
PHYSICAL REVIEW B 100, 195432 (2019)
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Topological phase transitions can be described by the theory of critical phenomena and identified by critical
exponents that define their universality classes. This is a consequence of the existence of a diverging length at
the transition that has been identified as the penetration depth of the surface modes in the nontrivial topological
phase. In this paper we characterize different universality classes of topological transitions by determining their
correlation length exponents directly from numerical calculations of the penetration length of the edge modes as
a function of the distance to the topological transition. We consider generalizations of the topological nontrivial
Su-Schriefer-Heeger (SSH) model, for the case of next next nearest neighbors hopping terms and in the presence
of a synthetic potential. The latter allows the system to transit between two universality classes with different
correlation length and dynamic critical exponents. It presents a line of multicritical point in its phase diagram
since the behavior of the Berry connection depends on the path it is approached. We compare our results with
those obtained from a scaling approach to the Berry connection.
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I. INTRODUCTION

Landau’s paradigm for phase transitions constitutes one of
the most successful theories of modern physics. The main idea
of this approach is to identify the symmetry breaking (SB)
related to an ordered phase, such that an order parameter that
vanishes at the critical point can be defined [1,2]. This theory
can be used in both classical and quantum phase transitions,
and has been widely applied to predict the phase diagram
of several systems, such as phases of water and magnetic
phases [3].

On the other hand, there is a new different class of phase
transitions whereupon this paradigm is no longer suitable.
This class of phase transitions, which separates the phases of
matter with different electronic Bloch states topology [2,4–8],
is called topological phase transitions (TPTs).

In distinction to Landau’s approach, we are not able to
define an order parameter related to the transition from the
topological trivial to nontrivial phases. In general, there is
no SB associated with a system that undergoes a TPT. Al-
though Landau’s theory is not useful to describe topological
transitions, it is still possible to apply the theory of critical
phenomena in order to identify critical exponents, scaling
relations, and finite size effects [9–13].

TPTs that occur at zero temperature are quantum phase
transitions and close enough to the quantum critical point
(QCP) one can define both spacial and temporal character-
istic lengths that diverge at the transition point, with critical
exponents ν and z, respectively [4,14,15]. This divergence
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guarantees that at the QCP the whole system is correlated,
which favors global, long range quantum fluctuations.

Instead of an order parameter, topological phases are char-
acterized by topological invariants (W) as the winding num-
ber [2,16]. Unfortunately, this quantity is quantized, which
makes it inappropriate to be taken as an order parameter in
a Landau approach.

Despite these difficulties, several approaches have been
used to obtain the universality classes of topological transi-
tions. These include a direct determination of the correlation
length exponent from numerical studies of the penetration
length of the surface modes as a function of the distance
to the transition [9,10]. This is the approach we adopt here
and that allows us to identify different universality classes for
topological transitions in isotropic systems.

Another interesting approach [17–20] relies on the idea
that a topological invariant is a kind of correlation function
and contains information about the correlation length of the
system close to a topological transition. The Berry connection
is found to obey a scaling form that allows us to obtain the
correlation length exponent.

For the one-dimensional systems considered here, the en-
ergy dispersion close to the TPT can be written as

Ek =
√

|g|2νz + k2z, (1)

where g = t − tc is the distance to the QCP, at t = tc [4,9].
At k = 0, the gap for excitations, � = |g|νz defines the gap
exponent νz where ν is the correlation length critical exponent
and z is the dynamical critical exponent, since at g = 0,
Ek ∝ kz. The identification of these exponents is a direct
consequence that close to the quantum phase transition, the
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ground state energy density has the general scaling form
E ∝ ∑

k Ek ∝ |g|ν(d+z) where d is the dimensionality of the
system [10].

In this paper to study the critical behavior near TPTs, we
consider generalizations of the Su-Schrieffer-Heeger (SSH)
[24] model. These models present complex phase diagrams,
but still preserve some simplicity that makes them amenable
to both analytical and numerical approaches. A direct numer-
ical calculation of the penetration depth of the edge modes
as a function of the distance to the topological transition
yields the correlation length exponent ν. This is compared
with the results from other approaches. In particular, with
that based on the scaling properties of the Berry connection
[17–20].

We show that the SSH model in the presence of a synthetic
potential presents topological transitions that are in different
universality classes as characterized by distinct values of their
correlation length and dynamic critical exponents. It exhibits
in its phase diagram a line of multicritical points whereupon
the behavior of the Berry connection depends on the path it is
approached.

The paper is organized as follows: in Sec. II we introduce
the SSH model with next next nearest neighbors hopping,
pointing out the new features and presenting its phase dia-
grams for different values of the parameters. In Sec. III we
calculate the correlation length critical exponents for the dif-
ferent TPTs using the penetration depth. We compare them to
the results expected from the Berry connection approach. The
TPTs of our model turn out to be in the same universality class
characterized by dynamic exponent z = 1 and correlation
length exponent ν = 1. We find perfect agreement between
our direct numerical calculation of the penetration depth of the
edge states and the scaling behavior of the Berry connection.
We confirm, as pointed out in Ref. [20], that in general there
is no relation between the correlation length exponents and
the jumps of the topological invariant across the TPTs. Next,
in Sec. IV we propose a modified SSH model in the presence
of a synthetic potential that for a certain range of parameters
gives rise to a quantum topological transition in the Lifshitz
universality class with z = 2 and ν = 1/2 [21–23]. Finally, in
Sec. V we summarize the main results.

II. THE SSH MODEL WITH LONG-RANGE
HOPPING TERMS

The nearest neighbor Su-Schrieffer-Heeger (SSH) model
[24] was initially proposed for understanding the electronic
properties of an organic polymer known as polyacetylene [2].
This molecule is composed by a dimerized chain of carbon
(C) and hydrogen (H), which can be physically described by a
simple tight-binding Hamiltonian: a one-dimensional lattice
of spinless fermions, with staggered hopping amplitudes t1
(intracell) and t2 (intercell) that connect only atoms of carbon
in different sublattices of the unit cell, see Fig. 1 for additional
hoppings T1 = T2 = 0. This type of hopping structure only
between different sublattices ensures the chiral symmetry of
the system [25].

