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Nanoscopic time crystal obtained by nonergodic spin dynamics
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We study the far-from-equilibrium properties of nanoscopic classical spin systems. In particular, we focus on
the interplay between lattice vibrations and magnetic frustrations induced by surface effects in antiferromagnets.
We use an extended Monte Carlo simulations which treats both the ionic degrees of freedom and spin variables
on the same footing via a Heisenberg-Lennard-Jones Hamiltonian with a spin-lattice coupling. The interplay
of the local ordered magnetic moments and the lattice dynamics provides, at zero temperature, a structural
phase diagram characterizing the magnetic order in two different antiferromagnetic nanoclusters. At nonzero
temperature, the competition between spins and the ionic vibrations considerably affects the magnetization of
these systems. Next, we explore the dynamical response of the antiferromagnetic structures subjected to an
initial ferromagnetic quench by solving the stochastic Landau-Lifshitz-Gilbert equation at finite temperature.
The dynamics reveals a nontrivial structure-induced behavior in the spin relaxation with a concomitant memory
of the initially applied ferromagnetic quench. These observations of long-lived nonthermal states could open
new avenues in nanotechnology.
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I. INTRODUCTION

Many-body systems comprise a wide range of systems,
from simple metals and organic molecules all the way up
to cells. While their physics can be extremely rich, this
complexity is, however, often irrelevant, as such systems
will typically—at equilibrium—thermalize, a process through
which most information about their preparation history and
their initial state is lost [1,2]. This behavior is typical for
ergodic systems in the thermodynamic limit and allows us
to calculate physical observables and make predictions that
can be measured and tested. However, ergodicity can be
broken out of equilibrium [3], in particular by inducing non-
thermal states that keep a memory of their initial condition
for long times. Those peculiar behaviors have been explored
in novel nonequilibrium phases of matter, which includes
Floquet symmetry-protected topological phases [4,5] and time
crystals [6–11]. In particular, out-of-equilibrium quantum
materials have been extensively studied theoretically, with a
range of quantum approaches, such as the Floquet dynamical
mean-field theory [12] used for electron-spin systems [13,14]
and nonequilibrium Green’s function techniques for electron-
phonon dynamics [15,16]. While bulk systems have been
extensively investigated, nanoscopic systems remain open
to questions. Recent progress in nanoengineering, such as
the design of single-atom arrays as memory devices [17],
has opened new possibilities to explore quantum states in
systems where thermalization is not obtained, in particular
for quenched and periodically driven systems. Indeed, it has
been observed that finite-size effects allow these systems to
keep a much better local memory of their initial conditions
[18]. Experimental advances in manipulation and switching
of the magnetization—possible even at the femtosecond level
[19]—have triggered new studies in spin dynamics [20] to-

wards the microscopic understanding of emerging relaxation
timescales and the discovery of new suitable candidates for
magnetic-logic building blocks [20]. Particular attention has
been paid when antiferromagnetic order is involved [21,22]:
in these systems the contribution of the uncompensated spins
at the surface triggers exotic phenomena which are not an-
alytically tractable and whose precise understanding is still
unknown. To that end, new mechanisms for slow relaxation
and nonergodicity have potential implications for the de-
sign and control of novel quantum nonequilibrium materials
and devices. Atomistic electron-spin models have proved to
be a powerful approach to model ultrafast magnetization
dynamics.

In this work, we propose a study of the dynamics of a
typical many-body nanoscopic system in which the relaxation
processes involve both the structure and magnetic moments.
We consider the quenched and driven classical spins in the
presence of long-range magnetic interactions coupled to the
lattice dynamics. We first focus on the interplay of the lo-
cal ordered magnetic moments and the lattice dynamics at
finite temperature. Next, we extend the equilibrium calcu-
lations to a ferromagnetic quench. We go on to study the
equilibrium and out-of-equilibrium properties using a com-
bination of Monte Carlo simulations [23,24] and atomistic
spin dynamics [25,26] through the numerical implementa-
tion of the Landau-Lifshitz-Gilbert [27] equation extended
to deal with finite temperatures within a Langevin dynamics
framework.

