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Emission of plasmons by drifting Dirac electrons: A hallmark of hydrodynamic transport
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Direct current in clean semiconductors and metals was recently shown to obey the laws of hydrodynamics
in a broad range of temperatures and sample dimensions. However, the determination of frequency window
for hydrodynamic phenomena remains challenging. Here, we reveal a phenomenon being a hallmark of high-
frequency hydrodynamic transport, the Cerenkov emission of plasmons by drifting Dirac electrons. The effect
appears in a hydrodynamic regime only due to reduction of plasmon velocity by electron-electron collisions
below the velocity of carrier drift. To characterize the Cerenkov effect quantitatively, we analytically find the
high-frequency nonlocal conductivity of drifting Dirac electrons across the hydrodynamic-to-ballistic crossover.
We find the growth rates of hydrodynamic plasmon instabilities in two experimentally relevant setups: parallel
graphene layers and graphene covered by subwavelength grating, further showing their absence in ballistic
regime. We argue that the possibility of Cerenkov emission is linked to singular structure of nonlocal conductivity
of Dirac materials and is independent on specific dielectric environment.
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I. INTRODUCTION

The realm of hydrodynamic transport spans at length
scales exceeding the particle free path [1]. Experimental
demarcation of hydrodynamics and ballistics is conveniently
performed by measuring the flow through a pipe between
two reservoirs. The flow through wide pipes is limited by
viscosity (Poiseuille flow), while in narrower pipes it is lim-
ited by particle injection (Knudsen flow). Recently, similar
experiments were performed in ultraclean solid-state systems,
including thin metal wires [2], Weyl semimetals [3], GaAs-
based quantum wells [4], and graphene [5–7]. They have
revealed quite a broad window of temperatures and sample
dimensions where electrons obey the laws of hydrodynamics
[8] but not ballistics, as thought previously [9].

While the place for dc hydrodynamic (HD) phenomena
on temperature and length scales is established [10,11], the
bounds for hydrodynamics on the frequency scale are less
probed [12]. Generally, electron-electron (e-e) collisions be-
ing the prerequisite of HD transport affect neither dc nor ac
conductivity in uniform fields, though they may affect the
properties of waves in solids—plasmons. Still, the spectra of
plasmons in HD and ballistic regimes are almost identical as
they are dictated by long-range Coulomb forces insensitive
to microscopic details of e-e interactions [13,14]. The char-
acter of damping due to e-e scattering in ballistic and HD
regimes is different [15,16], still it is often masked by extrinsic
damping.

In this paper, we theoretically reveal a plasmonic phe-
nomenon serving as a hallmark of hydrodynamic transport
which is fully prohibited in a collisionless ballistic regime.
The effect is emission of plasmons by drifting Dirac electrons
or, in other words, Cerenkov plasmon instability of electron
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drift. Our emphasis on Dirac electron systems, especially
graphene, is motivated by numerous observations of hydrody-
namic phenomena therein [5–7,17], though some fingerprints
of effect can be found in systems of massive electrons.

The possibility of Cerenkov instability in the HD regime is
not merely due to reduction of viscous dissipation. It appears
due to softening of plasmon velocity by e-e collisions down
to the value sufficient to provide phase synchronism between
drifting carriers and waves. More precisely, the lower bound
on ballistic plasmon velocity in materials with Dirac spectra
εp = ±pv0 is exactly the carrier velocity v0 [18,19]. The
velocity of drift u0 < v0 thus never satisfies the Cerenkov
criterion. In the HD regime, the lower bound on plasmon
velocity is only v0/

√
D, where D is the dimension of space

[16,20]. The carriers accelerated to drift velocity u0 > v0/
√

D
are thus capable of plasmon emission.

The current-driven plasmon emission in graphene-based
systems was already studied in Refs. [21,22]. Unfortunately,
these studies (being limited to a collisionless regime) ignored
the important issue of broken Galilean invariance in Dirac
systems [23]. This breakdown makes the Doppler transform
inapplicable for prediction of plasmon frequencies in a mov-
ing reference frame [24,25]. As argued in our recent Comment
[26], this fact fully suppresses the Cerenkov plasmon emission
in graphene double layers in the ballistic regime. More accu-
rate studies [27–29] revealed no Cerenkov-type instabilities in
graphene-based systems but were limited to the collisionless
case [30].