We can think of the SSH model in the presence of next next
nearest neighbors hopping (NNNN-hopping) terms T1 and T2

as a natural evolution of the original one [26], such that the

T1

t1

t2

T2

FIG. 1. The SSH model with next next nearest neighbors hop-
ping terms. Each unit cell contains a pair of sublattices A and B,
the red and blue spheres, respectively. The hopping terms connect
different sublattices, t1 within the unit cell while t2, T1, and T2 out of
the unit cell, as indicated.

Hamiltonian in real space is given by

H = t1
∑

i

(c†
A,icB,i + H.c.) + t2

∑
i

(c†
B,icA,i+1 + H.c.)

+ T1

∑
i

(c†
A,icB,i+1 + H.c.)

+ T2

∑
i

(c†
B,icA,i+2 + H.c.), (2)

where the hopping terms t1, t2, T1, and T2 follow the scheme of
Fig. 1. In this equation, c†

A,i(cA,i ) and c†
B,i(cB,i ) are the creation

(annihilation) fermionic operators that act in the sublattices A
(red) and B (blue), respectively. After a Fourier transform, the
Hamiltonian in k space can be written as

Hk =
∑

i

hi(k)σi, (3)

the σi are the Pauli matrices and

h1(k) = t1 + t2 cos(k) + T1 cos(k) + T2 cos(2k),

h2(k) = t2 sin(k) − T1 sin(k) + T2 sin(2k),

h3(k) = 0. (4)

Notice, especially, that h3(k) = 0 ensures a chiral symme-
try � = σ3. Furthermore, the model also possesses a time-
reversal symmetry � = K and an induced particle-hole sym-
metry � = ��. Hence, the suitable symmetry class is AIII
for the 1D model described by the hopping scheme of Fig. 1,
as discussed in [20].

In order to obtain the phase diagram of the system shown
in Fig. 1, we have calculated the topological invariant winding
number (W) given by

W = 1

4π i

∫ 2π

0
dkTr

(
σ3H−1

k ∂kHk
)
, (5)

where σ3 is the chiral operator and Hk is the kernel of the
Hamiltonian in k space.

It is well known that this model for T1 = T2 = 0 presents a
TPT for |t1| = |t2|, separating two phases with distinct topo-
logical properties. The phase diagram is presented in Fig. 2(a).
The trivial and nontrivial phases are identified by the invari-
ant values W = 0 and W = 1, for the respective intervals
|t1| > |t2| and |t2| > |t1| along the diagonal. The topologically
nontrivial phase is protected by the chiral symmetry.
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FIG. 2. Phase diagrams of the SSH model. (a) In the presence of
only nearest neighbors hopping, t1 and t2. (b)–(d) the NNNN-hopping
terms T1 and T2 are included for several fixed values of t1 and t2.
Namely, t1 = t2 = 1, t1 = 2t2 = 1, and 2t1 = t2 = 1 for (b), (c), and
(d), respectively. The topological invariants denote the trivial W =
0 (red) and nontrivial W �= 0 topological phases. The long-range
hopping terms give rise to two new topological phases with W = −1
(green) and W = 2 (white), in addition to the W = 1 (purple) and
W = 0 trivial phase obtained in (a).

The addition of the NNNN-hopping terms T1 and T2 be-
tween the different sublattices preserves the chiral symme-
try and provides a very rich phase diagram containing four
topological phases of matter, i.e., two new phases further
than in the nearest neighbors case. These phase diagrams are
presented in Figs. 2(b)–2(d), for fixed values of the nearest
neighbors hopping. The different topological phases are clas-
sified by W = −1, 0, 1, and 2.

As we have pointed out before, the nonexistence of an
order parameter and its correlation function for topological
transitions is a serious challenge to define a correlation length
for these transitions. However, an essential feature of nontriv-
ial topological phases is the existence of gapless localized
surface states. For the SSH chain in the nontrivial phases,
these zero energy modes are mostly localized at the edges of
the chain. However, as the system approaches a topological
phase transition, these modes delocalize and penetrate into
the bulk of the chain. This occurs exponentially with a decay
characterized by a length ξ that depends on the distance
to the topological transition as ξ = |g|−ν . We refer to ξ as
the correlation length and ν as the correlation length critical
exponent [27,28]. Here we obtain this exponent numerically,
as shown below. We also compare it with the value expected
from the scaling properties of the Berry connection, as pro-
posed in Refs. [17,20]. Without loss of generality, we consider
t1 = t2 = 1 in Fig. 2(b), since taking them differently does not
increase the number of topological phases.
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FIG. 3. The energy dispersions corresponding to the QCPs of
Fig. 2(b) for t1 = t2 = 1. We investigate the dispersions close to
the critical points (T1, T2) and gap-closing momenta k0 as fol-
lows: (a) (0,0) for k0 = π , (b) (−1.5, −1.5) for k0 = π, 0.58,
(c) (0.33,0.33) for k0 = π , and (d) (0,1) for k0 = 2π/3.

III. DETERMINATION OF THE CRITICAL EXPONENT ν

In this section we obtain initially the correlation length
critical exponent ν and the dynamic critical exponent z of the
SSH model with NNNN-hopping terms using an expansion of
the energy dispersion relations close to gap-closing momenta.
Next, we present the results from the penetration depth calcu-
lations and compare them with those obtained from the scaling
of the Berry connection approach.

