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Comparative study of heat-driven and power-driven refrigerators
with Coulomb-coupled quantum dots
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Multiterminal multidot devices have been put forward as versatile and high-performing setups for thermoelec-
tric energy harvesting at the nanoscale. With a technique that encompasses and overtakes several of the usual
theoretical tools used in this context, we explore a three-terminal Coulomb-coupled-dot device for refrigeration
purposes. The refrigerator is monitored by either a voltage or a thermal bias. This comparative study shows that
the heat-driven refrigerator is underperforming relative to the power-driven one, due to scarce on-dot charge
fluctuations.
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I. INTRODUCTION

Thermoelectrics is a promising candidate for energy har-
vesting development. The investigation of thermoelectric
properties at the nanoscale has taken a leap forward recently.
It was sparked partly by a famous paper by Mahan and Sofo
[1], demonstrating that confinement and energy filtering that
are features of nanoscale systems can boost the thermoelec-
tric figure of merit. As an example Coulomb blockade dots
coupled by tunneling, or capacitively, can be nearly optimal
energy converters both in the two-terminal and three-terminal
environments [2–4]. Nanoscale thermal machines for refrig-
eration with quantum dots (QD) experience also a significant
development [5–9].

In the present paper we study a mesoscopic system con-
sisting of two quantum dots and three electronic reservoirs
as illustrated in Fig. 1. The dots are capacitively coupled by
Coulomb repulsion. This device was conceived by Sánchez
and Büttiker in Ref. [10]. It is quite versatile, and has been
suggested to realize an engine [10–13], for refrigeration
[14–16], for thermal control of charge current [11,17], and for
thermal diode and transistor engineering [11,18,19]. Recently
this setup was also proposed as a nanoscale thermometer [20].
One of its main appeal is the actual decoupling of charge
and heat currents, which constitutes a promising way to high-
performing devices [17,21].

The experimental side is not to be outdone, and the first
realization of the two-dot three-terminal device in the nano-
engine regime is due to Thierschmann et al., a work published
in Ref. [22] and reviewed in Ref. [17]. It was also experi-
mentally investigated for thermal gating [23]. Additionally,
a very similar device was recently conceived as the first
experimental autonomous Maxwell demon [24,25] and further
studied theoretically [26]. More broadly, in the buoyant field
of nanoscale thermoelectrics, other kinds of nanodevices have
been recently examined, essentially for energy harvesting
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purpose, heat diode realization, or in the Maxwell demon con-
text, both experimentally [27–29] and theoretically [30–39].
A short pedagogical review can be found in Ref. [40]. The
device sketched in Fig. 1 will be studied here for refrigeration
purpose, and two different settings will be analyzed and
compared. First one: by applying a thermal bias between
the two bottom reservoirs, an all-thermal refrigerator, without
any electric power (μL = μR), can be realized. This kind
of all-thermal machine is also sometimes called autonomous
[41], absorption [42–45], self-contained [46], or cooling by
heating refrigerator [15] (and references therein). All-thermal
refrigerator has a long history in thermodynamics, dating
back to 1857 where it was invented by Carré. However, its
first quantum experimental release, with three trapped ions,
is very recent [47]. The initial paper mentioning all-thermal
refrigeration within the present two-dot three-terminal setup
is to our knowledge by Benenti et al. [15]. This suggestion
was soon implemented by Erdman et al. [16]. Other all-
thermal quantum refrigerator devices have been explored, for
example, devices involving a small number of qubits or qutrits
[46,48], devices made of four QD [49] or implying three
levels coupled to bosonic baths [42,43]. See Ref. [44,45] and
references therein for other implementations.

Second setting: we shall consider the same device devised
as an electric refrigerator, namely monitored by a voltage bias
eV = μL − μR, applied between the two bottom leads [14].

The heat- and power-driven refrigerator properties have al-
ready been investigated in Refs. [14,16], though in a T -matrix
quantum master equation limited to sequential tunneling pro-
cesses (SQME). While this approximation is believed to be
valid for weak dot-lead tunnel couplings, higher orders as
cotunneling events can become quantitatively important [33]
even for weak coupling, particularly as shown recently close
to the maximum efficiency regime [50]. Similarly even in the
weak-coupling situation, broadening as well as energy shifts
can have a quantitative impact on performances. Furthermore
although strong tunnel coupling would be detrimental to fil-
tering and thus efficiency, it can be beneficial to power, and
is sometimes realized in experimental setups: for example in
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FIG. 1. Schematic representation of the device: the t dot (top) is
connected to a cold reservoir to be cooled, and coupled by Coulomb
interaction to a b dot (bottom). The latter is connected to two
reservoirs (left and right) through which voltage and thermal biases
can be applied.

