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Suppressing backscattering of helical edge modes with a spin bath
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We address the question of stability of protected helical edge states at the boundary of two-dimensional
topological insulators upon interactions with the external bath. We study how backscattering amplitude changes
when different interaction channels between the system and the environment are present. Drawing an analogy
with the concept of pointer states in theory of open quantum systems, we demonstrate that in a certain regime
the interplay between the Coulomb and the spin-spin interactions can make the backscattering process strictly
irrelevant, and the helical modes become robust states with a well-defined momentum. This opens a possibility
to use the external spin bath as a stabilizer that alleviates destructive effects and restores the helicity protection.

DOI: 10.1103/PhysRevB.100.195426

I. INTRODUCTION

Topological insulators (TIs) are characterized by the ex-
istence of protected helical edge states—one-dimensional
helical modes at the edges of two-dimensional TIs, and
two-dimensional massless Dirac fermions at the surfaces of
three-dimensional TIs [1–7]. This is a manifestation of a very
general “bulk-edge correspondence” principle [8–11] which
is probably one of the brightest applications of topologi-
cal and geometrical concepts in condensed-matter physics.
Importantly, topological protection of the edge states is not
absolute: they can be broken by spin-dependent scattering
mechanisms such as scattering on magnetic impurities [6,12–
14] or electron-electron interactions [15]. These factors result
in the backscattering and destruction of the helical modes, due
to the intimate relation between their propagation direction
and the direction of spins: if one flips the spin, one reverses the
momentum. This effect has been considered from many per-
spectives, and a variety of its possible physical consequences
on the transport and spectral properties of helical channels
have been studied (see, e.g., [16,17]). For a detailed study of
the effect of static magnetic impurities on the backscattering
we refer the reader to1 [18,19]. An interesting mechanism of
formation of such magnetic moments from charge puddles has
been suggested and analyzed in [20,21]. Similarly, emergence
of magnetic scatterers from nonmagnetic impurities in combi-
nation with on-site electron-electron interactions was recently
demonstrated in [22].
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do not always lead to destruction of the quantized conductance, but
only in the case of anisotropic exchange [19].

Because of the importance of practical implications of
helical edge modes, such as ultrafast high-performance elec-
tronics or topological quantum computers [23], it is interest-
ing to think of possible ways to reduce (or even eliminate)
backscattering and make the edge modes more stable. An
elegant approach to solving this problem can be deduced
from the decoherence program in quantum physics [24,25]
(for the recent critical discussion of it, see [26]). According
to this program, instant interactions between the system and
the environment can be thought of as effective von Neumann
projective measurements, and if the interactions are strong
enough, they tend to stabilize the system in eigenstates of the
interaction Hamiltonian. In the context of helical edge modes,
it is tempting to think of a way to define projective measure-
ments that stabilize states of well-defined momentum. Since
momentum of a helical mode is coupled to its spin direction,
one can try to attain the goal by making the spins classical via
the “orthogonality catastrophe”: if the environment degrees
of freedom get entangled with spin-up and spin-down states
of the system, the small overlap of the corresponding wave
functions would suppress the amplitude of spin-flip processes
[27–29].

Relying on this intuition, we suggest to couple the channel
to a spin environment. While environment consisting of static
spin degrees of freedom acts as a set of magnetic impurities
that induce and amplify backscattering [30,31], the physics
of fast itinerant spins can be very different, as known in the
theory of magnetic resonance [32,33]. Indeed, in that case a
strong static disorder broadens the line, due to a distribution
of local resonant frequencies, whereas strong dynamic fluc-
tuations narrow the line, due to averaging of the modulated
fields (exchange or motional narrowing).

A related model, where dissipation induces decoherence
in a Luttinger liquid, has been studied in [34]. The prototype
model for the orthogonality suppression is a polaronic band
narrowing [35,36]: if the on-site electron-phonon interaction
energy is larger than the hopping amplitude (antiadiabatic
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regime) the latter is renormalized by an overlap function of
phonon ground states at the electron situated at the left site
and at the electron situated at the right site. In this sense, the
localized on-site electron states are stabilized by the interac-
tion with phonon environment: the probability amplitude to
jump to another side is exponentially suppressed compared to
the case of no electron-phonon interaction.