A. Energy dispersion

We can obtain the dispersion relations of the excitations in
the chain close to the critical lines of the phase diagram pre-
sented in Fig. 2(b). We diagonalize the Hamiltonian, Eq. (3),
to write the energy dispersions as

Ek = ±
√

a + b cos(k) + c cos2(k) + d cos3(k), (6)

where a = [(t1 − T2)2 + (t2 − T1)2], b = 2(t1T1 + t2T2 +
t1t2) − 6T1T2, c = 4(t1T2 + t2T1), and d = 8T1T2.

Figure 3 shows Ek as a function of the momentum k at four
QCPs (T1, T2) in the phase diagram of Fig. 2(b). Once we fix
T1 for each transition, the jump of the invariant is given by
�W = |W (T2 > T2c) − W (T2 < T2c)|. In Figs. 3(a) and 3(c)
we notice trivial to nontrivial phase transitions with �W = 1.
In Fig. 3(b), the QCP separates two topologically nontrivial
phases with �W = 3. For Fig. 3(d), the transition occurs from
a nontrivial to trivial phase with �W = 2.

So the study of the present model reveals three different
values for the jumps of the topological invariant, i.e., �W =
1, 2, and 3. According to the relation ν = 1

�W [17], we
expect to obtain different values for the correlation length
exponents and consequently different universality classes for
these transitions, besides the case �W = 1 for the trivial
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TABLE I. Critical points and their critical exponents for the SSH model with NNNN-hopping terms obtained by an analysis of the energy
dispersions. After an expansion around the gap-closing points k1,0 and k2,0, as given in Eq. (7), we present the coefficients An, with n = 1 · · · 4
and the gap functions �. The product Ankn determines the dominant behavior of the energy Ek . *The complete value is 0.5856855435.

(T1, T2) �W (k1,0, k2,0 ) A1 A2 A3 A4 Ek � → 0 z ν

(0.0, 1.0) 2 ( 2π

3 , −) (0, −) (3.0, −) (−1.732, −) (−0.75, −)
√

A2k (T1 + T2 − 1)2 1 1

(1.5, −0.5) 2 ( 2π

3 , −) (0, −) (9.75, −) (−1.732.−) (−5.812, −)
√

A2k (T1 + T2 − 1)2 1 1

(−1.5, −1.5) 3 (π, 0.58∗) (0, 0) (30.25, 10.083) (0, 12.161) (−19.021, −4.507)
√

A2k (T1 − T2)2 1 1
(0.0, 0.0) 1 (π,−) (0, −) (1, −) (0,−) (−0.083, −)

√
A2k (T1 − T2)2 1 1

(1.0, 1.0) 3 (π , π

2 ) (0, 0) (4.0, 8.0) (0,−8.0) (−4.333, −2.667)
√

A2k (T1 − T2)2 1 1
(−1.5, −0.5) 1 (0, −) (0, −) (2.25, −) (0,−) (2.312, −)

√
A2k (T1 + T2 + 2)2 1 1

(−0.5, −1.5) 1 (0, −) (0, −) (2, 25, −) (0,−) (2.312, −)
√

A2k (T1 + T2 + 2)2 1 1
(0.33,0.33) 1 (π,−) (0, −) (0.0001, −) (0,−) (0.007, −)

√
A2k (T1 + T2 − 1)2 1 1

to nontrivial transitions. The validity of this relation will
be discussed below, when we present our results for the
correlation length exponents. We have also searched for some
clear relation between the gapless points in the Brillouin zone
and �W . For this purpose, we tested all points explored in
Table I and concluded that �W cannot account for the number
of gapless points across the TPT. For instance, for the first
point of Table I (T1, T2) = (0, 1) the number of gapless points
(G) and �W coincide �W = G = 2. Nevertheless, for the
third point of Table I (−1.5,−1.5) the relation is given by
G = �W + 1 = 4.

In a first view, all behaviors around the gap-closing mo-
menta k0 in Fig. 3 seem to be linear, except in Fig. 3(c). To
verify this, we look more closely, with an expansion around
k0 and inspect the critical exponents ν and z of Eq. (1). It
is also important to analyze the dominant terms of Eq. (6)
at the vicinity of these QCPs. For this reason, we have
expanded the energy dispersions around the gap-closing mo-
menta k0. The general form of the expansion is given by

Ek = ±
√√√√|g|2νz +

4∑
n=1

Ankn, (7)

such that at the QCP, k = k0 and the gap function � = |g|νz

should go to zero. Near to the QCP, the dominant kn can be
identified, which implies that Eq. (7) may be written as

Ek ∝ k
n
2 = kz, (8)

which shows that at the QCP (g = 0) the shape of the spectra
at the the gap-closing points is dominated by kz. We perform
this analysis for the points presented in Fig. 3, as well as,
for other points of the phase diagrams Fig. 2(b), for which
the results are summarized in Table I. This also includes all
An coefficients, to make clear the more intense and dominant
ones together with the appropriate kn, besides the Ek and gap
behavior and its critical exponents z and ν.

We call attention to the point (−1.5,−1.5) in Table I,
which possesses two values of gap-closing momenta. Once
again, for the same power of k, the more intense coefficient Ai

will determine the relevant k0 for each TPT. In this case, the
coefficient A2(k0 = π ) � 30 is larger than A2(k0 = 0.58∗) �
10, hence the gap-closing dominant value is k0 = π . The same
statement is valid for other points.

Thus, from Table I we notice that the dynamic critical
exponents z takes the value of unity, i.e., z = 1, due to the
linear behavior of the energy Ek close to k0, for all TPTs
investigated. This includes the case of Fig. 3(c). Since the
gap vanishes linearly at the gap-closing moments, once the
dynamical critical exponent is identified, the critical exponent
ν = 1 can also be obtained from the gap equation.

B. Penetration depth

In general, at a phase transition there is only one diverging
length, the correlation length ξ that dominates the transition
near to the QCP. Accordingly, as shown below, it is possible
to identify the diverging penetration depth of the edge modes
as the correlation length.

