communica-
tion is as follows. First, we introduce a field theory to describe
the 2M phase, writing down its operators and free Hamil-
tonian. Next, we introduce the possible interaction terms,
and examine the descendant phases that result. Finally, we
show that these predictions are consistent with our numerics,
justifying our theoretical model.

Theory of the emergent mode. Motivated by Refs. [27,28]
and our data, we introduce a theory with two modes. In this
theory, the charge-1 operators in the lowest harmonic are [35]

ψ
(±)
0,η = e±iθ1 eiθ0+iη(φ0+kFx),

ψ
(±)
1,η = eiθ0 e±iθ1±iη(φ1+k′x), (3)

where η = +1 (−1) denotes a right (left) mover; θμ is the
dual field of the compact bosonic field φμ and satisfies
[∂xθμ(x), φν (x′)] = iπδμνδ(x − x′). The charge is carried by

the θ0 mode, while θ1 is neutral; as a result, kF is fixed by the
density of electrons while k′ is a free parameter.

The set of local physical operators can be gen-
erated via products of operators from Eq. (3), i.e.,
(ψ+

0,1)l (ψ+
0,−1)m(ψ−

1,1)n · · · . [Note that the generators Eq. (3)
are overcomplete.] As a result, primary operators of charge q
take the form

c(x)q ∼
∑

q1,r0,r1

ei[qθ0+q1θ1+r0(φ0+kFx)+r1(φ1+k′x)],

where q1 ≡ r0 + r1 ≡ q (mod 2). (4)

Due to the restrictions on the coefficients q1, r0, and r1 of
physical operators, we cannot simply treat this theory as a
product of decoupled θ0/φ0 and θ1/φ1 theories.

The theory must obey charge conservation, and be invariant
under both parity (φ0,1 → −φ0,1 and x → −x) and time rever-
sal (θ0,1 → −θ0,1, i → −i, and t → −t). The kinetic part of
the Hamiltonian takes the form

HKE =
∑
μ,ν

[Aμν (∂xθμ)(∂xθν ) + Bμν (∂xφμ)(∂xφν )]. (5)

HKE describes a two-mode TLL, which we later demonstrate
to be consistent with the 2M phase found in the numerics.

Single-mode phases as descendants of the 2M theory. The
single-mode phases (single, pair, trion,...) are constructed by
introducing locking terms, shown in Table I, to the Hamil-
tonian (5). For a term to appear, it must be of the form of
Eq. (4) with q = 0, and also respect parity and time reversal.
At large interaction strength, some of these terms may “lock”
[26], taking an expectation value and reducing the theory to a
one-component TLL.

Our analysis for the locking terms follows [36]. For an
interaction term to lock, it should have no oscillation (i.e., x
dependence), which places constraints on the Fermi momenta.
For each locking term of the form cos �, we find linear
combinations of the θ ’s and φ’s that commute with �. Among
this set we find a conjugate pair which we denote as θ+
and φ+. The set of gapless operators is then generated by
ei�, eiθ+ , and eiφ+ , and must be a subset of Eq. (4) [37]. We
show that the minimal (unit) charges for these operators are
indeed qmin = 1, 2, and 3 for the single, pair, and trion phases,
respectively, from the given locking terms. We extend our
analysis to arbitrary qmin in the Supplemental Material [29].

We first analyze the locking term cos(2θ1) which induces
the single phase. The gapless mode is described by the dual
fields θ+ = θ0 and φ+ = φ0. Thus the gapless operators take
the form c(x) ∼ ∑

eiaθ1 eiθ0 ei(2n+1)(φ0+kFx) where n is an integer
and a an odd integer. (The dual field φ1 is disordered and
cannot appear here.) As eiθ1 is a constant, c(x) reduces to the
standard bosonization form of a fermion mode [26,38].

Next, we show that the locking term cos(2φ1 + 2k′x) in-
duces the pair phase. Notably, for this term to lock we must
enforce k′ = 0. As θ1 is disordered, it cannot appear in a
gapless operator, i.e., q1 = 0. From the parity relation (4), we
see that q must be an even integer and thus the single and
trion correlators decay exponentially. Letting θ+ = 2θ0 and
φ+ = φ0/2, we recover the standard bosonization expansion
of a boson mode [26,38] for the pair operator: c(x)2 ∼ b(x) ≈∑

eiθ+ei(2n)(φ++kBx) with n ∈ Z and kB = kF/2. We interpret
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TABLE I. Locking terms and correlators of single-mode phases. The first line lists interaction terms and the second line shows the
corresponding phases when interaction terms get locked. The remaining rows show the algebraic decay form of correlators G1,2,3; the coefficient
of each term is neglected for simplicity. Figure 2 shows the numeric data verifying the predicted dependence.