II. EQUILIBRIUM PROPERTIES
OF MAGNETIC NANOCLUSTERS

We consider a cluster in a spherical shape and a sim-
ple cubic structure with a unitary lattice constant. The total

2469-9950/2019/100(19)/195431(9) 195431-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.195431&domain=pdf&date_stamp=2019-11-25
https://doi.org/10.1103/PhysRevB.100.195431


CARLA LUPO AND CEDRIC WEBER PHYSICAL REVIEW B 100, 195431 (2019)

FIG. 1. Zero-temperature structural phase diagrams with respect
to the interaction range α and the Lennard-Jones potential K . Dashed
lines are guides to the eyes and distinguish three different structural
regions: simple-cubic (sc, e.g., �, LaTiO3), bcc (e.g.,

�
, MnO) and

hcp (e.g., ©, Ni). Shaded colors indicate the presence of antifer-
romagnetic order (MO). The arrows represent one possible spin
configuration for the collinear magnetic order [at Q = (π, π, π )/a
for SC and Q = (0, 0, 2π )/a for bcc] and magnetic disorder for hcp.
The system in the analysis has 123 sites.

lattice-spin Hamiltonian of the cluster reads as follows:

H = −
∑
i, j

J (di j )Si · S j + K
∑
i, j

[(
d0

di j

)12

− 2

(
d0

di j

)6
]
,

(1)

where Si are O(3) unitary |S| = 1 spins ruled by a Heisenberg
Hamiltonian with an inhomogeneous superexchange coupling
J (di j ) = J0 e−αdi j , where J0 is the antiferromagnetic nearest-
neighbor interaction. The exchange interaction function J (di j )
can be tuned from ab initio calculation or experimental results
[25,28].

The α parameter scales the range of the interaction: as
α decreases, the interaction becomes long range. The lattice
deformation is constrained by a Lennard-Jones (LJ) potential
with a normalized unit distance (d0 = 1). We use extended
Monte Carlo Metropolis calculations with both spins and an
ionic displacement update [28–31].

The competition between the Heisenberg term and the
Lennard-Jones potential, respectively tuned by the α and K
parameters introduced in Eq. (1), stabilizes three different
ground-state structures (Fig. 1): simple cubic (sc), bcc, and
hcp. These structures are obtained if the system optimizes ei-
ther the superexchange potential or the ionic interactions (LJ).
When the dominant contribution to the energy is the exchange
term, the structure is SC, with a concomitant lattice com-
pression. Indeed, the SC structure accommodates the largest
number of nonfrustrated antiferromagnetic bonds in three
dimensions. For larger K , we obtain a competition between
the exchange and LJ terms. This drives a structural transition
towards a bcc structure, which increases the coordination
number, albeit retaining an ordered spin structure with a pitch
vector [q = (0, 0, 2π/a)]. These two cases show magnetic
order (MO). For K � 1 the leading contribution comes from
the LJ potential, and the system increases its coordination
number further, losing the magnetic order in favor of the

FIG. 2. Temperature-dependent behavior of the magnetic order
parameter obtained running equilibrium simulations with (sim(2))
and without (sim(1)) considering the coupling of the spins with the
lattice deformation. The two structures considered are SC (orange)
and bcc (violet). The top and left panels show the structures obtained
at finite temperature.

more compact hcp structure. Under the assumption of large
magnetic moment, paradigmatic systems for the model above
are represented by antiferromagnetic sc structures such as per-
ovskites (e.g., LaTiO3 [32–34]), bcc nanoclusters such as Mn
[35–37], and the hcp Ni nanoparticle [26,38,39]. (Symbols in
Fig. 1 identify the different materials with parameters listed in
Table I).