Since the amplitude of the wave function of the zero energy
edge mode is observed to decay exponentially in the bulk,
as shown in Fig. 4(a) (continuous line), i.e.,

√
|�(x)|2 =√

|�(0)|2e−x/ξ , the penetration depth ζ is easily obtained as
the distance between the edge of the chain and the point
inside the chain at which this amplitude has decreased to e−1

from its value at the edge. In mathematical terms,
√

|�(ζ )|2 =√
|�(0)|2/e. For simplicity, we introduced above a continuous

variable x = (n − 1)a where n is the site index and a is the
average atomic distance. Here we identify the penetration
depth with the correlation length, i.e., ξ = ζ as shown in
Fig. 4(a). Notice that in this figure, the amplitude of the
surface mode wave function is reduced to e−1 of its value at
the surface, at approximately the 100th site. The choice of this
factor (e−1) is for convenience and does not affect the main
results.

After the diagonalization of the Hamiltonian, Eq. (2) in
real space, we obtain for a chain with N sites, N energies,
and its N eigenstates. In order to verify whether it makes
sense to identify the penetration depth as the characteristic
diverging length, we obtain these lengths for several distances
g to the critical point. The results for ξ as function of |g|
are presented in Figs. 4(b)–4(d) as black points. The con-
tinuous (red) lines represent fittings of the penetration depth
following ξ = ξ0|g|−ν and allow us to obtain the correlation
length exponents that turn out to be ν = 1. Investigating the
localization of the edges states in the topological phases with
W = 1, −1, and 2 from Fig. 2(b), we verified that at the left
end of the chain the zero-energy edges states are localized
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FIG. 4. The correspondence between the penetration depth ζ

and the characteristic length ξ is presented in (a), close to the
critical point (T1, T2) = (−1.5, −1, 5) where the amplitude of the
wave function is observed to decay exponentially into the bulk (thin
continuous blue line). In (b)–(d) we show plots of ζ = ξ (black
squares) as a function of the distance g to the QCP. These are fitted by
ξ = ξ0|g|−ν , from which we extract the correlation length exponents
ν. The critical points explored are (0,0), (0,1), and (−1.5, −1.5)
in (b), (c), and (d), respectively. The fitting is very satisfactory for
all cases and agrees with ν = 1, independent of the jump of the
invariant �W in each case. The results presented are for a chain with
N = 1600 sites.

only at sublattice A, while at the right end, the localization
emerges only at sublattice B. We also observe that the jump of
the topological invariant �W does not have any relation with
the critical exponents ν. The reason for that will be discussed
further on in the text.

Following this approach, we extend the numerical study to
verify how the way we approach the QCP affects the value of
the critical exponent ν. The extended results are presented in
Table II, for several values of critical points. In this table we
have cases with different paths for TPT, but the same �W .
For these cases, we have included an index to specify the path
to the transition.

If we look to the phase diagram of Fig. 2, we have at
least two different paths to approach a TPT. One is to fix
T1 and perform a vertical approach to the critical point as
g = |T2 − T2c| goes to zero. The other is to fix T2 and perform
a horizontal approach to the critical point for g = |T1 − T1c|.
The critical exponents obtained by the vertical and horizontal
approaches are called νv and νh, respectively. The results of
Table II show that it does not matter the path of approach to
the TPT adopted. The same jump of the topological invariant
is observed for different paths or distinct approaches to the
critical point. All the critical exponents are very close to unit
and do not seem to be affected by the choice of the path.

In summary, the values for the correlation length exponents
ν for the SSH model with NNNN-hopping terms obtained
from a numerical calculation of the penetration depth (see

TABLE II. Critical points and their critical exponents ν for the
SSH model with NNNN-hopping terms obtained by the penetration
depth. The jump of the topological invariant �W , νh (horizontal
approach) and νv (vertical approach) are presented to evidence how
the path to the critical point affects the critical exponent ν. We
observe that all ν values are very close to unit. A couple of TPT
present the same �W value, for these cases an index was included
to indicate the path.

(T1, T2) �W ν

(−0.5, 1.5) 2 νv = 0.998101 − νh = 1.011832
(0,1) 2 νv = 0.980898 − νh = 0.990579
(1.5, −0.5) 2(−1→1) νv = 1.008451 − νh = 0.994491
(1.5, −0.5) 2(1→−1) νv = 0.993665 − νh = 1.006287
(−1.5, −1.5) 3(2→−1) νv = 1.068392 − νh = 1.032452
(−1.5, −1.5) 3(−1→2) νv = 0.976282 − νh = 1.098094
(0,0) 1 νv = 0.986789 − νh = 1.009757
(1,1) 3(2→−1) νv = 1.003701 − νh = 1.008982
(1,1) 3(−1→2) νv = 1.009280 − νh = 0.993825
(−1.5, −0.5) 1 νv = 1.058208 − νh = 1.022701
(−0.5, −1.5) 1 νv = 1.011765 − νh = 1.053610

Fig. 4 and Table II) are in excellent agreement with those
obtained from an analysis of the dispersion relations at the
gap-closing points given in Table I.

C. Berry connection

Recently, Chen et al. [17,20] proposed a different method
to obtain the correlation length of topological transitions.
It is based on the idea that a topological invariant may be
considered as a kind of correlation function and can be used
to extract a correlation length. In particular, in the nontrivial
topological phase it contains information on the edge-states
decay length.

A topological phase is usually characterized by some
proper topological invariant W . If F (k, t ) is the pertinent
curvature function for the problem in d dimensions, we can
define a topological invariant as

W = 1

(2π )d

∫ 2π

0
F (k, t )dd k, (9)

where t indicates a tuning parameter that can drive a topo-
logical transition, in the present case it is related to hopping
energy terms.