Below we construct the theory of plasmon instabilities in
Dirac systems that can handle the subtle issues of Galilean
invariance breakdown. Moreover, it is possible to trace the
evolution of instabilities across the hydrodynamic-to-ballistic
crossover analytically. It is based on the solution of a kinetic
equation with model e-e collision integral satisfying the con-
servation laws [13–16]. The obtained conductivity σ (q, ω) of
drifting Dirac electrons has a number of unexpected features,
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FIG. 1. Two possible graphene-based setups where hydrody-
namic plasmon instabilities can be observed: (a) parallel layers with
counterstreaming electrons with velocities ±u0, (b) graphene cov-
ered with subwavelength plasmonic grating and a highly-conducting
substrate, and (c) schematic of changes in plasmon frequency (blue
circles) with increasing drift velocity u0 in Dirac materials at differ-
ent Knudsen numbers Kn = qv0τee. Black solid line shows the posi-
tion of singularity in ballistic nonlocal conductivity. The singularity
becomes softer (dashed black line) in the hydrodynamic regime.

including the absence of dissipation at special frequencies and
wave vectors satisfying ωu0 = qv2

0 . It is subsequently used
as a building block for analysis of current-driven plasmon
instabilities in experimentally relevant setups, including par-
allel graphene layers and graphene covered by subwavelength
gratings, shown in Figs. 1(a) and 1(b).

The unstable plasmon modes in nonequilibrium systems
can emerge, generally, in two ways. First, the plasmon
gain can gradually transform into loss without an apprecia-
ble modification of resonant frequency. Such a situation is
common for plasmons bound to conductors embedded in
gain medium, as the degree of population inversion in that
medium is gradually increased [31]. Second, the instability
can emerge upon coalescence of modes with positive and
negative real frequencies. Such a situation is common for
waves in countersteaming flows [32,33]. For any of these
instabilities, the plasmon frequency should reach (at least)
the region of Cerenkov emission ω < qu0. We shall see that
it is impossible for plasmons in 2D Dirac materials in the
ballistic regime, as the material conductivity is singular at ω =
qv0 > qu0, as shown in Fig. 1(c). The singularity is washed
out in the hydrodynamic regime, which gives way to possible
instabilities.

II. CONDUCTIVITY OF DRIFTING DIRAC ELECTRONS
AT THE HYDRODYNAMIC-TO-BALLISTIC CROSSOVER

The conductivity σ (q, ω) of drifting Dirac electron fluid is
obtained by solving the kinetic equation for distribution func-
tion fp = f (0)

p + δ fp within a linear response to the external
electric field δEq = −iqδϕqei(qr−ωt ):

−iωδ fp + iqvpδ fp + iqδϕq∂p f (0)
p = Cee{δ fp}, (1)

here vp = ∂pεp is the quasiparticle velocity. The carrier drift
is encoded in a zero-order distribution function, which we
take in the local-equilibrium (hydrodynamic) form with ve-
locity u0, Fermi energy μ, and temperature T , f0 = [1 +
e(εp−pu0−μ)/T ]−1. We restrict ourselves to collinear propaga-
tion of waves and carrier drift.

The crucial step of the solution is the approximation of
e-e collision integral Cee{δ fp} which does not enable any
analytical treatment in its original form. We adopt Cee{δ fp}
that pulls all perturbations of distribution function toward
a local equilibrium δ fhd (but not to zero [13,34]) with a
characteristic rate γee = τ−1

ee :

Cee{δ fp} = −γee(δ fp − δ fhd ), (2)

δ fhd = δμ∂μ f (0)
p + δu∂u f (0)

p + δT ∂T f (0)
p . (3)

The main properties of true e-e scattering are encoded into
the model, as the distribution modes corresponding to shift
of particle number, momentum, and energy are not relaxed.
The weights of these modes δμ, δu, and δT are obtained
from respective conservation laws for e-e collisions. These
requirements lead us to a linear system of generalized HD
equations which can be written symbolically as M̂δx = δF.
The vector δx contains unknown hydrodynamic parameters
that can be arbitrary linear combinations δμ, δu, and δT ;
δF is the vector of generalized force densities, and M̂ is the
dynamic matrix. The simplest form is achieved when relative
perturbations of particle density δn/n0, ‘relativistic’ velocity
δβ = δu/v0, and mass density δρ/ρ0 are treated as unknowns.
In this representation, the HD matrix and force vector take the
form (Supplemental Material, Sec. I and II [35])