Ref. [22], temperatures are of the same order of magnitude
as tunnel couplings. In the same kind of device, yet in the
context of Coulomb drag without thermal bias, the regime
where tunneling coupling is much higher that temperature has
been considered [51]. Besides, for nanodevice cooling pur-
pose, exploring the low-temperature regime where the weak-
coupling assumption can be ruled out, is a topic of interest
[15]. These issues demonstrate the usefulness of developing
a framework to access the strong coupling regime beyond
SQME, and even beyond QME that includes cotunneling.
There are not so many methods to address these operating
regimes. One can cite a numerical approach used by Bhandari
et al. in Ref. [33], a Keldysh nonequilibrium Green’s function
method including the one bubble correction beyond Hartree
in self-energy, recently developed in a closely related four ter-
minal device [52], and a noncrossing approximation (NCA),
which has been applied to the present device for the engine
appliance [13].

We use the NCA in the current work for refrigeration
purpose, we will show that the performances of the two
types of refrigerator are very different, due to on-dot charge
fluctuations that are rather scarce for the all-thermal setup.
If the latter is not very efficient and cannot be realized at
too low temperature, the electric refrigerator is rather high
performing. The outline is as follows: after a presentation of
our model and method in Sec. II, we address the case of the
all-thermal refrigerator in Sec. III, before the electric one in
Sec. IV. Summary and conclusions are displayed in Sec. V.

II. MODEL

The dots are indexed by t or b for top or bottom, and due
to a strong local Coulomb repulsion they are described by a
single nondegenerate orbital each. They are coupled together
through a nonlocal Coulomb repulsion U . This interaction
is schematically represented in Fig. 1 by a capacitive cou-
pling, not allowing any charge transfer. The three reservoirs
[respectively top (t), left bottom (L), and right bottom (R)]

are supposed to be equilibrium noninteracting Fermi seas,
with their own chemical potentials and temperatures. The
Hamiltonian describing the present device can be written as
H = H0 + HT , where the disconnected part for dots and leads
reads, in usual notations

H0 = εt n̂t + εbn̂b + Un̂t n̂b +
∑

α=t,L,R

H0α, (1)

with H0α = ∑
k εkαc†

kα
ckα , n̂b = d†

b db, and n̂t = d†
t dt . Hy-

bridization between dots and leads reads

HT =
∑

k

(Vkt c
†
kt dt + hc) +

∑
β=L,R

∑
k

(Vkβc†
kβ

db + hc). (2)

We choose as frequently used, the hybridization parameters to
depend only on the energy: Vkα = Vα (εkα ) [53]. In the Keldysh
Green’s function formalism [53], the stationary charge and
energy currents flowing outside an α reservoir into a dot can
be expressed as(

Je
α

JE
α

)
= i

h̄

∫
dε

2π

(
e
ε

)
�α (ε)

× [ fα (ε)G>
d (ε) + [1 − fα (ε)]G<

d (ε)], (3)

where G≶
d (ε) are the lesser and greater dot Green’s functions,

fα (ε) = (e(ε−μα )/(kBTα ) + 1)−1 is the Fermi function of the α

reservoir, and �α (ε) = 2πρα (ε)|Vα (ε)|2 is the effective dot-
lead hybridization function with ρα (ε) the lead density of
states, e > 0 is the elementary charge. In the integrands of
Eq. (3), the two terms can be interpreted as a balance between
in and out currents flowing between the dot and the α lead,
indeed, for fermions iG>

d (ε) � 0, whereas iG<
d (ε) � 0. In

general in and out currents are much larger than the difference.
The electric current flowing through the bottom part of the

device will be expressed from its symmetric expression, with
the convention of positive contribution of electrons traveling
from left to right: Je

b = Je
L = −Je

R = (Je
L − Je

R)/2, leading to

Je
b = ie

2h̄

∫
dε

2π
[G>

b (ε)(�L(ε) fL(ε) − �R(ε) fR(ε))

+ G<
b (ε)(�L(ε)(1 − fL(ε)) − �R(ε)(1 − fR(ε)))], (4)

where G≶
b (ε) are the Green’s functions for the bottom dot.