In particular, for 1D the curvature function is identified
as the Berry connection [29,30]. For the Dirac Hamiltonian
Hk = (h1, h2, 0) this can be written in terms of its elements as
[17]

F (k, t ) = R
h2∂kh1 − h1∂kh2

2ε2
, (10)

such that ε(k) = ±
√

h2
1 + h2

2 is the energy dispersion relation
and R is a renormalization term that ensures an integer value
for the topological invariant, as expected.

The Berry connection is gauge dependent, so it is important
to make a convenient choice for our purpose. The charac-
teristic length scale ξ of the system is known to diverge at
the QCP [31,32], and one simple way to identify it is to
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consider that the Berry connection has a Lorentzian shape
close to the topological gap-closing transition [17]. Chen et al.
[17] assume that this has the simple scaling form near to a
gap-closing point k0,

F (k, g) = F (k0, g)

1 ± ξ 2k2
, (11)

with the correlation length

ξ = ξ0|g|−ν, (12)

where g = t − tc and the energy hopping term controls the
TPT.

For a numerical analysis close to the QCP and in the
vicinity of the gap-closing points, we consider the transition
lines of Fig. 2(b). This phase diagram presents the distance to
the critical points g = T2 − T1, T2 + T1 + 2 and T2 + T1 − 1,
with their respective gap-closing points k0 = π , 0, and 2π/3.
The expansion of the Hamiltonian terms h1 and h2, from
Eq. (4), around each of these k0 yields

g = T2 − T1 and k0 = π

h1 = (T2 − T1) − 1
2 (4T2 − T1 − 1)δk2,

h2 = (2T2 + T1 − 1)δk, (13)

g = T2 + T1 + 2 and k0 = 0

h1 = (T2 + T1 + 2) − 1
2 (4T2 + T1 + 1)δk2,

h2 = (2T2 − T1 + 1)δk, (14)

g = T2 + T1 − 1 and k0 = 2π/3

h1 = −1

2
(T2 + T1 − 1) +

√
3

2
(2T2 − T1 − 1)δk

+ 1

4
(4T2 + T1 + 1)δk2,

h2 = −
√

3

2
(T2 + T1 − 1) − 1

2
(2T2 − T1 + 1)δk

+
√

3

4
(4T2 + T1 − 1)δk2. (15)

The first and second cases present the same behavior found
previously for the SSH 1D model with just nearest neighbors
hopping, as discussed in Ref. [17], while the last one has a
different expansion equation. Accordingly, for k0 = π and 0,
we can rewrite the expansions in a more compact way as,
h1 = gt + Bδk2 and h2 = Aδk. Using Eq. (10), and after some
calculations we obtain

F (k, g) = R

2

−Ag + ABδk2

g2 + (2Bg + A2)δk2

=
R
2

−Ag+ABδk2

g2

1 + [ 2Bg+A2

g2

]
δk2

(16)

= F (k0, g)

1 + ξ 2δk2
,

where F (k0, δt ) = −R
2 Ag−1, in agreement with the scaling

form of Chen et al. [17]. For the characteristic length scale

ξ we have

ξ 2 =
[

2B

g
+ A2

g2

]
, (17)

since the second term diverges more quickly, it becomes the
dominant behavior close to the QCP. Hence,

ξ =
[

A2

g2

]1/2

∝ |g|−1 ⇒ ν = 1. (18)

Analogously, for the case with k0 = 2π/3 we can write
h1 = ag + Aδk + Bδk2 and h2 = a′g + A′δk + B′δk2 to obtain
for the Berry connection, Eq. (10), close to the gap-closing
point

F (k, g) = F (k0, g)

1 + [ 2(aB+a′B′ )g+(A2+A′2 )
(a2+a′2 )g2

]
δk2

, (19)

with F (k0, g) = R
2 ( a′A−aA′

a2+a′2 )g−1. Similar to Eq. (17), the domi-
nant behavior is

ξ =
[

A2 + A′2

(a2 + a′2)g2

]1/2

∝ |g|−1 ⇒ ν = 1. (20)

Following the ideas of Refs. [17,20], we perform a numerical
fit of the Berry connection Eq. (10), with a Lorentzian shape as
in Eq. (11). In the fitting process, we use for the Lorentzian ξ0

from Eq. (18) for k0 = 0, π , and from Eq. (20) for k0 = 2π/3.
Then we extract the value of ν that satisfies the fitting.

In Fig. 5 we show the fitting process for four distinct points
in the phase diagram of Fig. 2(b). In order to include all
�W = 1, 2, 3 and k0 = 0, 2π/3, π obtained for the present
SSH model, we investigate the critical points (T1, T2) =
(−1.5,−0.5), (1, 0), (1, 1), and (0.33,0.33), in Figs. 5(a),
5(b) 5(c), and 5(d), respectively. We observe that only the case
of Fig. 5(b), where k0 = 2π/3, does not present a perfect fit
of the Berry connection by the Lorentzian shape, as concerns
its amplitude.

It is important to note that although the amplitudes do
not fit perfectly, the width of the functions still preserve a
satisfactory fitting. Especially, the width of the Lorentzian
is inversely proportional to the characteristic length ξ . So,
at least in principle, to determine ξ the satisfactory fitting
of the width is sufficient. The results of Fig. 5 return ν = 1
for all cases. This again implies that ξ does not depend on
the jump of the invariant and seems to be more affected by
the gap-closing point, particularly its amplitude, as discussed
below.

So, for k0 = 0, π the fittings are in good agreement with
all aspects of the scaling function. For 2π/3 just the width,
which is related to ξ , is preserved in the fitting process by a
Lorentzian shape.

