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Structure factor of fluctuating interfaces: From liquid surfaces to suspended graphene
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We obtain the density-density correlation structure in molecular dynamics (MD) simulations of graphene,
and analyze it within the capillary wave theory (CWT), developed for fluid surfaces, to describe the thermal
corrugations of the graphene sheet with a wave-vector-dependent surface tension γ (qx ). The density correlation
function (from the atomic positions) is compared with the theoretical prediction by Bedeaux and Weeks (BW),
within the CWT, in terms of γ (qx ) and the density profile. The agreement is very good, even for relatively
large qx ≈ 0.2 Å−1, and with very little role for the correlation background, which sets an important difficulty
for liquid surfaces. We present and test a generic prediction for the structure factor S(qx, qz ) from γ (qx ), that
contains and goes beyond the classical asymptotic expression, developed by Sinha, for the analysis of x-ray
surface scattering. We compare our prediction with the formula used in the interpretation of experimental data,
that assumes a direct relationship between γ (qx ) and the correlation structure for the same wave vector qx . That
relation is exact only for the first (Wertheim’s) term of the BW series, and we use our results to test the accuracy
of the function γ (qx ) estimated through that method.
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I. INTRODUCTION

Surface diffraction techniques, with x rays and neutrons,
give experimental access to the thermal corrugations of liq-
uid surfaces through their effects in the density correlation
(see, e.g., Refs. [1–4] and references therein). Flexible two-
dimensional (2D) structures, like graphene or lipid bilayer
membranes, have shape fluctuations similar to those of fluid
surfaces, and the analysis of their structure factor also faces
the diverging amplitude of long wavelengths corrugations
[5–7]. The CWT [8–10] studies the fluctuations of liquid
surfaces with a mesoscopic Hamiltonian H[ξ ], a functional
of the intrinsic surface (IS) that represents the instantaneous
shape of the interface in terms of its Fourier components up to
an upper cutoff wave vector qu,

z = ξ (�x; qu) =
∑

0<| �qx |�qu

ξqx e
i �qx ·�x, (1)

where we take the z axis normal to the mean surface plane
with �x = (x, y) and �qx = (qx, qy). The mean value 〈ξ (�x)〉 = 0
is fixed as z origin. The CWT assumes independent Gaussian
fluctuations of each IS Fourier component, i.e., a quadratic
form for the surface Hamiltonian

H[ξ ] = A0

2

∑
0<| �qx |�qu

q2
xγ (qx )|ξqx |2, (2)

where A0 ≡ L2 is the area of the (flat) mean surface. The
mean square values 〈|ξqx |2〉, at temperature kT = β−1, give
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the wave-vector-dependent surface tension,

γ (qx ) ≡ kT

〈|ξqx |2〉q2
x A0

= γ0 + κq2
x + . . . (3)

with the macroscopic value γ0, the surface bending modulus
κ , and possibly higher order terms.

The density profile ρ(z) = 〈�(�r)〉 is the statistical average
of the density operator �(�r) = ∑

i=1,N δ(�r − �ri ) for the in-
stantaneous atomic positions. The CWT splits the average as
〈. . . 〉 = 〈〈. . . 〉{�r}∈ξ 〉ξ , with the inner average over the states
compatible with an IS shape, and the mesoscopic average
〈. . . 〉ξ over the function ξ (�x), through the Hamiltonian (2).
The upper cutoff qu in (1) is the (main) control parameter for
the splitting of the thermal average and, by taking qu not too
high, the CWT assumes that the surface fluctuation effects on
the density profile ρ(z) may be described as an intrinsic profile
ρ in(z; qu) shifted to follow the IS fluctuations

ρ(z) � 〈ρ in(z − ξ (�x); qu)〉ξ =
∫

dξ ρ in(z − ξ ; qu)P(ξ ).

(4)

The average 〈. . . 〉ξ , through the probability distribution P(ξ )
for the local IS position, smooths ρ(z) as L increases and, as-
sociated to that effect, the density correlation G(x12, z1, z2) =
〈�(�r1)�(�r2)〉 − ρ(z1)ρ(z2) develops a logarithmic tail for large
x12 = |�x1 − �x2|. The transverse Fourier transform G(z1, z2; qx )
has a term

GW(z1, z2, qx ) = ρ ′(z1)ρ ′(z2)

βγ (qx )q2
x

, (5)
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that diverges for qx = 0, proportionally to the derivative with
respect to z of the mean density profile, ρ ′(z) = dρ(z)/dz.
The prediction of this term by Wertheim [11] (originally in
terms of γ0) was later followed by the work of Bedeaux and
Weeks (BW) [12] that extended the contribution of the IS
fluctuations beyond (5), to show the divergence of the surface
structure factor as

S(qx, qz ) =
∫

dz1dz2 G(z1, z2, qx ) eiqz (z1−z2 )

∝ |	(qz )|2
q2−η

x

+ regular terms, (6)

with η = q2
z /(2πβγ0) in the exponent and the surface density

structure in

	(qz ) =
∫

dz ρ ′(z) eiqzz. (7)

Attempts to use (5-6) to obtain γ (qx ) from x-ray diffraction
experiments [2,3,13,14], computer simulations [4,15,16], and
DF theories [4,17–22] have been puzzling, with very different
predictions for γ (qx ) except for the limit γ (0) = γ0.