Finally the heat currents are defined by

JQ
α = JE

α − μα

e
Je
α. (5)

In the present convention, heat currents are positive for heat
extracted from the involved reservoir. In the refrigerator
device—it is also the case for the three-terminal two-dot
engine [10]—the hybridization functions between the b dot
and the connected reservoirs, �L(ε) and �R(ε), must be
different and not proportional. As a consequence the usual
simplification [53] that allows to calculate only the spectral
function Ab(ε) = i[G>

b (ε) − G<
b (ε)], and from which emerges

only the difference of Fermi functions, leading to a Landauer-
like formula, will not apply for the electric current in Eq. (4).
It does not apply either to the heat current extracted from the
t reservoir, which reads

JQ
t = i

h̄

∫
dε

2π
ε �t (ε)( ft G

>
t (ε) + (1 − ft (ε))G<

t (ε)), (6)
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where G≶
t (ε) are the Green’s functions for the t dot. In the

following we choose

�t (ε) = �t

�R(ε) = �b θ (ε − ε� )

�L(ε) = �R(−ε), (7)

with θ (ε − ε� ) the Heaviside function starting at the boundary
ε� = εb + U

2 . Engineering this kind of tunneling function may
be realized by making use of an additional quantum dot, or us-
ing metallic island as proposed recently [16]. In the following,
�b = �t = � will be the energy unit. We take kB = 1 and e =
1. Without limiting the generality of the foregoing, we choose
μt = 0. In the present model, the number of parameters is
already large: three temperatures, two dot levels εb and εt , as
well as the Coulomb repulsion U . Steering these parameters
enables to browse different regimes (engine, thermal gating,
refrigeration, etc.). Concerning experimental devices, these
parameters can be tuned by applying gate voltages and by
modifying the distance between the dots.

Let us emphasize that too simple treatment that neglects
fluctuations, such as static mean-field approach, cannot ad-
dress the properties of the present or related devices [13,54].
To our knowledge the three-terminal two-dot thermal machine
was only studied, except in Ref. [13], in the framework of
QME, with [55] or without [14,16] cotunneling corrections.
To calculate the Green’s functions to obtain the currents,
we use a noncrossing approximation [56], which is a simple
current-conserving approximation [57], and which has led
to useful insights in the context of the Anderson impurity
model, notably predicting the Kondo resonance and its energy
scale. It is a fictitious particle technique [58] that was readily
extended in the Keldysh formalism to study nonequilibrium
properties [57,59]. This approximation is valid for U � �,
better for high orbital degeneracy, but there is no restriction
concerning temperatures compared to hybridization �, except
at temperature much lower than the Kondo temperature. The
NCA was initially designed to study the infinite U situation,
and later extended to consider finite Coulomb repulsion by
including vertex corrections [60–63]. For the problem at hand,
we need and use a finite U version of the NCA, but we do
not take into account these vertex corrections. Indeed going
beyond, by developing the one crossing approximation (OCA)
would involve significant numerical effort in the present out-
of-equilibrium regime as detailed in Ref. [13]. Furthermore,
OCA is not a universal panacea [64]. The present way to apply
the finite-U NCA is not flawless as raised in Refs. [38,65],
however, the explored parameter regimes are such that we
keep away from the region where severe problems such as
underestimation of the Kondo resonance temperature arise
[66].

In the present approach the four nonequilibrium Green’s
functions (G≶

b,t ), characterizing the bottom and top dots
are expressed in terms of eight Green’s functions for four
pseudoparticles, which are coupled and calculated self-
consistently. The details of the self-consistent expressions
were reported in Appendix A of Ref. [13]. The NCA is able to
capture the atomic limit when � → 0, and as a consequence in
this limit, it encompasses QME that includes cotunneling, as

shown in Ref. [13] for the engine setup. Electric and thermal
currents that are tied by conservation demands, depend on tiny
details of Green’s functions. In addition self-consistent calcu-
lations of the latter give results that are not very intuitive. As a
consequence the numerical results will be hardly substantiated
by analytical behaviors. In the present formalism, we calculate
only averages of heat and charge currents, however, current
fluctuations, which have been analyzed in this kind of setup
[54,67–69], manifest themselves as will be discussed for the
electric refrigerator.