M̂ =

⎛
⎜⎝

1 − iγ̃eeI02 −iγ̃ee∂βI02 0

0 1 − 2
3 iγ̃ee∂βI13 β0 − 2

3 iγ̃eeI13

0 β − iγ̃ee∂βI03 1 + β2

2 − iγ̃eeI03

⎞
⎟⎠

(4)

δF = −2
eδϕ

mv2
0

⎛
⎜⎝

I12 − β0I02

I23 − β0I13
3
2 (I13 − β0I03)

⎞
⎟⎠ (5)

where we have introduced ‘relativistic mass’ m ≈ μ/v2
0 , the

inverse Knudsen number γ̃ee = (qv0τee )−1, and dimensionless
functions Inm(a, β ) of scaled frequency a = (ω + iγee)/qv0

and drift velocity β (closed-form expressions are given in
Supplemental Material Sec. III [35]):

Inm(a, β ) = (1 − β2)m− 1
2

2π

∫ 2π

0

cosnθdθ

(1 − β cos θ )m(a − cos θ )
.

(6)
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The system (4) and (5) is the central result of this paper.
It provides an explicit expression for high-frequency nonlocal
graphene conductivity σ (q, ω) in the presence of carrier drift
across the hydrodynamic-to-ballistic crossover (Supplemental
Material, Sec. II [35]). It encloses numerous previous studies
of graphene ac conductivity as limiting cases [16,36,37].
Particularly, classical Navier-Stokes equations along with mi-
croscopic expression for viscosity are restored in the HD limit
γ̃ee � 1 by expanding Inm. The polarization function in this
limit reads as

�hd = − nq2
(
1 − β2

0

)
/m

ω2
(
1 − β2

0/2
) − q2v2

0
2

(
1 − 2β2

0

) − 2qu0ω
. (7)

In the absence of current it acquires the common [38–40]
hydrodynamic form

�hd(β0 = 0) = − nq2/m

ω2 − v2
s q2

, (8)

where vs = v0/
√

2 is the sound velocity. The result (8) is not
specific to graphene and coincides with that for massive two-
dimensional electrons in the T = 0 limit [39]. This is not sur-
prising due to formal coincidence of linearized hydrodynamic
equations in these two systems at β0 = 0, after the ‘carrier
mass’ in graphene is properly defined. Important distinctions
between graphene and massive 2D electrons appear in the
presence of drift due to the breakdown of Galilean invariance.

In the ballistic limit, γ̃ee � 1, the polarization of drifting
graphene electrons becomes [26,36]

�bal = 2

π

|μ|/h̄2v2
0(

1 − ωu0/qv2
0

)2

(√
1 − β2

0 − ω/qv0 − β0√
(ω/qv0)2 − 1

)
.

(9)

It coincides with the polarization found in Refs. [41,42] in
the absence of drift and in the classical limit (h̄ω � |μ|,
q � kF ). The breakdown of Galilean invariance is even more
pronounced in the ballistic case; indeed, the strong square-root
singularity in the polarizability at ω = qv0 is insensitive to
carrier drift. This singularity prevents the appearance of plas-
mon modes with frequencies below qv0, as recently shown
experimentally [19].

The system of equations (4) and (5) enables us to track
the transformation of ballistic polarization (9) into a hydro-
dynamic one (7) by increasing the strength of e-e collisions
and to study the possible plasmon instabilities at arbitrary
frequencies.

III. DRIFT-INDUCED DOPPLER SHIFT
AND PLASMON UNDAMPING

Several nontrivial plasmonic effects appear already in the
isolated graphene layer in the presence of drift due to the
breakdown of Galilean invariance. The latter is readily seen
from the generalized hydrodynamic system (4) and (5) as the
wave frequency ω and drift velocity u0 appear therein not only
in combination ω − qu0, as it should be for massive electrons.