For the edge modes, this would mean stabilization of
the states with definite momenta because the inversion of
the propagation direction implies the spin reversal, but the
probability amplitude of such a process is suppressed by the
overlap of the corresponding ground states of the spin bath.
In the terminology of Zurek [24], the states with a definite
propagation direction appear to be “pointer states,” robust
upon the interactions with the environment.

Here we provide a formal analysis of the effect the en-
vironment has on the backscattering of helical states, using
the renormalization-group approach similar to the one used
in Refs. [28,37–40]. It turns out that, depending on the ratio
of the exchange and direct interactions, the environment can
both suppress and enhance the backscattering.

The paper is organized as follows. In the next section,
we introduce the model of a helical channel interacting with
environment. In Sec. III, we derive 1-loop renormalization
group equations for this model. In Sec. IV, we solve these
equations numerically for the case of Bi2Te3 topological
insulator and construct phase diagram of the model. Finally,
in Sec. V, we discuss possible implications of our results.
In the Appendixes, we provide some additional results for
another type of 1d channel, InAs/GaSb quantum well, where
the effect of suppression seems more pronounced, and discuss
the possible role of spin-orbital coupling.

II. MODEL

We start with the following one-dimensional s-d model,
which, albeit simple, captures all the relevant aspects of more
complicated and peculiar systems:

H =
∑

k

c†(k)Hc(k)c(k) +
∑

k;i=1,2

d†
i (k)Hd

i (k)di(k)

− J
∑

q

(∑
k

c†(k)�σc(k + q)

)

×
⎛
⎝ ∑

p;i=1,2

d†
i (p)�σdi(p − q)

⎞
⎠, (1)

where �σ are the Pauli matrices, k is the one-dimensional
spatial momentum, and the standard notation is used:

∑
k

=
∫ π/a

−π/a

adk

2π
, (2)

where a is the lattice constant. Here c(k) and d1,2(k) are the
helical edge modes of topological insulator and the environ-
ment degrees of freedom, respectively:

c(k) = (c↑(k), c↓(k)), di(k) = (d↑
i (k), d↓

i (k)), (3)

and the Hamiltonians of each sector are given by

Hc(k) =
(

h̄vF k h0

h0 −h̄vF k

)
, (4)

Hd
1,2(k) =

(±h̄ck 0
0 ±h̄ck

)
. (5)

The bare backscattering is introduced via the off-diagonal
term h0 of the edge modes Hamiltonian. A concrete mech-
anism that induces backscattering is not important for our
considerations. Since there is no preferred helicity in the
environment, we take into account both right-moving (i =
1) and left-moving (i = 2) particles, and represent them for
simplicity as two independent fermionic flavors. The chosen
environment Hamiltonian looks like a perfect scattering-free
channel, and we need to comment on how legitimate this
assumption is. Of course, in a general case Hd would have off-
diagonal terms which might have some effect on the physics.
However, in what follows, we will analyze how the parameter
h0 controlling backscattering in the edge channel changes due
to the interactions with the spin environment, relying upon
the perturbative renormalization-group approach [28,37–40].
Given that the off-diagonal terms of Hd are not very large (let’s
denote them he), they will enter only the subleading terms of
the perturbative expansion, ∼heJJ , and would not alternate
the leading-order renormalization-group (RG) flow equations.
Therefore we impose he = 0 from the very beginning, bearing
in mind that our considerations remain valid for a “dirty”
environment within the adopted level of approximation.