From the heat currents, we can also readily evaluate the
entropy production rate in the three reservoirs. It reads Ṡ0 =
− JQ

t
Tt

− JQ
L

TL
− JQ

R
TR

. Using the first principle and the heat current
definition, we can rewrite it in the present notations as

Ṡ0 = JQ
L

(
1

TR
− 1

TL

)
+ JQ

t

(
1

TR
− 1

Tt

)
+ (μL − μR)Je

b/e

TR
.

(8)
This expression will be specified in the following for the two
types of refrigerator. The NCA satisfies energy and charge
conservation. In our calculations, we have checked that the
second law Ṡ0 > 0 is also fulfilled. This is not straightforward:
for example the second principle may be violated in some
local master equation approach [70].

III. ALL-THERMAL REFRIGERATOR

An all-thermal refrigerator can be realized without work
injection: to transfer heat from a cold source to a hot one, heat
supplied by a source even hotter than the previous two can
substitute to the injected work. For the present three sources
indexed by L, R, and t , in descending order of temperature,
the thermal machine will be a refrigerator if a positive JQ

L can
trigger a positive JQ

t , while in accordance with the first prin-
ciple JQ

R = −JQ
t − JQ

L will be negative. The coefficient of per-
formance (COP) is defined by the ratio JQ

t /JQ
L and is bounded

from above by the one ascribed to a reversible process

COP � Tt

TR − Tt

(
1 − TR

TL

)
. (9)

The reversible COP is the product of the efficiency of an
engine whose heat sources are the hot and warm reservoirs
times the COP of a refrigerator operating between the
warm and cold reservoirs. The COP bound of an all-thermal
refrigerator is thus smaller than the one characterizing a
standard refrigerator operating between the warm and cold
sources. We choose for the present device μR = μL = 0.

As detailed by Benenti et al. in Ref. [15], in a sequential
framework, the cooling process can be schematized by some
sequence among the two-dot states. Labeling the states by 0, b,
t , and 2, respectively, for empty, bottom-dot occupied, top-dot
occupied, and doubly occupied states, the cooling process
corresponds to the following sequence: 0-b-2-t-0; hence, the
electron coming from the top reservoir to fill the doubly
occupied state borrowing the energy εt + U , will reenter the
same reservoir with an energy reduced by U . In the same time
an electron crosses the bottom dot, from the left to the right as
a consequence of the choice of the functions �L and �R. This
picture has been used in the SQME approach to delineate the
parameter region where expecting the cooling regime [15].
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FIG. 2. Maps of Je
b (left) and JQ

t (right) as functions of εb and εt , for U = 10, TL = 4, TR = 2.1, and Tt = 2 in �b units. Je
b is in e�/h̄ unit,

JQ
t in �2/h̄ unit. Contour show the location corresponding to the cancelation of the currents. Other contours indicate also higher current values,

respectively, (2 × 10−4, 4 × 10−4, 8 × 10−4) for charge and (5 × 10−4, 8 × 10−4, 10−3) for heat.

In SQME such a cycle leads to a total reservoir entropy
variation of 	S0 = −εb/TL − (εt + U )/Tt + (εb + U )/TR +
εt/Tt . For the sequence 0-b-2-t-0 to spontaneously occur, one
needs 	S0 > 0, which leads to εb > U TL

Tt

(TR−Tt )
(TL−TR ) � 0. This

inequality was also laid out in Ref. [16], to ensure positive
heat current streaming from the cold reservoir. We stress that
this inequality is only for indicative purpose in the present
paper, and as will be shown numerically later, this criterion is
not sufficient to guarantee the refrigerator regime beyond the
SQME framework.