To summarize, we note that the spin-exchange and
Lennard-Jones terms compete in a nontrivial fashion in the
presence of antiferromagnetic interaction: on the one hand, the
Lennard-Jones term favors the most compact structure, e.g.,
the hcp, although this phase is magnetically frustrated, and
on the other hand, the optimal phase to accommodate anti-
ferromagnetism in three dimensions is the regular cubic lat-
tice. This leads to a very rich phase diagram at zero tempera-
ture, as mentioned above, but also induces nontrivial effects at
finite temperature (Fig. 2). We now turn to finite-temperature
calculations of the structures with zero-temperature magnetic
order (sc and bcc in Fig. 1). In the absence of the ionic
motion, the magnetic order parameter of the sc phase sc(1) is
stable until T ≈ 3[J0], whereas for the frustrated bcc phase
bcc(1) we find a less stable magnetic phase (magnetic for
T < 1.8[J0]). However, once both the spin and ionic potential
are considered (sc(2), bcc(2)), we observed that both structures
are magnetic for T < 0.6[J0], but the processes leading to the
paramagnetic phase are very different. For the sc phase, we
observe that the drop in magnetization is concomitant with a
loss of the structural properties, as the lattice starts melting
at T ≈ 0.6[J0] (as shown in the left panel), whereas the bcc
structure survives above this temperature (as shown in the
top panel) and undergoes a magnetic transition towards the
paramagnetic phase due to magnetic fluctuations. The nonzero
magnetization value at high temperature is due to the finite
size of the system. We observe that the values of M of sc(1) and
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bcc(1) at T = 5[J0] are different due to different contributions
of the surface spins.

III. DYNAMICAL RESPONSE TO EXTERNAL FIELDS AND
MEMORY EFFECTS

We now turn to the discussion of the time evolution after
a ferromagnetic quench. We focus here on the time evolution
of the system at low enough temperature (far from the melting
temperature), where the structure is weakly dependent on tem-
perature and can be considered fixed. We calculate the dynam-
ical magnetic properties of the nanostructure far from equi-
librium, with the Landau-Lifshitz-Gilbert formalism, which
accounts for only the time evolution of the spin degrees of
freedom, and the structural properties are obtained for the
sc and bcc magnetic systems shown in Fig. 1. The Landau-
Lifshitz-Gilbert equation has been numerically solved by re-
placing the spin operators of the Heisenberg Hamiltonian with
classical angular momentum vectors. The evolution of each
spin can be seen as its precession around an effective field
�i = −∑

j �=i Ji jS j induced by the neighboring spins. Further-
more, to induce energy dissipation, the system is physically
embedded in a thermal bath at constant temperature, math-
ematically represented by a stochastic field and a dissipative
term in the equation. The differential equation of motion reads

dSi

dt
= 1

h̄
{Si × (−�i + hi ) − γ Si × [Si × (−�i )]}, (2)

where hi is a Gaussian-distributed white noise with zero
mean and vanishing correlator 〈hi(t )h j (t ′)〉 = μδi, jδ(t, t ′),
representing the stochastic field. Its value at each time step
�t is hα,i = η

√
μ/�t , with α ∈ {x, y, z} being the Cartesian

coordinate and i referring to the site label; η ∼ N (0, 1)
is a random variable sampled from the standard normal
distribution. γ is the Gilbert dissipation parameter related
to the stochastic field through the fluctuation-dissipation
theorem (FDT) [40,41] μ = 2γ kBT at equilibrium. We
point out that γ is a dimensionless parameter that can be
extracted directly from the spin dynamics simulation or by
comparison with Monte Carlo calculations at equilibrium.
We found that both are consistent within the error bars
(Fig. 7). The dynamics is implemented via the Suzuki-Trotter
decomposition outlined in Refs. [42,43], and time units have
been fixed assuming the exchange interaction is of the typical
order of magnitude of the bulk J = 0.1 eV.