As will be evident, other interaction channels will be in-
duced on top of the isotropic spin-spin interaction introduced
in the Hamiltonian (1), and it turns out to be convenient to
include them into the original Hamiltonian as a generalized
vertex:

Hint = �
(i)
αβγ δ

∑
q,p,k

c†
α (k)cβ (k + q)d†

i,γ (p)di,δ (p − q), (6)

�
(i)
αβγ δ = J (i)

00 Iαβ ⊗ Iγ δ + J (i)
zz σ z

αβ ⊗ σ z
γ δ

+ J (i)
(
σ x

αβ ⊗ σ x
γ δ + σ

y
αβ ⊗ σ

y
γ δ

)
+ J (i)

0z Iαβ ⊗ σ z
γ δ + J (i)

z0 σ z
αβ ⊗ Iγ δ, (7)

where we also added the Coulomb channel J00, the spin-
charge channels J0z and Jz0, and the possible anisotropy be-
tween Z and XY spin couplings. This reduces to the isotropic
spin interaction of (1) if

J (i)
00 = J (i)

0z = J (i)
z0 = 0, J (i)

zz = J (i) = J. (8)

To make the notations more handy and reduce the number of
indices, hereinafter we denote the coupling constants J (1) as
plain J , and J (2) as J̃ .

III. RENORMALIZATION-GROUP FLOW EQUATIONS

As we elaborated on in the Introduction, we expect the
spin-spin interactions between the edge of the topological
insulator and the bath to make pointer states of the system to
be states with well-defined spin, and thus stabilize the helical
modes. In terms of the renormalization-group flow for the
model (6), (7), it means that the mode-mixing parameter h
is expected to become irrelevant in the infrared.
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FIG. 1. Self-energy correction to the helical edge modes. Wavy
lines denote the propagators of the environment modes. Latin letters
stand for x, y, z, and the Greek ones denote the spin indices. Sum over
all combinations of A, B,C, D allowed by the structure of vertex (7)
has to be taken.

The leading-order quantum correction to h is given by the
off-diagonal part of the two-loop self-energy diagram shown
in Fig. 1 (from now on all calculations will be conducted for
the Matsubara Green’s functions):

G−1
c (iω, k) = G−1

c,0(iω, k) − 
(iω, k),

h(iω, k) = h0 + 
01(iω, k), (9)

where the bare Green’s function of edge fermions is related to
their Hamiltonian (4) as

G−1
c,0(iω, k) = iωI − Hc(k). (10)

The polarization loop is given by a simple integral:

�AC
1,2(p) =

∫ π/a

−π/a

adq

2π

∫ ∞

−∞

dωq

2π
Tr[σ AGd1,2 (iωp + iωq, p + q)

× σCGd1,2 (−iωq,−q)]

= ap

π (∓iωp + h̄cp)
δAC . (11)

To obtain the self-energy correction, we need to sum over all
possible combinations of A, B,C, D indices in Fig. 1 that give
nontrivial contributions, as well as over the two flavors of the
environment modes. The resulting expression at zero external
momentum is


01(0, 0) = −
∫ π/a

−π/a

adq

2π

∫ ∞

−∞

dωp

2π

ahq(
h2 + ω2

q + h̄2v2
F q2

)
×

(
α(J )

iπωq − π h̄cq
− α(J̃ )

iπωq + π h̄cq

)
, (12)

where we introduced

α(J ) = J2
00 + J2

0z − J2
z0 − J2

zz. (13)

Although there is a natural ultraviolet (UV) cutoff given by
the lattice constant a, it is convenient to formally consider the
momentum integral over the second loop as logarithmically
divergent in the a → 0 limit, as it allows to extract the leading
scaling that defines the renormalizationgroup flow. Evaluating
the integral over frequencies via residues, and then expanding
the integrand around |q| → ∞, we obtain the correction to
backscattering amplitude from a thin momentum shell |q| ∈
[�,� + d�]:

h(� + d�) = h(�) + δ
01 = h(�) − 2

4π2

∫ �+d�

�

a2h(q)[α(J ) + α(J̃ )]dq√
h(q)2 + h̄2v2

F q2
(
h̄cq +

√
h(q)2 + h̄2v2

F q2
)

= h(�) − 1

2π2
h(�)