The first such effect is anomalous Doppler splitting be-
tween frequencies of up- and downstream plasmons �ω±.
It is always below the conventional value of 2qu0; in the
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FIG. 2. Plasmon spectra (top) and damping (bottom) in a single
graphene layer in the presence of e-e collisions at different drift
velocities. Positive wave vectors correspond to waves co-propagating
with drift. Damping disappears at q = 0 and ωu0 = qv2

0 (the latter
set of frequencies and wave vectors is marked with dashed lines).
Fermi energy μ = 25 meV, background dielectric constant κ = 5,
scattering rate γee = 6 × 1012 s−1.

hydrodynamic limit it is exactly one half of it. In the ballistic
limit

�ω±
bal = 2qu0(s2 − 1)(

√
s2 − 1 − s)2, (10)

where s = ω/qv0 is the ratio of wave phase velocity and Fermi
velocity. The ballistic Doppler shift approaches zero as the
wave velocity approaches v0; it stems from singular ballistic
conductivity at ω = qv0.

Much more surprising is the wave damping due to e-e
collisions, which is shown in the bottom panel of Fig. 2.
The damping of the upstream wave continuously increases
with the drift speed. The damping of the downstream wave
for finite u0 approaches zero at some peculiar frequencies
satisfying ωu0 = qv2

0 and then continues to grow. Far away
from the ‘undamping point,’ the imaginary part of frequency
is proportional to q2, as it should be for the viscous damping.

The origin of undamping points can be traced back to the
excitation of distribution modes δ f that are insensitive to e-e
collisions. This is readily seen in ‘boosted coordinates’ ( p̃, θ ),
where p̃ = p(1 − β cos θ ) [43]. In the absence of collisions
and at T/μ � 1, an electric field excites the distributions

δ f ∝ cos θδ( p̃v0 − μ)

[1 − (qv0/ω) cos θ ][1 − β cos θ ]2
, (11)

which do not generally coincide with zero modes of Cee

and are therefore relaxed. But at special points qv0/ω =
β, the excited distribution coincides with the hydrodynamic
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momentum mode of Cee:

δ f ∝ cos θδ( p̃v0 − μ)

[1 − β cos θ ]3
. (12)

It implies that collisions do not have any effect on these
modes, and relaxation is absent. We note here that undamping
occurs not only for plasmons, but the whole conductivity
becomes dissipationless (σ ′(q, ω) = 0) at these special fre-
quencies and wave vectors.

IV. INSTABILITIES OF COUNTERSTREAMING FLOWS

Cerenkov-type plasmon instability is most simply achieved
in a double layer setup where electron velocities in two layers
point in the opposite direction. The theory of such instabilities
developed for massive electrons [32] was recently erroneously
applied to graphene in the ballistic regime [21,22]. Here,
we find that the very presence of such instabilities depends
strongly on the transport regime in the two layers.

Some hints on the possible instabilities in the double-layer
system can be foreseen already from analysis of plasmon dis-
persion in the absence of direct current. In the ballistic regime
ωτee � 1, the system supports optical (+) and acoustic (−)
plasmon modes with dispersions [44]

ω±
bal(β0 = 0) = v0q

1 + 2K (1 ± e−|q|d )√
1 + 4K (1 ± e−|q|d )

, (13)

where K = 2αckF /q is the dimensionless ‘mode stiffness’ and
αc = e2/κ h̄v0 is the Coulomb coupling constant. Naturally,
even the lowest-frequency acoustic mode (13) has the phase
velocity exceeding Fermi velocity v0 and cannot be pulled
by the current to the Cerenkov gain region. On the contrary,
the plasmon frequencies in the hydrodynamic regime ωτee are
softer and given by

ω±
hd(β0 = 0) = v0q

√
1

2
+ K (1 ± e−|q|d ). (14)

Here, the lower bound of plasmon velocity is v0/
√

2, and it
can potentially interact with drifting carriers.

The above suggestions are fully supported by analysis of
plasmon modes with full polarizability of graphene electrons
in the presence of current (Supplemental Material, Sec. IV
[35]). The symmetric (optical) plasmon mode is unaffected
by drift, while the frequency of the asymmetric one is pulled
by current toward lower frequencies. However, it cannot be
decreased below the boundary of single-particle excitations
ω = qv0 due to the singular nonlocal response of graphene,
as given by Eq. (10). As a result, the gain region encloses no
plasmon eigenmode.