Locking term cos(2θ1) cos(2k′x + 2φ1) cos[(3k′ − kF)x + 3φ1 − φ0] . . .

Resulting phase single pair trion . . .

Single correlator G1(r)
∑

n

sin[(2n + 1)kF|r|]
|r|(1/K+(2n+1)2K )/2

Pair correlator G2(r)
∑

n

cos[(2n)kF|r|]
|r|2/K+2n2K

∑
n

cos[(2n) kF
2 |r|]

|r|(1/K+(2n)2K )/2

Trion correlator G3(r)
∑

n

sin[(2n + 1)kF|r|]
|r|(9/K+(2n+1)2K )/2

∑
n

sin[(2n + 1) kF
3 |r|]

|r|(1/K+(2n+1)2K )/2

this descendant theory as a TLL of fermion pairs, with the
density of pairs being half of the density of elementary
fermions.

Finally, we address the locking term � = 3(φ1 +
k′x) − (φ0 + kFx) which yields the trion phase while fix-
ing k′ = kF/3. As � commutes with θ+ = 3θ0 + θ1 and
φ+ = φ1, the gapless operators take the form c(x)q ∼∑

ei(q/3)θ+eia(φ++k′x)+ibL. Mapping the expression to Eq. (4),
we get q1 = q/3, r0 = −b, and r1 = a + 3b; we determine
the consistency conditions q/3, a, b ∈ Z and a ≡ q (mod 2).
Hence for any gapless operator, q must be a multiple of 3,
which implies exponential decay of G1 and G2. The trion
operator expansion reduces to c(x)3 ∼ ∑

eiθ+ei(2n+1)(φ++k′x),
where k′ = kF/3 is the Fermi wave vector of the trions and n
is an integer.

Within the low-energy theory for each of the three single
TLL mode phases, c(x)qmin admits a standard bosonization
expansion in terms of θ+ and φ+. The effective Hamiltonian
is thus

H+ = v+
2π

[
K (∂xθ+)2 + 1

K
(∂xφ+)2

]
, (6)

where K is the Luttinger parameter.
Fourier spectra of the correlators. The long-distance be-

havior of the correlation functions of gapless operators can be
written as a sum of algebraically decaying terms of the form

cos(kosc|r| + ϕ)

|r|η . (7)

Our theory puts a restriction on the allowed values of kosc in
the 2M phase and the single-mode phases. Table I summarizes
the long-distance behavior of the correlation functions within
the single-mode phases; observe that the (leading) decay
exponents η of all harmonics kosc depend only on the Luttinger
parameter K ; this is verified in Fig. 2.

To connect the effective theory to our microscopic model,
we compare the kosc in correlation functions obtained from
field theory and DMRG. We perform Fourier transforms on
the correlation functions G1,2,3(r) and take the nth derivative,
such that terms of the form Eq. (7) with η < n + 1 will
show a divergent peak at kosc. We then match the set of
predicted oscillation wave vectors to peaks in the Fourier
transforms. Figure 3 presents the correlation functions along
cuts at constant V3. Panels (a)–(c) show a cut through the trion,
2M, and pair phases; while panels (d)–(f) cut from trion to
single phase (with a possible intervening 2M phase).

In the 2M phase, both modes are gapless and the allowed
kosc’s are given by the oscillatory part of c(x)q in Eq. (4):

kosc = r0kF + r1k′. (8)

For G1 and G3, r0 + r1 is odd, hence the first several kosc are
k′, kF, kF ± 2k′, and 2kF ± k′. For G2, r0 + r1 is even and so
kosc = 0, kF ± k′, 2k′, 2kF, etc. These wave vectors are fitted
to numerical data and are marked by the dotted lines in Fig. 3.
As kF is fixed, k′ is the only fitting parameter at each point of
phase space. In the 2M region of panels (a)–(c), we observe
unambiguous peaks at the predicted wave vectors. (In the
numerics, we have not resolved peaks at some of the predicted
kosc, as these peaks are too weak or have large exponent η.)

A key feature of the DMRG data in the 2M phase is that
k′ varies continuously between the two limiting values: k′ =
kF/3 on the trion side and k′ = 0 on the pair side. The variation
of this wave vector is a clear sign of a neutral emergent mode
and confirms our effective two-mode TLL [39].