∫ �+d�

�

a2[α(J ) + α(J̃ )]dq

h̄2vF (c + vF )q
, (14)

where the additional overall factor of 2 is due to integration
over both positive and negative momenta. That is, we obtain
the corresponding flow equation:

dh

dln�
= − a2h

2π2h̄2vF (c + vF )
[α(J ) + α(J̃ )]. (15)

If we ignore for a moment renormalization of other parameters
of the model, we can readily conclude that

h(�) = h0

(
�

�UV

)γ

, (16)

where for further convenience we introduce a notation for the
exponent, as it serves as a good measure of the “irrelevance”
of backscattering:

γ = − a2

2π2h̄2vF (c + vF )
[α(J ) + α(J̃ )]. (17)

If only spin-spin interactions are present

α(J ) + α(J̃ ) = −J2
zz − J̃2

zz, (18)

and the mode mixing is clearly irrelevant in the infrared limit
� → 0 (γ > 0).

However, this naive treatment is incomplete; to obtain a full
picture of interaction effects in this model also requires taking
into account renormalization of the coupling matrices �(1,2),
and the Fermi velocities vF and c.

Renormalization of the couplings is given by the one-loop
vertex diagram shown in Fig. 2. The corresponding momen-
tum integral is also logarithmically divergent, and, omitting
the intermediate steps similar to what we have done when
computing the backscattering amplitude renormalization, we
arrive at the following system of RG flow equations:

dJ

dln�
= a

π h̄(c + vF )
J (J00 + J0z − Jz0 − Jzz )

dJ̃

dln�
= a

π h̄(c + vF )
J̃ (J̃00 − J̃0z + J̃z0 − J̃zz ),
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FIG. 2. Vertex correction to the coupling matrices �(1,2).

dJ00

dln�
= a

2π h̄(c + vF )
[2J2 + (J00 − Jz0)2 + (J0z − Jzz )2]

dJ̃00

dln�
= a

2π h̄(c + vF )
(2J̃2 + (J̃00 + J̃z0)2 + (J̃0z + J̃zz )2),

dJ0z

dln�
= − a

π h̄(c + vF )
[J2 − (J00 − Jz0)(J0z − Jzz )]

dJ̃0z

dln�
= a

π h̄(c + vF )
(J̃2 + (J̃00 + J̃z0)(J̃0z + J̃zz )),

dJz0

dln�
= a

2π h̄(c + vF )
[2J2 − (J00 − Jz0)2 − (J0z − Jzz )2]

dJ̃z0

dln�
= a

2π h̄(c + vF )
(−2J̃2 + (J̃00 + J̃z0)2 + (J̃0z + J̃zz )2),

dJzz

dln�
= − a

π h̄(c + vF )
[J2 + (J00 − Jz0)(J0z − Jzz )]

dJ̃zz

dln�
= a

π h̄(c + vF )
(−J̃2 + (J̃00 + J̃z0)(J̃0z + J̃zz )). (19)

Fermi velocity renormalization comes from the diagonal
part of the self-energy diagram, Fig. 1. Formally speaking,
there are two different Fermi velocities for the two edge
helical modes that renormalize independently:

dvF

dln�
= − 4a2

π2h̄2(c + vF )2
vF J2,

d ṽF

dln�
= − 4a2

π2h̄2(c + ṽF )2
ṽF J̃2, (20)

but we can consistently assume symmetry between them, and
impose J = J̃ , vF = ṽF at all scales.

In principle, we also have to derive the renormalization-
group flow for the Fermi velocity c, but since vF � c in
the cases of interest (when the discussed renormalization
of backscattering amplitude is strong), and they appear in
1/(vF + c) combination, renormalization of the bath Fermi
velocity can be neglected.