The acoustic mode, however, readily reaches the region
of the Cerenkov gain in the hydrodynamic regime, as shown
in Fig. 3(a). The nonlocal dielectric response of graphene
in this regime is no more singular, and the wave frequency
unimpededly passes through the ω = qv0 border. Above
the critical velocity, the mode aperiodically growing, i.e.,
Imω > 0, Reω = 0. The range of velocities for observation of
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FIG. 3. Plasmons in graphene double layers with counterstream-
ing flows (a) Evolution of plasmon spectra in HD regime with
increasing drift velocity β leading to the shift of acoustic mode fre-
quency down to zero and subsequent instability (b) Damping/growth
rates of plasmons at different values of e-e scattering rate, demon-
strating suppression of instability with reduced scattering. Blue line
corresponds to damping of optical mode being (almost) insensitive
to drift; orange and dark red lines show the damping/gain of a
couple of acoustic modes (c) Stability diagram of the double-layer
setup: critical value of velocity and inverse Knudsen number at
which plasma waves become unstable. Dashed lines in (c) are
critical velocities calculated using Eq. (15). In panels (a) and (b),
interlayer distance d = 1 nm, Fermi energy μ = 25 meV. In panel
(c), interlayer coupling e−2qd is set to 0.86.

instabilities in the HD regime is located between β−
th and β+

th ,

β±
th = v0√

2

√
q2v2

0 + 2ω2
p(1 ± e−|q|d )

q2v2
0 + ω2

p(1 ± e−|q|d )
, (15)

where ωp = (2πne2|q|/m)1/2 is the plasma frequency in an
isolated graphene layer. Note that plus and minus signs in
Eq. (15) correspond to upper and lower critical velocities, not

195428-4



EMISSION OF PLASMONS BY DRIFTING DIRAC … PHYSICAL REVIEW B 100, 195428 (2019)

to optical and acoustic modes. The optical mode is always sta-
ble. β−

th has a natural lower bound v0/
√

2 that coincides with
sound velocity. Interestingly, the threshold velocity weakly
depends on carrier density as far as layers are closely bound
(qd � 1).

The growth rate of unstable modes is going down as the
e-e collision frequency is reduced, shown in Fig. 3(b). In the
weak HD regime, qlee � 1, the reduced growth rate can be
attributed to increased viscous damping. However, outside of
the hydrodynamic domain qlee � 1, the instabilities do not
reappear as the velocity of acoustic modes is forced to lie
above the velocity of carrier drift.

The full stability diagram of the counterstreaming double-
layer system is calculated in Fig. 3(c): The values of drift
velocity and e-e collision frequency above the threshold lines
correspond to unstable modes. Remarkably, the e-e collision
frequency in the dispersion relation appears scaled to qv0.
It implies that the only parameter governing the transition
between HD and ballistic regimes is the Knudsen number
qv0/γee = qlee, where lee is an electron free path with respect
to e-e collisions. As a result, instabilities can always be
observed in clean systems of sufficiently large length.

V. DISTRIBUTED-FEEDBACK PLASMON LASING
IN CURRENT-BIASED GRAPHENE

A highly resonant instability leading to electromagnetic
emission can be observed in graphene with a conducting sub-
strate covered by a metal grating. Such a setup is commonly
used for spectroscopy of plasmon resonance in 2D electron
systems [45]. The reflectance spectrum of such setup is cal-
culated using the formalism of Refs. [46,47] with graphene
conductivity found from Eqs. (4) and (5) as a building block
(Supplemental Material, Sec. V [35]).

The electromagnetic response of grating-coupled graphene
differs for hydrodynamic and ballistic regimes already in the
absence of dc current. Namely, the frequencies of plasmonic
dips are reduced by e-e collisions (Fig. 4). When passing
direct current in 2DES, the absorption peak is split by the
Doppler effect [28,46,47]. With increasing current, the dis-
tinctions between HD and ballistic regimes become more
drastic.