In the single-mode phases, some of the peaks found for
the 2M phase persist while others are no longer divergent as
modes become gapped out. The trion phase is characterized
by the absence of singular behavior in panels (a),(b),(d),(e)
as G1,2 decay exponentially. We observe that G3 decays
algebraically with peaks in Figs. 3(c) and 3(f) at odd multiples
of k′ = kF/3. In the pair phase, k′ = 0 and only G2 shows
divergent peaks at multiples of kF, as predicted. [The features
at 0, kF in panel (a) are not divergent and broadened out due
to G1 being gapped. Deep in the pair phase, they become
invisible.] Finally, for the single phase all three correlators
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2=1/(2K)
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K

3=(K+1/K)/2

FIG. 2. Verification of predicted decay exponents. Left: lead-
ing decay exponent (η2) of pair correlator in pair phase at V1 =
V2 = −0.8, V3 = 1.4. Right: leading decay exponent (η3) of trion
correlator in trion phase at V1 = V2 = −1, V3 = 1.4. The two lines
are predictions from TLL theory (cf. Table I), η2 = 1

2K and η3 =
1
2 (K + 1

K ). The values of Luttinger parameter K are extracted from
the neutral sector [29]. In order to cover a larger range of K , we use
DMRG data from fillings (left to right) 1

5 , 1
6 , . . . , 1

10 .
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FIG. 3. Spectra G1, G2, and G3 (from top to bottom) as a function
of wave vector and interaction strength (V1 = V2), showing agree-
ment of peak locations between DMRG and theory. The data is taken
at cuts shown in Fig. 1. Plots (a)–(c) taken at V3 = 1.56 show the
trion, 2M, and pair phases; plots (d)–(f) taken at V3 = 1.3 show
the trion and single phases (with a possible 2M phase in between).
Darker (blue) colors represent larger values of amplitudes. The peak
in the data of G1, which continuously varies between 0 and kF/3 in
the 2M/single phase, is identified as k′. The lines added to the color
plot are theoretic predictions with the determined parameter k′. The
solid lines denote several long-distance kosc associated with algebraic
decay; the dotted lines denote several exponential-decay “peaks,”
which are possibly visible if the decay length scale is large. The
parameters for the plots are explained in the Supplemental Material
[29].

are algebraically decaying [Figs. 3(d)–3(f)] with peaks at
multiples of kF. Remarkably, we also observe exponentially
decaying features at the moving k′ which are remnants of the
2M parent theory.

Phase transitions. There are five potential phase transitions
in our phase diagram. The locking mechanisms give hints
about the possible phase transitions, which we discuss in
relation to our data.

(1) Single-pair transition. The transition is controlled by
the competition between the terms cos(2θ1) and cos(2φ1), and
results in a quantum Ising transition [27,28,40–42]. In the
Supplemental Material [29], we provide definitive evidence
that the single-pair transition is Ising via finite-χ scaling.

(2) 2M-single transition. This transition is driven by the
term cos(2θ1), and is likely a Berezinskii-Kosterlitz-Thouless
(BKT) transition.

(3) 2M-pair/trion transition. Both 2M-to-pair and 2M-to-
trion transitions are accompanied by k′ reaching a commen-
surate value. This suggests a commensurate-incommensurate
transition.

(4) Single-trion transition. We are unable to determine
if there is a direct transition between the trion and single
phase, or whether there is an intervening 2M phase which
extends down as V3 is decreased. In both cases, our numerical
analysis suggests a (at least one) first-order transition (see the
Supplemental Material [29]).

Discussion. In summary we find conclusive evidence for
an emergent mode in a one-dimensional attractive fermion
chain. This emergent mode results in the formation of a
stable 2M phase with two Fermi surfaces. We argue that the
multifermion bound-state liquids are not descendants of the
single-mode TLL phase but are rather descendants of this 2M
phase. Here the 2M parent theory is written as a mixture of
charged/neutral modes. Curiously, we can also rewrite the
theory in terms of a mixture of charge-1/charge-2 modes [27],
or more generally charge-n/charge-(n + 1) modes.

The two ingredients required to realize the proposed phe-
nomenology are (1) confining the fermions to one dimension
and (2) controlling the form of the interaction potential be-
tween the fermions. In the setting of solid-state systems the
two ingredients could be realized in nanowires made of super-
conducting semiconductors [43–48]. In ultracold atoms, con-
finement could be provided by either optical lattices [3,6,49],
or atom chips [5] and tunable long-range interaction by the
use of dipolar interactions [50,51], or Rydberg-state-mediated
interactions [52].

The 1D systems studied here can also be used to construct
higher dimensional topological phases via the coupled-wire
construction [9,27,53,54]. TLL enriched by emergent mode(s)
may give a pathway to a wide range of new phases in con-
densed matter.
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