If symmetry between the bare couplings is imposed, J00 =
J̃00, Jzz = J̃zz, the flow equations assume the simplified form:

dJ

dln�
= a

π h̄(c + vF )
J (J00 + J0z − Jz0 − Jzz ),

dJ00

dln�
= a

2π h̄(c + vF )
[2J2 + (J00 − Jz0)2 + (J0z − Jzz )2],

dJ0z

dln�
= − a

π h̄(c + vF )
[J2 − (J00 − Jz0)(J0z − Jzz )],

dJz0

dln�
= a

2π h̄(c + vF )
[2J2 − (J00 − Jz0)2 − (J0z − Jzz )2],

dJzz

dln�
= − a

π h̄(c + vF )
[J2 + (J00 − Jz0)(J0z − Jzz )],

dvF

dln�
= − 4a2

π2h̄2(c + vF )2
vF J2,

dh

dln�
= − a2h

π2h̄2vF (c + vF )

(
J2

00 + J2
0z − J2

z0 − J2
zz

)
,

J̃ = J, J̃00 = J00, J̃zz = Jzz, J̃z0 = −Jz0,

J̃0z = −J0z. (21)

We should keep in mind that it is also possible to have
spin-orbital couplings like J0x, Jx0, Jy0, J0y, but as we show
in Appendix A, they do not play any significant role as long
as they are less than ∼0.3J, J00.

IV. PHASE DIAGRAM OF THE MODEL

Solving flow equations (21) numerically in different
regimes, we can identify how the backscattering of helical
modes is affected by the environment. To make numerical
estimates, we need to agree on the values of bare physical
quantities. Fermi velocity of the edge degrees of freedom in
two-dimensional Bi2Te3 topological insulators is measured to
be vF � 5 × 107cm/s [41]. The spin bath velocity c is a free
parameter that can be tuned to any value by choosing a proper
environment material, and we find the effect of backscattering
suppression to be stronger when c is small, ∼107cm/s, i.e.,
when the bath is insulating. The in-plane lattice constant for
Bi2Te3 is a = 6.67 Å. It is interesting to study the model in
different regimes and analyze both the role of the spin-spin
and the Coulomb interactions, and their interplay.

Thus, we will take the bare backscattering amplitude h =
0.1 eV, and focus on three different cases:

(i) The Coulomb interaction is dominant:

J00 = J̃00 = 0.2 eV, (22)

J = J̃ = Jzz = J̃zz = 0. (23)

The energy gap in Bi2Te3 is E � 0.34 eV, so we do not want
the exchange interactions to be larger than that.

(ii) The spin-spin channel is dominant:

J = J̃ = Jzz = J̃zz = 0.2 eV, (24)

J00 = J̃00 = 0. (25)

While this case seems quite special since normally the
Coulomb interactions are stronger than the s-d exchange, it is
instructive to consider this regime as it shows a possibility to
use the environment to suppress backscattering and enhance
protection of the helical edge modes.

(iii) Spin and Coulomb interactions are comparable:

J = J̃ = Jzz = J̃zz = J00 = J̃00 = 0.2 eV. (26)

195426-4



SUPPRESSING BACKSCATTERING OF HELICAL EDGE … PHYSICAL REVIEW B 100, 195426 (2019)

FIG. 3. RG flows of the backscattering amplitude. The blue
curve depicts the Coulomb-interaction dominated case (J00 =
0.2 eV, Jzz = 0 eV), the yellow one depicts the case of dominant
spin-spin interaction channel (J00 = 0 eV, Jzz = 0.2 eV), and the
green one depicts the regime of interplay (J00 = 0.2 eV, Jzz =
0.2 eV). The dashed line depicts the energy scale corresponding to
temperature about T = 20 K. Inset: the corresponding flows of the
“irrelevance” parameter γ . The UV cutoff is taken to be �UV = 10a,
which is an estimate for the penetration depth of the edge modes into
the bulk [18,42].

This case appears to be the most nontrivial one as we will see
below.

The numerical solution to the systems of the
renormalization-group equations in the three mentioned
regimes is shown in Fig. 3. One can see that while the pure
Coulomb interaction causes enhancement of backscattering,
its interplay with the spin-spin coupling and the other induced
interaction channels is highly nontrivial. At intermediate
energies, if the two competing channels are present, Coulomb
reduces the effect of suppressing. However, if one goes to
lower energies, it assists the spin interactions in suppressing
the process of backscattering, and makes h flowing to zero
even when capacity of the spin channel is exhausted, and
renormalization of h stopped.