IV. BREAKDOWN OF LORENTZ INVARIANCE IN
TOPOLOGICAL PHASE TRANSITIONS

The topological transitions studied so far are all Lorentz
invariant, characterized by the dynamic exponent z = 1. Fur-
thermore, they present a correlation length ν = 1 as obtained
by different methods.
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FIG. 5. The fitting between the Berry (squares) and the
Lorentzian (solid line) curvatures. The critical points (T1, T2) investi-
gated are (a) (−1.5, −0.5), (b) (1,0), (c) (1,1), and (d) (0.33,0.33).
These points contemplate �W = 1, 2, 3, and k0 = 0, π, 2π/3
values of the SSH model. Only case (b) does not show a good fit
as concerns the amplitude. For a Lorentzian shape, the width of the
function is given by 1/ξ . The best fitting using Eq. (11) leads to
ν = 1 for all cases. The distance to the critical point is of the order
g ∼ 10−4.

With the purpose of investigating new universality classes
and the success of the methods used above, we consider an
extended SSH model with just nearest neighbors hopping, i.e.,
for T1 = T2 = 0, but that includes a term V = −x sin(k)σ2

in the Hamiltonian, Eq. (3). Equivalently, this enters as a
contribution to the term h2(k) of Eq. (4), but with only nearest
neighbors hopping. Above, x works as an external control
parameter for the synthetic potential V . In real space this term
corresponds to an intersublattice, antisymmetric hopping. No-
tice that since the term V is proportional to σ2 it does not
break the chiral symmetry. Accordingly, Eq. (5) remains valid
to obtain the topological invariant W .

The spectrum of the system close to k0 = π is given by

Ek =
√

(t1 − t2)2 + A2(x)k2 + A4(x)k4, (21)

where A2(x) = t1t2 − 2t2x + x2 and A4(x) = − t1t2
12 + 2t2x

3 −
x2

3 .
Notice that the gap closes as g2νz = (t1 − t2)2, which im-

plies νz = 1. For A2 �= 0 the quadratic term always determines
the critical behavior. However, there is a region where the
quartic term A4k4 is much larger than A2k2. Then, even for
small k the quartic term may become dominant and we can
observe a crossover from z = 1 to z = 2. For A2 = 0, the
model is in a different universality class with z = 2 and ν =
1/2. The situation where the quadratic term dominates leading
to ν = 1 was already discussed in Sec. III A.

t2

t12
(a) (b)

2

1

0
1

2

2

1
0

2
1

2 1 0 1 2

-

2

-

-

-
--

Ek  = 0

 = 1

 =  1-

FIG. 6. (a) Energy dispersions at the QCP for x = 1, t1 = 1, and
t2 = 1. The parabolic gap closing between the eigenvalues occur for
k = k0 = ±π . (b) The phase diagram of the modified SSH model in
the presence of a synthetic potential with x = 1. The topologically
nontrivial phases correspond to W = −1 (green), W = 1 (purple),
and the topologically trivial phase with W = 0 (red). There are no
edge states in the latter. In particular, for t1 = t2 = 1 the energy
dispersion is quadratic around this QCP.

In this section we study the case A2 = 0. This requires that

x2 − 2t2x + t1t2 = 0, (22)

which together with the condition Ek0 = 0, provide the cri-
terion for a QCP with a quadratic dispersion. Notice that the
line x = t1 = t2 in the phase diagram satisfies these conditions
simultaneously. For instance, for fixed x = 1, the point t1 =
t2 = 1 presents a quadratic gap-closing point at k0 = ±π , see
Fig. 6(a). In a more general way, we verify that, for t2 = x and
x � 1, the system is always gapless with the presence of Dirac
massless points.

To elucidate the nature of the TPT, we propose to study the
phase diagram shown in Fig. 6(b), for x = 1, since for x = 0
we recover the SSH phase diagram presented in Fig. 2(a).
The main difference between the phase diagrams obtained
for x = 0 in Fig. 2(a) and for x = 1 in Fig. 6(b) is the
existence of the additional topological phase with W = −1
(green) in the latter case. As a consequence, the multicritical
point (x, t1, t2) = (1, 1, 1) in Fig. 6(b) locates a TPT between
three topological regions with W = 0, −1, and 1. It is very
interesting that by tuning the parameter x one obtains TPTs in
different universality classes, as we discuss in detail below.

A. Penetration depth and Berry connection

The first point that naturally arises concerns the validity
of the penetration depth approach for a dynamic critical
exponent z �= 1. In order to elucidate this, we study the decay
of the edge states of the SSH model in the presence of a
synthetic potential V (x) for x = 0 and x = 1.

As in Sec. III B, we obtain the edges states of the SSH
model in real space for N = 1600. Notice that now the edge
states also depend on the control parameter x. The results are
presented in Fig. 7. In the absence of the synthetic potential,
i.e., for x = 0, the fit of Fig. 7(a) yields ν = 1, as expected.
The case for x = 1 is shown in Fig. 7(b), where the fitting of
the decay of the edge state in the bulk is well described by a
correlation length critical exponent ν = 1/2. For comparison
we also show in this figure the fitting with ν = 1.
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FIG. 7. Correlation length (penetration depth) as a function to the
distance to the critical point g = t2 − t2c, with t1 = 1, for the modified
SSH model in the presence of V (x) (black circles). The fittings with
the expression ξ = ξ0|g|−ν correspond to the solid and dashed lines.
The cases x = 0 and x = 1 are shown in (a) and (b), respectively. In
(a), with x = 0, the best fit yields ν = 1 (blue solid). On the other
hand, in (b), with x = 1, the best fit is obtained for ν = 1/2 (red
dashed line). In this case, we also add a tentative fit with ν = 1 (blue
solid line) for comparison.

As concerns the Berry connection, using an analytical
approach, we find that its scaling form up to order δk4 is
given by

F (k, g) = F (k0, g)

1 + (A2(x)
g2

)
δk2 + (A4(x)

g2

)
δk4

, (23)

with δk = k − k0, k0 = π , g = (t1 − t2), and F (k0, g) = (t2 −
x)g−1. A2(x) and A4(x) are the same coefficients as in Eq. (21).