Another guide for seeking the cooling regime can be drawn
from the examination of the probabilities of the four two-
dot states, respectively, p0, pb, pt , and p2. They are tied by
the normalization sum: p0 + pb + pt + p2 = 1, and related
to the dot occupancies: the mean number of electrons on
the dots are 〈nb〉 = pb + p2, and 〈nt 〉 = pt + p2. The double
occupancy is equal to the probability of the doubly occupied
state: 〈nbnt 〉 = p2. For the sequence 0-b-2-t-0 to occur, none
of the four probabilities should be too low, in other words
on-dot charge fluctuations must be as important as possi-
ble. The parameter regime allowing the cooling operation is
thus subject to competing requests: as suggested by entropy
consideration in SQME, one must have at least positive εb

and so εb + U : however, this leads to a b dot with a low
occupancy that is detrimental to charge fluctuations [71]. As
a consequence the desired cooling regime is rather narrow,
and characterized by low performances as shown in the
next figures. To alleviate these adverse effects, the modeling
adopted in Ref. [16], which is otherwise the same as in the
present paper, makes a major different hypothesis. Erdman
et al. do not presume a priori any relation between what
they call �out/in

α (0) and �out/in
α (1)[72]. They choose them

by optimization, and in the present notations this leads to
equalities between �t (εt )(1 − ft (εt )), �t (εt + U ) ft (εt + U ),
�L(εb)(1 − fL(εb)), and �R(εb + U ) fR(εb + U ). Their choice
is advantageous for the all-thermal regime. In our model, it
would require a tricky monitoring of the different dot-lead
hybridization functions to achieve the preceding equality. For
the parameters explored in the present paper, with the choice
of Eq. (7), we have up to three orders of magnitude between
the preceding four tunneling terms.

In Fig. 2 the charge and heat currents of interest are
plotted as functions of the b- and t-dot energies. A contour
delimits the respective positive and negative regions, some
current levels are also indicated. For the present parameters,
the SQME entropy criteria would predict a cooling regime for
εb exceeding 1.05. Furthermore in SQME, cooling power and
electric current are proportionate and their ratio attains U/e.
The left panel of Fig. 2 reveals that the span of the cooling
regime is much narrower, and also depends on εt . Furthermore
the signs of JQ

t and Je
b are not simply connected. Finally, the

ratio of JQ
t to Je

b varies and barely reaches 5�
e for the present

parameters, in contrast to U/e = 10 �
e expected in SQME.

For the present parameters, we find a maximum electric
current of 8.36 × 10−4 e�

h̄ , reached for εt = −3.8, and εb = 3,

whereas the maximum cooling power is 0.13 × 10−2 �2

h̄ , for
εt = −9 and εb = 5. A benchmark of the cooling power is
the quantum bound per channel [73–75], which attains for
the current parameters 0.52 �2

h̄ , indicating that the maximum
cooling power stays more than 400 times smaller than this
value. The quantum bound π2

12h k2
BT 2

t , was found to be the
maximum cooling power that can be extracted per channel
through a device that can be described by a Landauer-type
formula. It was shown that under some widespread hypothesis
(noninteracting leads and proportionate left and right lead-
dot couplings) the Landauer current expression holds even
for Coulomb coupled carriers [76]. As a consequence, under
the preceding suppositions, this bound is valid for one-dot
two-terminal setup with Coulomb repulsion. However, in
the present two-dot three-terminal geometry for which the
assumptions are not fulfilled, the bound is only an indicative
benchmark. Recently Luo et al. [77] established a bound for
cooling power for interacting classical systems that is higher
than the aforementioned one by a factor of 12/π2.

It is not easy to predict the signs of heat and charge cur-
rents, except if the tunneling boundary ε� = εb + U

2 satisfies
ε� < μL, (εb < −5 for the parameters of Fig. 2). Then a
positive Je

b would heat the L reservoir, because the escape
of an electron would correspond inevitably to a depletion
under the chemical potential μL. However, this is forbidden by
thermodynamics: TL being the highest temperature, in absence
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FIG. 3. Dot spectral functions, for the same parameters as in
Fig. 2, for εb = 5 and two values of εt . Left: spectral function of
bottom dot. Right: spectral function of top dot.

of any injected power, the L source must cool down. Thus
for ε� < μL, Je

b must be negative. To extend the discussion
about charge and heat current signs for other parameter values,
one has to resort to the approximation of narrow Green’s
function peaks. Within this approximation one can discuss the
cancelation of Je

b close to the line εb = 0. If εb < μL = 0 and
εb + U > μR = 0, JQ

L > 0 entails Je
b < 0: adding an electron

under the chemical potential cools the L lead, whereas the
exit of the charge from the R reservoir above its chemical
potential cools it also. Thus JQ

R > 0, it follows that JQ
t < 0.