Another way to see this is to define again the “irrelevance
parameter” γ (�) (now it is scale dependent) by formally
representing the solution to the equation on h as

h(�) = h0

(
�

�UV

)γ (�)

. (27)

Dynamics of γ is shown in the inset of Fig. 3. Though
Coulomb interaction decreases the initial value of γ , deep in
the infrared it prevents γ from flowing to zero. The difference
between the two regimes looks rather mild, but since the cou-
pling constants flow towards strong coupling in the infrared,
the leading-order perturbative analysis tends to underestimate
renormalization of γ , and a stronger effect can be expected.

The full phase diagram scanned over different values of J00

and J = Jzz is shown in Fig. 4. One can see that all the three
cases are quite generic, and occur within large domains of the
parametric space. It also can be seen that in the formal limit

FIG. 4. Density plot of the renormalized backscattering ampli-
tude h/h0 as a function of bare spin-spin (J) and Coulomb (J00)
interactions. The three discussed regimes are clearly seen here.
In particular, for the dark blue wedge in the middle, numerical
extrapolation of solutions to Eq. (21) shows that h(�)/h0 → 0 as
� → 0.

� → 0, the backscattering amplitude h is taken to zero in the
case of competing interactions.

In all these cases we take the bare couplings J0z, Jz0, J̃0z, J̃z0

equal to zero. Since they flow nontrivially upon renormaliza-
tion, it is worth discussing how they could affect the outlined
physical picture. First of all, while it is natural to assume
that such spin-orbital couplings are much smaller than the
spin-spin and the Coulomb interactions, what really matters
here is the asymmetry J2

0z − J2
z0. Even if these constants are

pretty large, ∼0.5Jzz, but the symmetry J0z = Jz0 is retained,
the phase diagram in Fig. 4 remains unchanged. However,
large asymmetry between them can destroy the “irrelevant”
phase.

V. DISCUSSION AND CONCLUSIONS

In this paper, taking the intuition provided by the concept
of pointer states as an inspiration, we have studied how
interactions with environment affect the backscattering of
helical modes in edge channels by deriving the leading-order
perturbative renormalization-group flow equations. We have
discovered that the interplay of the Coulomb and spin-spin
interactions between the modes and the environment leads
to a nontrivial phase diagram. Dominance of the Coulomb
interaction expectedly leads to amplification of the backscat-
tering, making helicity of the propagating modes poorly de-
fined. If only the spin-spin interaction channel is present, the
backscattering gets marginally suppressed along the RG flow,
receiving a finite negative correction to its bare amplitude.
This is in line with what can be qualitatively expected from the
basic consideration in terms of decoherence and pointer states,
as discussed in the Introduction. However, our quantitative
analysis gives much more. The most interesting situation
turns out to be when both the interaction channels are at
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work. Then the Coulomb interaction assists the spin-spin one
in suppressing backscattering, making backscattering rather
irrelevant than marginally suppressed. The conducted analysis
allows us to conclude that the external bath of itinerant
spins can be not only dangerous for the helicity of modes
in the channel, but also, in certain regimes, can serve as a
stabilizer and alleviate the destructive effect of backscattering,
restoring the protection of the helical modes. For a particu-
lar example of archetypical 2D topological insulator Bi2Te3,
we have estimated that interactions with environment can
reduce the backscattering amplitude to ∼75% of its original
value within a physically reasonable range of energy scales.
In systems with smaller Fermi velocities, like InAs/GaSb
quantum wells studied among other structures in [30,31]
(vF = 4.6 × 106cm/s, a = 6.1 Å), the suppression is even
more pronounced, and the backscattering amplitude will be
reduced to 20% of its original value or even stronger (see
Appendix B). One should also keep in mind that the leading-
order perturbative expansion might provide only the lower
bound on the strength of the effect, as the deep IR limit of
the model is strongly coupled, and a stronger suppression is
expected in the nonperturbative domain, making the studied
mechanism a good candidate for protecting helical modes.
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APPENDIX A: THE CASE OF InAs/GaSb
QUANTUM WELLS