Spin dynamics after a ferromagnetic quench. Since we
are interested in the response of the system to an initial
out-of-equilibrium condition, we start from the ferromagnetic
configuration and let the system evolve. At low temperature
(T = 0.001[J0], Fig. 3(a)) the central site of the nanostruc-
tures (blue line for sc and red for bcc) antialigns with respect
to its initial configuration along the z direction under the effect
of the evolution operator. The response of the lattice to this
mechanism is prompt: the flipping mechanism diffuses from
the core spin to the surface ones (Fig. 8), and the evolution
of all spins is synchronized toward the relaxation to the
antiferromagnetic (AF) state by keeping a global orientation
on each of the sublattices. Red and blue lines in Figs. 3(a)
and 3(b) represent the evolution of the z component of two
spins belonging to ferromagnetic sublattices A and B. The

FIG. 3. (a) and (b) Time evolution of the z component Sz(t ) of
all the spins (gray solid lines) in the system initially subjected to a
ferromagnetic quench: blue and red solid lines refer to two sites with
opposite magnetic moments after the transient. Results are shown for
T = 0.001, 0.1[J0], respectively, for sc and bcc. On the side, the spin
configuration at T = 0.1[J0] for two different sites (blue and red)
with opposite magnetic moments at the steady state is shown.

dynamics of the local vector on each site is also shown via
the gray shaded area, and it shows that the time dynamics
is synchronous. We note, however, that, different from the
bcc, at T = 0.001[J0] [Fig. 3(a)] in the sc only one sublat-
tice is evolving under the time evolution operator, while the
other is not affected by the dynamics, and the orientation
of the initially applied ferromagnetic field BQ = (0, 0, 1) is
retained (red line). This nontrivial dynamics is triggered by
the exchange coupling between the sublattices in the AF
phase when the system is initially prepared out of equilibrium.
The spontaneous locked polarization of the magnetization in
the sc is due to its intrinsic weak ferromagnetic component.
Indeed, even if both sc and bcc are able to stabilize a Néel
order along all the directions, they differ in the number of
uncompensated spins (10% sc and 0.1% bcc). Thus, while for
bcc the flipping mechanism happens at ≈2 ps, for the sc it
occurs at t ≈ 0.4 ns for fixed T = 0.001[J0] [see Fig. 10(a)].
We now consider the dynamics at higher temperatures T =
0.1[J0] [Fig. 3(b)] where the systems are still magnetic. We
observe that while for the bcc ergodicity is recovered, for sc
the obtained time evolution is similar to the T = 0.001[J0]
case with thermally activated small oscillations around the
initial quenching field BQ. The results discussed so far for a
short time window, t f = 2 ps, are extended up to t f = 12 ps.
In Fig. 4 we considered the histogram P(Sz ) of the z-axis spin
component obtained along the time-dependent trajectories at
different temperatures T . Note that for an ergodic system,
the histogram is uniform, as obtained for T > 0.1[J0]. For
T < 0.1[J0], the spins evolve along a constrained time trajec-
tory, with a nonuniform distribution of the spin components,
which is a signature of a nonthermal state. We hence observe
in the sc long-lived nonthermal states, which are nontrivial
topologically protected states driven by the interplay of the
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FIG. 4. Histogram P(Sz ) of the z-axis spin component obtained
along the time-dependent trajectories at different temperatures T
in the sc. The color map goes from 0 (red) to 1 (blue). Dynamics
considered up to t f = 12 ps.

initial quench and long-range interactions. On the other hand,
in the bcc, whose structure is not bipartite, the intrinsic
magnetic anisotropy due to the geometry does not stabilize
a long-lived memory effect against thermal fluctuation.

Adding a static field. Interestingly, time translational sym-
metry observed in the transient in Fig. 3(a) is explicitly
broken when an applied magnetic field h → h̃ = h + hext

with hext,i={x,y,z} = hext is switched on [Eq. (2)] after the
ferromagnetic quench BQ. Indeed, the spin dynamics after
the quench and an applied field shows a periodic behavior.
Here we consider a small external field (hext = 0.01, 0.1), and
we observe the dynamics in the temperature regime where
the effects of the small field are not washed away by thermal
fluctuations. Figure 5(a) shows that while for the bcc cluster
the staggered magnetic vector stabilizes along the direction
of the field, in the sc cluster the dynamics is characterized
by long-lived oscillations and the alignment is recovered at
t = 20 ps for T = 0.001[J0], hext = 0.1 [Fig. 10(b)]. Thus, in
the sc the dynamics after the quench is characterized by two
timescales. First, at a femtosecond scale the antiferromagnetic
interaction brings the system toward its energy minimum:
the spins after the ferromagnetic quench follow the same
relaxation as in the absence of applied field at first and
form an AF state. Second, at a larger timescale the AF state
symmetry is maintained, and the spins precess around the hext