For εb > μL and still narrow Green’s function peaks, JQ
L > 0

results in Je
b > 0 and JQ

R < 0. The preceding signs alone do
not enable us to fix the sign of JQ

t . The above discussion
shows that Je

b < 0 triggers JQ
t < 0; we observed this result

even when taking into account Green’s functions with their
finite width. However, positive Je

b does not bring JQ
t positivity.

With narrow peaks, Je
b cancels for εb = 0. From the left panel

of Fig. 2, the frontier appears a little bit displaced due to the
finite width of the Green’s functions G≶

b (ε), and influenced by
the εt value.

The influence of εt onto the b-dot Green’s functions can
be noticed in Fig. 3 where the spectral function Ab = i(G>

b −
G<

b ) is displayed as a function of energy for εb = 5, for the
same parameters as in Fig. 2 and two different values of εt =
−10,−5. The peak positions, roughly located at εb and εb +
U , are slightly shifted by high |εt | value; more importantly the

peaks amplitudes are modified. For the present parameters,
one has Ab quite similar to iG>

b , this is related to the low b-dot
occupancy. The corresponding t-dot spectral function is also
presented in the right part of Fig. 3. Due to the high t-dot
occupancy, one has At fairly close to −iG<

t . Finally, when εb

raises, Je
b eventually decreases; it is simply related to the Fermi

function behavior: as εb rises, less charges are available in the
L reservoir to flow through the device.

In Fig. 4, a map of the COP for the same parameters as
in Fig. 2 is displayed (left), together with a graph of the
cooling power as a function of the COP (right). The maximum
COP is achieved for εt = −12, and εb = 5.75, and attains
0.484, barely more than 1/20 of the reversible one equal
to 9.5. In the right panel of the figure, the different curves
correspond to different εb values, and are roamed clockwise
as εt decreases. Following one curve, it can be seen that
the maximum cooling power and the maximum COP do
not coincide, requiring a compromise in operating this kind
of refrigerator. Adopting a tunnel coupling value of � �
20 μeV, compatible with the experimental value reported in
Ref. [22], the present parameters correspond to TL � 1 K, and
U = 0.2 meV. The maximum charge current reaches about
4 pA, and the maximum cooling power hits 0.13 fW. At the
maximum cooling power, the COP is 0.328, and we find the
following probabilities describing the two-dot states: pb =
4 10−3, pt = 0.952, p2 = 0.013, and p0 = 0.031. The low
pb value is probably connected to the low performances.

The all-thermal refrigerator regime is suppressed if source
temperatures are significantly reduced. We interpret it as
a lack of on-dot charge fluctuations that get even smaller
than the previous ones when temperatures lower. The energy
current values in the all-thermal device are very sensitive to
the difference (TR − Tt ). The best performances are obtained
for TR = Tt , for which, for the same parameters as previ-
ously, except TR = 2, the maximum cooling power nearly
doubles compared to the previous case, and the COP attains
0.65. Meanwhile, for TR − Tt = 0.4, Tt = 2, and TL = 4, the
cooling regime is very narrow in the (εb, εt ) space and un-
derperforming: achieving a maximal COP around 0.1, and a

FIG. 4. Left: map of the COP as function of εb and εt and some contours (0.1, 0.2, 0.3, 0.4). Right: JQ
t as a function of the COP for different

values of εb. The parameters are the same as in Fig. 2.
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FIG. 5. Cooling power in �2/h̄ unit, as function of the COP, for
U = 10, εt = −5, Tt = 1, Tb = Tt + 	T . Left: for different values
of 	T = 0, 0.1, 0.2, 0.3, 0.4, and εb = −5. Right: for different val-
ues of εb = −5, −2.5, 0, 2.5, 5, and 	T = 0.1. See text for further
explanation.

maximum cooling power close to 10−4 in �2/h̄ units. The
influence of (TR − Tt ), keeping (TL − Tt ) unchanged, can be
understood from entropy consideration. For the all-thermal
refrigerator, the last term of Eq. (8) cancels, and it can be
seen that in the cooling regime (JQ

t > 0), TR → Tt has a
positive effect on the two terms of the entropy production
rate: enhancing the positive contribution and reducing the
negative one. Experimentally it can be advantageous: thermal
insulation can be tricky at the nanoscale, but it appears that
a bad thermal insulation between R and t reservoirs can be
favorable. The case TR = Tt may sound paradoxical: in this
case the all-thermal refrigerator is only a two-temperature
machine without any injected power. Extracting heat from the
cold t reservoir is nevertheless possible and may seem to be
violating the second law statement. Obviously the paradox is
solved by accounting for the whole cold bath made of the R
and t reservoirs, that globally gains heat from the L hot source.