While the effect of suppression of the backscattering on
the edge of topological insulators is notable but not ultimate
leading to decrease in the backscattering amplitude h to
∼80% of its original value, it is natural to pose a question
of whether there are systems where it is more pronounced.
Since the effective dimensionless coupling constant is de-
fined as Ja/(2π h̄vF ), we can expect stronger suppression
in materials with smaller Fermi velocities. One possibility
is InAs/GaSb quantum wells studied in [30,31]. Then vF =
4.6 × 106cm/s, c = 106cm/s, a = 6.1 Å. Taking J = 0.3 eV
and J00 = 0 or 0.3 eV, which corresponds to the limit of
applicability of perturbative approach, we obtain the flow of
h shown in Fig. 5. Due to the smaller Fermi velocity in the
channel, the suppression effect becomes much more signif-
icant, and h renormalizes to ∼25–30% within a physically
reasonable range of scales.

APPENDIX B: INTERPLAY WITH THE
SPIN-ORBIT COUPLING

So far we have analyzed the minimally consistent set of
couplings given by

Hint = �
(i)
αβγ δ

∑
q,p,k

c†
α (k)cβ (k + q)d†

i,γ (p)di,δ (p − q),

�
(i)
αβγ δ = J (i)

00 Iαβ ⊗ Iγ δ + J (i)
zz σ z

αβ ⊗ σ z
γ δ

FIG. 5. Renormalization of the backscattering amplitude in
InAs/GaSb quantum wells.

+ J (i)
(
σ x

αβ ⊗ σ x
γ δ + σ

y
αβ ⊗ σ

y
γ δ

) + J (i)
0z Iαβ ⊗ σ z

γ δ

+ J (i)
z0 σ z

αβ ⊗ Iγ δ, (B1)

where i = 1, 2 are two channels in the bath. However, in
a real system a spin-orbit coupling that tends to enhance
backscattering can be present, and we have to make sure
that the structure of the renormalization-group flow does not
change drastically upon switching on such an interaction. To
check that, we shall consider a more general form of coupling
matrix and enlarge it by adding the following terms:

�
(i) SO
αβγ δ = J (i)

0x Iαβ ⊗ σ x
γ δ + J (i)

x0 σ x
αβ ⊗ Iγ δ + J (i)

zx σ z
αβ ⊗ σ x

γ δ

+ J (i)
xz σ x

αβ ⊗ σ z
γ δ. (B2)

The resulting system of one-loop RG flow equations reads

dJxx

dln�
= a

π h̄(c + vF )
(J0xJx0 + J00Jxx + J0zJyy − JxxJz0

− Jx0Jzx − JyyJzz ),

dJyy

dln�
= a

π h̄(c + vF )
(J0zJxx − J0xJxz + J00Jyy − JyyJz0

+ JxzJzx − JxxJzz ),

dJ00

dln�
= a

2π h̄(c + vF )

[
J2

x0 + J2
xx + J2

yy + J2
xz + (J0x − Jzx )2

+ (J00 − Jz0)2 + (J0z − Jzz )2
]
,

dJ0z

dln�
= a

π h̄(c + vF )
[JxxJyy−Jx0Jxz + (J00 − Jz0)(J0z − Jzz )],

dJz0

dln�
= a

2π h̄(c + vF )

[
J2

x0 + J2
xx + J2

yy + J2
xz − (J00 − Jz0)2

− (J0z − Jzz )2 − (J0x − Jzx )2
]
,

dJzz

dln�
= a

π h̄(c + vF )
[−JxxJyy + Jx0Jxz − (J00 − Jz0)

× (J0z − Jzz )],
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dJ0x

dln�
= a

π h̄(c + vF )
[Jx0Jxx + JxzJyy + (J00 − Jz0)

× (J0x − Jzx )],

dJx0

dln�
= a

π h̄(c + vF )
(J00Jx0 + J0xJxx + J0zJxz − Jx0Jz0

− JxxJzx − JxzJzz ),

dJxz

dln�
= a

π h̄(c + vF )
(J0zJx0 + J00Jxz − J0xJyy − JxzJz0

+ JyyJzx − Jx0Jzz ),

dJzx

dln�
= a

π h̄(c + vF )
[Jx0Jxx + JxzJyy − (J00 − Jz0)