direction: this nontrivial dynamics which brings the system
towards the alignment along the direction of the external field
is characterized by an observable timescale [Fig. 10(b)]. The
arising of this intermediate phase between the AF stabilization
and the alignment with the external field, characterized by a
periodic response of the system to a static field, is exclusively
triggered by the uncompensated spins in the AF nanocluster.
The scenario at T = 0.01 and hext = 0.01 [Fig. 5(b)] shows
that the periodic phase persists even for higher temperature
and smaller field: indeed, while in the bcc the thermal fluc-
tuations destroyed the effect of hext, in the sc the periodic
oscillations are still evident.

FIG. 5. (a) and (b) Time evolution of the z component Sz(t ) of
all the spins (gray solid lines) in the system initially subjected to a
ferromagnetic quench at t = 0 and a static field for t > 0. Blue and
red solid lines refer to two sites with opposite magnetic moments
after the transient. Results are shown for different temperatures and
values of the fields hext for sc and bcc. (c) Time evolution of the
x and z components of the spins S(t ) in the system subjected to a
ferromagnetic quench at t = 0 and an AC field (black dashed lines
hAC/hext) for t > 0. On the side, the spin configurations for two
different sites are shown.

Thus, we discover an interesting phase of the transient
triggered by the AF interactions in a finite system where the
response to a static field shows a periodic behavior with an
observable and tunable relaxation timescale.

Adding an AC field. Finally, we study the response of the
sc system to an AC field h → h̃ = h + hext cos (2πωt ) after
the ferromagnetic quench BQ. Figure 5(c) shows the dynamics
of the spins in the time crystal phase. In the latter phase, the
time evolution is not periodic with the applied field, and in
particular we find that the component of the spin aligned in
the quenched direction (e.g., along the z axis) oscillates with a
frequency which is double the applied field (see Fig. 6). In our
setup, we typically use an applied field in the terahertz range
(1.1 THz). Note that further subharmonics are also present
with albeit smaller amplitudes. Thus, the initial ferromagnetic
quench and the oscillating applied field prevent the spins from
completing a full precession, and instead, the covered phase
space is limited to a portion of the AF precession circles.
The spin trajectories explicitly break the time invariance ob-
served in Fig. 3(a) and enter into a periodic motion that lasts
beyond the largest time considered in our calculations [≈1 ns,
Fig. 10(d)].
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FIG. 6. Fourier analysis of the core spin trajectories (blue solid
lines) compared with the AC field hAC = hext cos(2πωt ) (black
dashed lines for hAC/hext). Results are shown for fixed T = 0.0001
and hext = 0.01 values. Time window considered after the transient
up to 70 ps.

This nontrivial time translational symmetry breaking,
which protects the Z2 topology of the spin trajectories for
macroscopic timescales, bears similarities to the time crystal
[9] recently observed experimentally in magnetic systems
[10]. In our calculations, the time crystal phase (TC) stems
from nonthermal states triggered by the nontrivial dynamics
obtained after the quench, when, at T = 0.0001[J0], only
one of the bipartite sublattices evolves with time, whereas
the other sublattice stays aligned with the applied magnetic
field BQ and remains topologically protected upon application
of AC field. At finite but small temperatures this dynamics
breaks the time translational invariance and the spherical
symmetry of the spins and in turn provides a nanoscopic time
crystal with the magnetic vector aligned along a preferred
orientation (induced by a combination of the initial quench
and applied magnetic field). Thus, in the TC phase we observe
nonthermal states and violation of the FDT (Fig. 9). The loss
of the time crystal is, in particular, accelerated by an increase
of the dissipation term γ [Eq. (2); see Fig. 11(a)] or the
temperature [Fig. 11(b)], as thermalization happens on faster
timescales.