IV. ELECTRIC REFRIGERATOR

We turn to the case where cooling of the cold t reservoir is
monitored by a voltage bias V applied between the two bottom
sources. We apply it symmetrically, choosing μL = −μR =
V
2 , and adopt the following notations: TL = TR = Tb = Tt +
	T . The COP is defined in the present case by the ratio:
JQ

t /(Je
b × V ) and bounded by the reversible one Tt/(Tb − Tt ).

Our calculations establish that choosing εt = εb = −U
2 , which

corresponds to half-filled dots, is advantageous for the charge
current and cooling power: all other factors being equal,
charge and thermal currents as well as COP are higher, due to
the favorable on dot fluctuations at half-filling [71]. In Fig. 5
the cooling power is displayed as a function of the COP. The
different curves correspond to different values of 	T (left)
or to different values of εb (right). Along all the different
lines, JQ

t and V rise concurrently. They were obtained for
U = 10, εt = −5, and Tt = 1. For the left plot one has εb = εt ,
and for the same value of JQ

t , raising 	T lowers the COP.
This behavior can be enlightened by the following remarks
concerning JQ

t (V ) and Je
b (V ): as will be discussed soon, for

V = 0, JQ
t , and Je

b are negative, and a higher 	T leads to a
higher |JQ

t | as expected for heat transfers between different
temperature sources. This is achieved by a Je

b that grows also

FIG. 6. Electric current (black, left scale) and cooling power
(blue, right scale) as a function of V , for U = 10, εt = εb = −5,
Tt = 1, and Tb = 1.1.

with 	T in absolute value. JQ
t and Je

b increase with V , and
a finite voltage bias eventually reverses the signs of Je

b and
JQ

t such that the machine switches to the refrigerator regime.
However, JQ

t and Je
b stay lower for higher 	T because of

their lower V = 0 starting point. For 	T = 0, the COP is
infinite at V = 0 because charge and heat currents cancel
proportionately. For the right plot of Fig. 5, 	T = 0.1, and
for the same y value, the COP gets lower as εb moves away
from −U

2 . The reversible COP for the parameters of the right
part of Fig. 5 is 10.

In both panels of Fig. 5 it appears that JQ
t saturates at high

bias, the same behavior is observed for Je
b as can be seen in

Fig. 6. This is easy to unravel in the case of Je
b : the L-Fermi

function differs from its zero-temperature values by less that
2% when moving away from the chemical potential μL = eV

2 ,
by 4Tb on both sides. Then for ε� � μL − 4Tb, that is with the
present parameters V � 8Tb = 8.8, the charge current flowing
in between the L lead and the b dot will not really depend
anymore on the bias. The same argument applies to JQ

R and JQ
L ,

and as a consequence to JQ
t . The cooling power and electric

current saturation values do not depend on 	T , nor on εb:
they only depend on U and Tt (we choose εt = −U/2). In
this last figure, it is obvious that heat and electric currents are
not proportionate: the ratio is lower than predicted by SQME
as previously discussed, due to cotunneling and higher-order
processes.