× (J0x − Jzx )],

dJ̃xx

dln�
= a

π h̄(c + vF )
(J̃xxJ̃00 + J̃xxJ̃z0 + J̃x0J̃0x + J̃x0J̃zx

− J̃yyJ̃0z − J̃yyJ̃zz ),

dJ̃yy

dln�
= a

π h̄(c + vF )
(J̃yyJ̃00 + J̃yyJ̃z0 + J̃xzJ̃0x + J̃xzJ̃zx

− J̃xxJ̃0z − J̃xxJ̃zz ),

dJ̃00

dln�
= a

2π h̄(c + vF )

(
J̃2

x0 + J̃2
xx + J̃2

yy + J̃2
xz + (J̃0x + J̃zx )2

+ (J̃00 + J̃z0)2 + (J̃0z + J̃zz )2
)
,

dJ̃0z

dln�
= a

π h̄(c + vF )
(J̃xxJ̃yy + J̃x0J̃xz + (J̃00 + J̃z0)

× (J̃0z + J̃zz )),

dJ̃z0

dln�
= a

2π h̄(c + vF )

(−J̃2
x0 − J̃2

xx − J̃2
yy − J̃2

xz

+ (J̃00 + J̃z0)2 + (J̃0z + J̃zz )2 + (J̃0x + J̃zx )2
)
,

dJ̃zz

dln�
= a

π h̄(c + vF )
(−J̃xxJ̃yy − J̃x0J̃xz + (J̃00 + J̃z0)

× (J̃0z + J̃zz )),

dJ̃0x

dln�
= a

π h̄(c + vF )
(J̃x0J̃xx − J̃xzJ̃yy + (J̃00 + J̃z0)

× (J̃0x + J̃zx )),

dJ̃x0

dln�
= a

π h̄(c + vF )
(J̃x0J̃00 + J̃x0J̃z0 + J̃xxJ̃0x + J̃xxJ̃zx

+ J̃xzJ̃0z + J̃xzJ̃zz ),

dJ̃xz

dln�
= a

π h̄(c + vF )
(J̃xzJ̃00 + J̃xzJ̃z0 + J̃yyJ̃0x + J̃yyJ̃zx

+ J̃x0J̃0z + J̃x0J̃zz ),

FIG. 6. Density plot of the renormalized backscattering ampli-
tude h/h0 as a function of bare spin-spin (J) and Coulomb (J00)
interactions. The spin-orbit couplings at each point of the phase
diagram are taken to be Jx0 = J0x = Jy0 = J0y = 0.3(J00 + J ). The
three phases are qualitatively robust with respect to the SO interac-
tions, although the concrete infrared values of h are affected by these
couplings.

dJ̃zx

dln�
= a

π h̄(c + vF )
(−J̃x0J̃xx + J̃xzJ̃yy + (J̃00 + J̃z0)

× (J̃0x + J̃zx )), (B3)

dh

dln�
= − a2h

2π2h̄2vF (c + vF )
(α(J ) + α(J̃ )),

dvF

dln�
= − 2vF

π2(c + vF )2

(
J2

xx + J2
yy + J2

x0 + J2
xz

)
, (B4)

where we defined

α(J ) = J2
00 + J2

0x + J2
0z + J2

x0 + J2
xx + J2

xz − J2
yy − J2

z0 − J2
zx

− J2
zz,

and, as before, assumed symmetry between the two channels
for the Fermi velocity vF renormalization, which can be con-
sistently done also in the presence of the spin-orbital coupling.

In Fig. 6, plotted for the Bi2Te3 case, one can see that
even in the presence of the SO interactions all three regimes
(enhancement marginal suppression, and strict suppression of
the backscattering) survive, and the additional coupling only
changes the particular renormalized values of the backscatter-
ing amplitude.
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