IV. CONCLUSIONS

In conclusion we provided the results of the role of the
spin-lattice coupling in the equilibration of an antiferromag-
netic nanoscopic system at both zero and finite tempera-
ture. We then focused on the spin quenched dynamics in a

temperature regime which foregoes the melting of the mag-
netic moment. We demonstrated slow relaxation and non-
ergodicity in nondisordered nanoscopic many-body systems
induced by the initial magnetic quench. The nonthermal
states persist in the presence of experimentally controllable
classical thermal noise, and the signatures of metastability
are uncovered in situations where nonergodicity is transient
only due to dissipation. Our work lays out foundations for
future experiments in small antiferromagnetic nanoparticles
[32,44,45]. Furthermore, it provides numerical results for
future realization of antiferromagnetic memory devices in
which magnetocrystalline anisotropy [18] and tunability of the
exchange coupling [46] play a crucial role.
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APPENDIX A: MONTE CARLO SIMULATION

As reported in the main text, at zero temperature the
competition between the Heisenberg term and the Lennard-
Jones potential, respectively tuned by the α and K parameters
introduced in Eq. (1), stabilizes three different ground-state
structures (Fig. 1): simple cubic (sc), bcc, and hcp. These
structures are obtained if the system optimizes either the su-
perexchange potential or the ionic interactions (LJ). Under the
assumption of large magnetic moment, paradigmatic systems
for the model above are represented by antiferromagnetic sc
structures such as perovskites (e.g., LaTiO3 [32–34]), bcc
nanoclusters such as Mn [35], and the hcp Ni nanoparticle
[26,38,39]. An estimation of the order of magnitude of the
parameters (α, K ) for the examples provided above can be in-
ferred by combining two features: (i) the structural properties,
e.g., bond lengths, coordination number, and the radial distri-
bution function, of the clusters obtained in our simulation and
(ii) the model of the exchange interaction and Lennard-Jones
potentials used, respectively, for the bulk and nanoclusters
available in the literature.

A sensible estimation of the α parameter is obtained from
the analysis of the exchange interaction for a selected el-
ement or compound. In particular we will use the Bethe-
Slater equation properly parametrized for a given element or
material (e.g., in Refs. [26,37]) or the computed nearest (J1)
and the next-nearest (J2) exchange coupling obtained mapping
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TABLE I. (K, α) parameters inferred for the three paradigmatic
systems provided as examples for the magnetostructural phases in
Fig. 1.

K (eV) α (Å−1)

Ni 0.66 [39] 2.18 [26]
Mn 0.55 [36] 7.84 [37]
LaTiO3 0.02 [33] 2.79 [34]

the density functional theory (DFT) energies to a classical
Heisenberg model [34]. α is obtained in units of Å−1. The
LJ interaction is extracted from previous works and molecular
dynamics calculations carried out in Refs. [33,36,39]. K is
obtained in units of eV.

We report in Table I the inferred values of (K, α) for the
clusters under analysis, properly supported by several refer-
ences. We emphasize, however, that such a correspondence
between values obtained by ab initio DFT and the Heisenberg
theory remains at the qualitative level, as quantum fluctuations
are not included for classical spin systems.

APPENDIX B: SPIN DYNAMICS SIMULATION

1. Benchmark of stochastic time-dependent calculations against
Monte Carlo simulations

Insights on the dynamical magnetic properties of the
nanostructures stabilized so far at equilibrium are obtained
by running spin dynamics simulations. The Landau-Lifshitz-
Gilbert equation in Eq. (2) was numerically solved by re-
placing the spin operators of the Heisenberg Hamiltonian
with classical angular momentum vectors. γ is the Gilbert
dissipation parameter related to the stochastic field through
the fluctuation dissipation theorem (FDT) [40,41] μ = 2γ kBT
at equilibrium. We point out that γ is a dimensionless pa-

FIG. 7. Magnetic order parameter as a function of temperature
obtained for two different systems (sc in blue and bcc in red).
The gray shaded regions represent the Langevin statistics. The inset
shows the match between the temperature obtained with the Langevin
spin dynamics (TLSD) and the Monte Carlo heat bath (THB) results.