The Doppler shift in the ballistic regime is so weak and the
singular nonlocal response at ω = qv0 is so strong that the
plasmon frequency is almost unaffected by current [shown
in Fig. 3(b). On the contrary, the plasmon frequency in the
hydrodynamic regime passes to zero frequency unimpededly
[Fig. 4(a). At higher current, the resonant frequency grows
again, but the reflection coefficient exceeds unity. The nega-
tive absorption is associated with the generation of evanescent
waves by the grating that falls into the negative conductivity
domain of 2DES; the effect is enhanced if frequency corre-
sponds to plasmon resonance.

The negativity of absorption at high drift velocities is
further elucidated by writing the power density Q dissipated
in the graphene layer

Q =
∑

Gn=2πn/a

2ReσGnω

∣∣EGnω

∣∣2
, (16)
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FIG. 4. Evolution of reflectance spectra of graphene covered by
plasmonic grating with increasing carrier drift velocity in the hy-
drodynamic (a) and ballistic (b) regimes. Bright regions correspond
to the excitation of plasmon and Fabry-Perot modes. At large drift
velocity, plasmon-enhanced absorption (R < 1) turns to plasmon
enhanced amplification (R > 1). The reflection coefficient further
diverges at the crossing of Fabry-Perot and plasmon resonance.
Parameters: μ = 50 meV, d = 3 nm, D = 100 μm, κ = 12, grating
period is a = 2 μm, width of metal gate W = a/2 = 1 μm.

where the summation is performed over all diffraction orders
n, a being the grating period. The real part of conductivity
is negative in the Cerenkov domain Gn > ω/u0 and positive
otherwise. In a nonresonant system, the high-order diffraction
harmonics prone to Cerenkov amplification are exponentially
suppressed due to the evanescent character of fields with n >

1. Therefore, dissipative terms with ReσGnω > 0 dominate the
sum (16) in the absence of resonances. Under conditions of
nth order plasmon resonance, the electric field EGnω grows,
which can lead to the negativity of full power Q provided
ReσGnω < 0.
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Further enhancement of both absorption and amplification
occurs if the distance D between 2DES and the conducting
substrate satisfies the antireflection condition, D = λ0/4

√
κ ,

where κ is the background dielectric constant. The effect
occurs once the eigenfrequency of the Fabry-Perot cavity
formed in the vertical direction coincides with the frequency
of plasmon. The interaction of plasmon at high current with
Fabry-Perot mode leads to a divergent reflection coefficient.
The divergence implies that such a mode can grow without
external stimulus until it is stabilized by nonlinear effects, as
it occurs in the distributed feedback lasers.

VI. DISCUSSION AND CONCLUSIONS

We now argue that Cerenkov-type plasmon instability in
Dirac materials in the HD regime and its absence in the
ballistic regime are linked to a singular structure of conductiv-
ity σ (q, ω) independent of particular dielectric environment.
These considerations should be applicable both to 2D and 3D
Dirac materials, where conductivity has square root and log
singularities [48], respectively, at ω = qv0.

The TM plasmon modes of arbitrary structure exist in
the domain of the positive imaginary part of conductivity
Imσ (q, ω) > 0 which, in the ballistic regime, lies above the
singularity, ω > qv0 [Fig. 1(c). The Cerenkov domain ω <

qu0 lies below the singularity. The position of the singularity

is insensitive to carrier drift. Therefore, one cannot thread
the plasmon modes through the singularity by a continuous
change of parameter u0. This, however, becomes possible in
the hydrodynamic regime (Kn � 1), where the singularity
is removed from the real frequency axis due to strong e-e
collisions. These arguments do not apply to combinations of
Dirac and parabolic-band materials (e.g., graphene parallel to
bulk collisionless plasma), where joint plasmon modes can
exist at ω < qu0.

The predicted effects can be readily tested experimentally.
The anomalous Doppler shifts of plasmons in graphene can
be measured with Raman spectroscopy [49]. The plasmon
instabilities can result in oscillatory current regimes [50] and
emission of terahertz radiation. Such emission can be distin-
guished from hot-plasmonic emission [51] by the presence of
well-defined threshold current [52]. Reflectance spectroscopy
of grating-gated 2DES is another convenient tool to study
Doppler shift and wave amplification [53].
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