Notice that we will fix the energy scale in our problem from
now on, taking the hopping t1 ≡ 1. The reason for writing
Eq. (23) in this form is that the quantum multicritical point
(x, t1, t2) = (1, 1, 1) in Fig. 8 can be approached in different
ways, as shown in this figure.

B. Approach along the plane x = 1

Let us consider initially fixing x = 1, such that the ap-
proach to the multicritical point (1,1,1) is along this plane,
as shown by trajectory 1 in Fig. 8. For x = 1 fixed, we can
check that A2(x = 1)/(g)2 = (1 − t2)−1, A4(x = 1)/(g)2 =
(1/4)(1 − t2)−2, and F (k0, g) = −1 in Eq. (23). Furthermore,
as t2 → 1, ξ = |g|−1/2. Then, when approaching the critical
point along the trajectory x = 1, t2 → 1− from the trivial
topological phase with W = 0 (red), the Berry connection can
be written as

F (k, g) = −1

1 + ξ 2δk2 + 1
4ξ 4δk4

, (24)

where ξ = 1/
√|1 − t2| which allows us to immediately iden-

tify the correlation length exponent ν = 1/2. Notice that for
k = π , the Berry connection F (k = π, g) = −1 is finite.

Next, we approach the critical point still along the plane
x = 1, but with t2 → 1+ (trajectory 2 in Fig. 8). Along
this path, we reach the multicritical point from a nontrivial
topological phase with edge modes. This gives the possibility
of checking the penetration depth approach as a numerical
method for determining the critical exponent ν. The results are

20
1

-1
0 1

-1

0

1

2

t1 t2-22

-2

1
2

3

4

x
4

2

3

1

FIG. 8. The same phase diagram of Fig. 6 in perspective of the
axis x. The multicritical point is located by the (yellow) circle at
(x, t1, t2) = (1, 1, 1). The trajectories 1 and 2, along the x = 1 plane,
correspond to those in Eq. (23), characterized, respectively, by the
Berry connection and the penetration depth. The approach to the
multicritical point along the trajectories described by Eq. (25) is
along the plane t1 = 1 (energy scale). Paths 3 and 4 correspond
to the two solutions for A2(x) = 0, namely x = t2 ± √

t2
2 − t1t2,

respectively. The color scheme of the trajectories 3 (green) and 4
(purple) indicate the winding number, as in Fig. 6, i.e., W = −1 and
W = 1, respectively.

shown in Fig. 7 and confirm the reliability of this procedure
for obtaining the correlation length critical exponent, even for
a non-Lorentz invariant spectrum.

C. Approach from out of the plane x = 1

In this case we take A2(x) = 0 in Eqs. (21) and (23).
This condition yields two solutions, x± = t2 ±

√
t2
2 − t1t2 . As

t2 → 1+, x → 1 along the two different trajectories 3 and 4,
from above (x+) or below (x−) the plane x = 1, respectively,
as shown in Fig. 8. Notice that t1 ≡ 1. The system along the
paths 3 and 4 of Fig. 8 are nontrivial topological insulators
characterized by the winding numbers W = −1 (x+) and
W = 1 (x−), respectively.

Finally, as the multicritical point is approached along tra-
jectories 3 and 4, where A2(x±) = 0, A4(x±) = t2/4, the Berry
connection is given by

F (k, g) = ∓√
t2ξ

1 + t2
4 ξ 4δk4

, (25)

which for k = π diverges like the correlation length ξ =
|g|−1/2 = 1/

√|1 − t2|. We point out that we also used a nu-
merical approach to obtain the penetration depth along paths
3 and 4 and confirmed the behavior of the correlation length
as obtained using the Berry connection.

It is interesting to note that along the trajectories 1, 3, and
4 we observe three different topological phases with W = 0,
−1, and 1, respectively, that converge at the multicritical point
(1,1,1), the (yellow) circle in Fig. 8.
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FIG. 9. Berry connection approach for the modified SSH model
in the presence of V (x). The Berry connection and Lorentzian
approach for the trajectories described by Eqs. (23) and (25), are
represented in (a) and (b), respectively. For fixed x = 1, the Berry
connection does not diverge and has a maximum at the gap-closing
point k0 = π . However, the width of the Lorentzian, proportional to
1/ξ , goes to zero as we approach the QCP, signaling the divergence
of ξ as can be seen in (a). On the other hand, in (b) for the trajectories
along x = t2 ± √

t2
2 − t1t2 the divergence of the Berry connection is

restored. In both cases, the trajectories lead to ν = 1/2 and z = 2.

We proceed in Fig. 9 where we present the full Berry
connection and the Lorentzian plots for the different trajec-
tories in Fig. 8. For fixed x = 1, the trajectory 1 has the Berry
connection investigated in Fig. 9(a).

Even though the Berry connection does not diverge along
this path (|F (k0, g| → 1), we notice that the width of the
Lorentzian (∝1/ξ ) close to the critical point goes to zero,
signaling the divergence of ξ . So, by fitting an adequate
scaling form of the Berry connection as proposed by Chen
et al. [17], we can determine the correlation length critical
exponent.

For trajectories 3 and 4, in Fig. 9(b) the scaling form of the
Berry connection, Eq. (25), yields the expected divergence at
the QCP as in the Lorentz invariant case of Fig. 5.

We have shown in this section that even for a non-Lorentz
invariant spectrum, the approach of Chen et al. [17,20] yield
results for the exponent ν consistent with the direct numerical
determination through the penetration depth of the edge state
wave function.