FIG. 8. (a) Time evolution of the z component Sz(t ) of all the
spins (gray solid lines) in the system initially subjected to a ferro-
magnetic quench: blue and red solid lines refer to two sites with
opposite magnetic moments after the transient. Results are shown
for T = 0.001[J0] for the sc nanocluster. (b) Details of the flipping
mechanism during the transient at T = 0.001[J0], which starts from
the core site toward the surface. Sites are labeled according to their
distance from the center.

rameter that can be extracted directly from the spin dynamics
simulation or by comparison with Monte Carlo calculations at
equilibrium. In Fig. 7, we show the magnetic order parameter
obtained with heat bath simulations and the spin dynamics.
Thus, the temperature obtained under the hypothesis that FDT
is satisfied during the dynamics of the spins [42] can also be
obtained by the equilibrium Monte Carlo simulation.

2. Insights on the spin dynamics results

(a) Spin dynamics after a ferromagnetic quench: bcc versus
sc nanoclusters. We now turn the discussion to the response of
the system to an initial out-of-equilibrium condition. Thus, we
initialize the system in the ferromagnetic configuration along
the z axis, and we let the system evolve with the exponential
time evolution operator for the spins given by Eq. (1). As we
discussed in the main text, at low temperature (T = 0.001[J0],
Fig. 8(a)) the central site of the nanostructures (blue solid line)
antialigns with respect to its initial configuration along the z
direction under the effect of the evolution operator. The time
dependence of the local vector on each site is also shown
in Fig. 8(b), where the sites are labeled according to their
distance from the center and the color map refers to the value
of the z component for each spin Sz(t ) from +1 (red) to
−1 (blue). We note that the flipping mechanism during the
transient at T = 0.001[J0] starts from the central site toward
the surface and the evolution of all spins is synchronized
toward the relaxation to the AF state by keeping a global
orientation on each of the sublattices. As we observed already
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FIG. 9. Temperature-dependent behavior of the fluctuations of
the order parameter both along the time evolution after the quench
(black circles) and at the equilibrium one (blue squares). The plot
highlights the arising of three different regions: the time crystal
(TC), the magnetically ordered phase (antiferromagnetic AF), and
the paramagnetic phase (PM). The structure under analysis is the
sc. The gray dashed line is the staggered magnetic order parameter
squared.

in the main text, the sc nanostructure shows a locked direction
of the spin along the z axis up to t ≈ 0.4 ns for fixed T =
0.001[J0] [see Fig. 10(a) below].

To complete the understanding of this phase with spon-
taneous locked polarization of the magnetization in the sc
cluster, we considered in Fig. 4 the histogram P(Sz ) of the
z-axis spin component obtained along the time-dependent tra-
jectories for a calculation extended up to t f = 12 ps. Note that
for an ergodic system, the histogram is uniform, as obtained
for T > 0.1J0. For T < 0.1J0, the spins are evolving along
a constrained time trajectory, with a nonuniform distribution
of the spin components, which is a signature of a nonthermal
state.

We now want to look at the average quantities which
characterize the dynamics of the structures considered, and
we use the FDT to search for evidence of the nonthermal
states observed above. In the following analysis we focus on
the sc for which, due to its bipartite structure, the memory
effect is enhanced and resistant against thermal fluctuation
even in the absence of magnetic anisotropy. In Fig. 9 we
calculate both the correlation of the order parameter along
the time evolution after the quench and its fluctuations at
equilibrium as χq=AF(T ) [where the wave-vector-dependent
magnetization Mq = (1/N )

∑
i Sieiq·ri has q corresponding to

an ordering wave vector defined for the bulk antiferromag-
netic states q = (π, π, π )/a for sc]. At equilibrium, the two
quantities are related by the FDT. However out of equilibrium,
in the case of a nonergodic dynamics, a violation of the
FDT theorem can be observed for a nonthermal state. We
observe indeed in our calculations the presence of long-lived
nonthermal states obtained after the quench, violating the
FDT, at temperature T < 0.01[J0] for sc (and T < 0.0001[J0]
for bcc). We hence found three different phases: (i) noner-