In Fig. 6 we observe that both currents are negative at null
bias. For JQ

t it is a consequence of the second law. Indeed
in absence of any input power, the cold source can only get
warmer, leading in our convention to JQ

t < 0. Then as the
voltage bias rises, the current signs will eventually change. We
can understand that the first quantity to cancel is the electric
current. Indeed, from the Eq. (8), adjusted to the present case
and notations, one has

Ṡ0 = JQ
t

(
1

Tb
− 1

Tt

)
+ V Je

b

Tb
. (10)

For V > 0, as long as Je
b � 0, JQ

t must be also negative such
as to guarantee the positivity of the entropy production rate. A
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FIG. 7. COP (left) and χ (right) as a function of V for U = 10,
εt = εb = −U/2, Tt = 1, Tb = 1.1.

situation with a positive Je
b and a negative JQ

t , as was already
observed in some parameter range of the all-thermal refrig-
erator, relies on the breadth of the Green’s functions. At the
specific voltage for which Je

b = 0, charge current fluctuations
reduce the heat flow between hot and cold sources by a factor
around 3 compared to the null bias situation. When the bias
is such that JQ

t = 0 whereas Je
b > 0, the two dots not only do

not share any charge, but also no energy on average. However,
current fluctuations as earlier are at work, such that the dots
are not independent from each other as witnessed by the finite
current Je

b . In brief, with broadened Green’s functions, cooling
power and electric current probably do not cancel for the same
bias. However, thermodynamics prevents JQ

t to cancel as long
as Je

b is negative.
For U = 10, εb = εt = −U

2 , Tt = 1, and 	T = 0.1, the
asymptotic charge current reaches 7.92 × 10−3 e�

h̄ , whereas

the asymptotic heat current is 2.67 × 10−2 �2

h̄ . This last value
can be compared to the bound predicted by Whitney [73,74]
for a one-channel two-terminal setup, which attains 0.13 in
the same units, making the electric refrigerator significantly
higher performing than the all-thermal one, with a ratio
JQ

asym/JQ
qb close to 1/5 (JQ

max/JQ
qb was close to 1/400 for the

all-thermal machine). However, the asymptotic cooling power
is not very interesting, due to the corresponding null COP.
The Fig. 7 (left) completes the picture by showing a graph
of the COP as a function of V for the same parameters as in
Fig. 6. The COP increases in an abrupt way before attaining its
maximum at low bias, reaching 2.24 (the reversible one is 10),
and afterwards scales as 1/V at high bias as a consequence of
both current saturations. In contrast to the engine, for which
maximum output power and maximum efficiency nearly coin-
cide (see Fig. 4 of Ref. [13]), a compromise has to be found in
selecting an operating point for the present thermal machine:
at the maximum COP, the cooling power is only 17% of its

asymptotic value. A way to select the operating point of this
refrigerator, is to use the χ criterion [78,79]. The χ function
is defined as χ = COP × JQ

t , and is plotted in Fig. 7 (right)
as a function of bias for the same parameters as in the left
panel. At maximum χ , the COP still reaches 1.33, whereas
the cooling power is equal to 55% of its asymptotic value,
the charge current attains also 55% of its asymptotic value.
With � � 20 μeV, the currents flowing through the device at
maximum χ are the following: a charge current of 22 pA, and
a cooling power of 1.4 fW.

For the parameters of Fig. 6, the two dots are half-filled as a
consequence of εb = εt = −U/2. As V rises, the probabilities
of the different two-dot states are stable from low to high
bias: pt = pb � 0.46, whereas p2 = p0 � 0.04: the present
situation is different from the one encountered for the all-
thermal refrigerator machine, where pt was much lower.

V. CONCLUSIONS

Using a formalism that was set up for strongly correlated
systems [80], which fulfills the first and second principles,
we have presented a comparative study between two types of
refrigerators, one of them being powered by heat, the other
one by electric supply. The latter is rather competitive in
terms of cooling power, which reaches a significant fraction
of the quantum bound. This study shows that for the same
reservoir properties, the all-thermal refrigerator is much less
competitive and is limited in its operating regime. The reason
for these underperforming properties resides in the lack of
on-dot charge fluctuations. However, these might be proba-
bly magnified by reservoir engineering as proposed in Ref.
[42,81]. Modifying bath properties by DOS or hybridization
tailoring deserves to be explored and may be compatible with
the NCA technique. This is left for further studies.

The case of the power-driven refrigerator confirms the
primacy of the three-terminal geometry over the two-terminal
one. Indeed attaining an appreciable fraction of the cooling
power quantum bound per channel, as obtained in this paper,
is not guaranteed. This was also pointed out for the three-
terminal two-dot engine where the output power achieved a
substantial part of the corresponding quantum bound [13].
The present setup takes benefit from the three-terminal ge-
ometry [82,83] combined with a favorable effect of electronic
correlations [77].
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