The multicritical character of the point (1,1,1) in Fig. 8 is
evidenced by the different behaviors of the Berry connection
depending on the path this point is approached. If we reach
this point through trajectory 1 of Fig. 8, the Berry connection
does not diverge, as shown in Fig. 9(a) or more directly in
Eq. (24). On the other hand, as one approaches this point
from out of the plane, as in trajectories 3 or 4 of Fig. 8,
the Berry connection diverges, as can be seen from Eq. (25)
or in Fig. 9(b). Also consider the line x = t1 = t2 and an
arbitrary plane x = 1 crossing this line at the point (1,1,1),
as shown in Fig. 8. As one approaches this point along this
line, Eq. (22) is satisfied and we have z = 2. Notice that if
one approaches this point within the plane x = 1 one also

gets z = 2. On the other hand, all critical lines in this plane
are associated with a dynamic exponent z = 1, except the
points that satisfy Eq. (22). Then, for an arbitrary x = x0,
there is always a point in this plane that has ν = 1/2 and
z = 2. In the renormalization group language, this point, in
fact the line (x = t1 = t2) is a line of fully unstable fixed points
with critical exponents ν = 1/2 and z = 2. All critical lines
that emanate from it have their critical behavior governed by
other fixed points with exponents ν = 1 and z = 1. Note that
the size of the region with W = −1 (green) in Fig. 6, or
equivalently in Fig. 8, varies accordingly to the intensity of
the synthetic potential.

Chen et al. studied in Refs. [17,20], a specific Hamiltonian
in AIII class, given by H (k) = knσx + Mσy (Eq. 131 from
Ref. [20]). They have obtained, using the Berry connection
integral that yields the topological invariant, the relation ν =
1/�W . Although our model even in the presence of the
synthetic potential still belongs to the same topological class
AIII, the model Hamiltonians we have studied here are beyond
Eq. 131 of Ref. [20]. In our case, the Hamiltonian that leads to
Eq. (21) can be written as H = (a + bk2)σx + (ck + dk3)σy,
where a = t1 − t2, b = t2/2, c = −(t2 − x), and d = (t2 −
x)/6. So, differently from Eq. 131 of Ref. [20], the coefficients
of all Pauli matrices are now k dependent. As shown by our
study of the phase diagram of Fig. 2, the relation ν = 1/�W
does not apply in this case.

V. CONCLUSIONS

The theory of critical phenomena is one of the most suc-
cessful in physics. Recently, a new class of transitions has
been discovered that does not conform to the usual paradigms
of phase transitions. Topological transitions do not have a
clear order parameter and do not present a symmetry breaking.
However, the existence of a characteristic length that diverges
at the topological transition still allows us to use many of
the tools of the theory of critical phenomena, as scaling
ideas and the renormalization group. The diverging length has
been identified as the penetration depth of the surface modes
that exist in any nontrivial topological phase. Its divergence
is characterized by a critical exponent ν that obeys scaling
relations and together with the dynamic exponent z and the
dimensionality d of the system characterize the universality
class of the topological quantum phase transition.

In order to get a deeper insight into this problem, we
studied in this paper the critical and topological behavior of
two types of generalized SSH models. The first with next
next nearest neighbors hopping terms and the second with just
nearest neighbors hopping, but in the presence of a synthetic
potential. These models have a rich phase diagram with many
topological phases that can be fully characterized by their
topological invariants. In spite of this complexity, they still
preserve some simplicity that allows for a thorough analytical
examination of their critical and topological properties.

The energy dispersion of the critical modes at a TPT
contains information about its critical exponents, as the gap
exponent νz and the dynamic exponent z, as can be seen
directly from Eq. (1). However, it is crucial to develop general
methods to deal with topological phase transitions in any di-
mension and with anisotropic dispersions. One such approach

195432-9



RUFO, LOPES, CONTINENTINO, AND GRIFFITH PHYSICAL REVIEW B 100, 195432 (2019)

is a direct numerical calculation of the penetration depth of
the surface modes, as we presented here. Another, also inves-
tigated in the present work, is based on the scaling properties
of the Berry connection [17–20]. This relies on the assumption
that the Berry connection is a kind of correlation function and
as such contains information about the correlation length.

Both techniques allow us to obtain the critical exponents.
The Berry connection approach may be more suitable if we
wish to deal with systems in dimensions larger than one
(d > 1) and with translational symmetry. On the other hand,
the penetration depth method may become limited for d >

1, for computational reasons. Nevertheless, for d = 1 the
penetration depth method allows us to perform calculations
in systems without translational symmetry. This means that it
can be extended to treat systems with defects and disordered
potentials.

Our extended SSH models constitute an excellent platform
to investigate and compare these approaches. We found that
both approaches yield the same values for the correlation
length exponents in every case studied. In the case of the
SSH model with long range interactions, the spectra close to
the transitions are Lorentz invariant. In spite that this model
has a rich phase diagram with many phases characterized by
different values of the topological invariant, the topological
transitions between these phases fall in the same universality
class with correlation length exponent ν = 1 and dynamic
exponent z = 1, consistent with the gap exponent νz = 1.

Our results show that the correlation length exponent of our
model, obtained either from a direct numerical calculation of
the penetration depth or from a scaling analysis of the Berry
connection, is independent of the jump of the topological
invariant W at the transition, as discussed in Refs. [17,20].
The main reason is that the Hamiltonians explored in our
paper are beyond that studied by Chen et al. in these
references.

The nearest neighbor SSH model in the presence of a
synthetic potential V (x) allowed us to study a topological
transition in a model with a spectrum that is not Lorentz
invariant. It presents a topological transition in the universality
class of the Lifshitz transitions with dynamic critical exponent
z = 2 [21–23]. Our results show that for these transitions
the correlation length exponent obtained either by a direct
numerical calculation of the penetration depth or by the
scaling of the Berry connection takes the value ν = 1/2,
different from the value ν = 1 of the Lorentz invariant cases.
The model presents a line of multicritical points at which
the value of the Berry connection depends on the path it is
approached.
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