FIG. 10. (a) Time evolution of the z component Sz(t ) of the
core spin (blue line with dots) in the antiferromagnetic sc subjected
to three different protocols. System initially (t = 0) subjected to a
ferromagnetic quench and subsequently let to evolve in the absence
of any external drive [long-time dynamics of Fig. 3(a) in the main
text]. (b) and (c) Ferromagnetic quench (t = 0) and a static field
hS = hext at t > 0 [long-time dynamics of Fig. 5(a) in the main
text]. (d) Ferromagnetic quench (t = 0) and an AC field hAC =
hext cos(2πωt ) [long-time dynamics of Fig 5(c) in the main text].
Results are shown for different temperatures and hext values.

godic but magnetic (TC), (ii) ergodic and magnetic (AF),
and (iii) paramagnetic (PM). In particular, the first phase
is named a time crystal phase because of time translational
invariance.

(b) Long-time dynamics under the effect of different driving
fields. The results discussed so far for a short time window
(t f = 2 ps) are extended up to t f = 1 ns in Fig. 10, where
we consider the time evolution of the z component Sz(t ) of
the core spin (blue line with dots) in the antiferromagnetic
sc subjected to a ferromagnetic quench at t = 0 and three
different protocols at t > 0: (i) the absence of any external
drive in Fig. 10(a), (ii) the introduction of an isotropic static
field hS = hext at t > 0 in Figs. 10(b) and 10(c), and (iii) an
AC field hAC = hext cos(2πωt ) in Fig. 10(d). In our results
we considered small external fields (hext = 0.1, 0.01), and we
observe the dynamics in the temperature regime where the
effects of the small field are not washed away by thermal
fluctuations. As we discussed before, the locked dynamics
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shown in Fig. 3(a) after the ferromagnetic quench lasts up
to 400 ps, as shown in Fig. 10(a). We now want to look
at the effect of introducing a driving field to this long-lived
nonthermal state.

In Fig. 10(b) the introduction of a static field hS = hext,
with hext,i={x,y,z} = hext, pointing along a different direction
from the quenching field BQ = (0, 0, 1), breaks the transla-
tional symmetry observed before. Indeed, the spin dynam-
ics after the quench and upon an applied field shows a
periodic behavior. In particular the dynamics is characterized
by two timescales. First, at the femtosecond scale the anti-
ferromagnetic interaction brings the system toward its energy
minimum: the spins after the ferromagnetic quench follow
the same relaxation as in the absence of applied field at first
and form an AF state. Second, at a larger timescale the AF
state symmetry is maintained, and the spins precess around
the hext direction. In particular, as shown in Fig. 5(a) of the
main text, the spin trajectories of the A and B sublattices are
locked in one limiting circle (red, aligned with the field) or
the other (blue, antialigned with the field), giving rise to a
Z2 symmetry of the trajectories. Since the flipping between
them is prevented by the interplay of out-of-equilibrium con-
ditions and the uncompensated spins, we conclude that the
Z2 topology of the trajectories is protected. As shown in
Fig. 10(b), this nontrivial dynamics which brings the system
towards the alignment along the direction of the external field
is characterized by an observable timescale. Thus, while for
the bcc the staggered magnetic vector stabilizes along the
direction of the field at t = 0.5 ps [main text, Fig. 5(a)], in
the sc cluster the dynamics is characterized by long-lived
oscillations, and the alignment is recovered at t = 20 ps for
T = 0.001[J0], hext = 0.1. The arising of this intermediate
phase between the AF stabilization and the alignment with
the external field, characterized by a periodic response of
the system to a static field, is exclusively triggered by the

FIG. 11. Time evolution Sz(t ) in the sc cluster subjected to a
ferromagnetic quench at t = 0 and an AC field hAC = hext cos(2πωt )
for t > 0. Blue and red solid lines refer to two sites with opposite
magnetic moments after the transient. Results are shown for different
values of the dissipation parameter and temperature.

uncompensated spins in the AF nanocluster. The duration of
the precession phase is increased decreasing the dissipation
term γ (Fig. 11a) or the temperature (Fig. 11b).
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