The aim of this work is to use molecular dynamics (MD)
simulations of a realistic model of graphene to get directly
γ (qx ) from the shape corrugations, and to check whether and
how it could be reconstructed from the results for G(z1, z2, qx )
(accessible to computer simulations) and from S(qx, qz ) (ac-
cessible to diffraction experiments). Besides its inherent in-
terest, graphene provides an ideal case of fluctuating surface,
since its 2D atomic structure dodges the most difficult steps
in the matching of the atomistic (MD) and the mesoscopic
(CWT) views. Moreover, even for low qx a liquid surface
has a background of fluctuations modes Gb not related to
the IS corrugations. This background includes any on-plane
fluctuation of the atomic positions, as well as any effect of the
atomic vibrations in the z direction that (for large q) might
escape from the CWT assumption of independent Gaussian
fluctuations for the IS Fourier components ξqx . It is only the
difference �G ≡ G − Gb that gives the bare contribution of
the IS fluctuations, from which we may hope to extract γ (qx ).
The regular and stiff 2D lattice of a graphene sheet makes
Gb � G even for relatively large qx, so that the full G may be
used for a quantitative comparison with the CWT predictions.
On the other hand, the theoretical analysis of S(qx, qz ) for a
liquid-vapor interface is easier in the strict grazing incidence
condition [1,4] qz = 0. However, a (small) qz > 0 is unavoid-
able under practical experimental conditions for the grazing-
incidence small-angle x-ray scattering (GISAXS) technique
[13,14,23]. For any 2D system like graphene, the lack of
density contrast between the two sides of the IS cancels out
the whole contribution of the IS fluctuations to S(qx, qz ) for
qz = 0, so that the analysis for qz > 0 becomes compulsory.

Section II presents the essentials of the analysis by Be-
deaux and Weeks (BW) [12], and its equivalence with the
analysis of the Debye-Waller factor in 2D crystals [5] for the
qx = 0 diffraction peak. Section III presents the MD simu-
lations of a graphene model and the direct results for γ (qx )
from the mean square values 〈|ξqx |2〉. Section IV compares
the MD results for G(z1, z2, qx ) with the BW prediction, to
show that is rather accurate, but only when we consider the

full series of which (5) is just the first (n = 1) term. The
small correlation background makes graphene a good choice
to try and get experimental access to γ (qx ) from surface
diffraction techniques. To that effect, we analyze in Sec. V
the signature of γ (qx ) in S(qx, qz ), beyond the strict grazing
incidence condition qz = 0. The analysis of the transverse
size shows the converge from the periodic MD boxes to the
sampled areas in diffraction experiments, much larger and
without periodic boundary conditions. In the continuous limit
for the �qx sums, we present a generic expression for S(qx, qz )
that recovers the analytical prediction by Sinha [5] (6) as
the leading term at low qx. We get also the correction that
reflects the short-ranged structure of the IS fluctuations and
that contains the effects of the function γ (qx ) beyond its γ0

limit. The role of the mean and the intrinsic density profiles
to determine the prefactor in (6) is clarified. In Sec. VI,
we compare the different proposals to obtain γ (qx ) from
G(z1, z2, qx ) (in computer simulations and theoretical density
functional analysis) and from experimental S(qx, qz ) data. We
conclude with the general implications for the interpretation
of surface diffraction experiments in terms of γ (qx ).

II. SURFACE CORRELATION STRUCTURE
AND BEDEAUX-WEEKS SERIES

In 1985 Bedeaux and Weeks [12] (BW), working within
the CWT assumption of Gaussian probability for the IS
Fourier components, showed that (5) is just the n = 1 term
of a series that gives the contribution from the IS fluctuations
to the density correlation as

GBW(z1, z2, qx ) =
∞∑

n=1

Ŝn(qx )

n!

dnρ(z1)

dzn
1

dnρ(z2)

dzn
2

, (8)

with derivatives of ρ(z) at any order, and where

Ŝn(qx ) ≡
∫

d2�x S (�x)n ei �qx ·�x, (9)

is the transverse Fourier transform of the n-power height-
height correlation function S (x12) = 〈ξ (�x1)ξ (�x2)〉.

The n = 1 term uses the Fourier transform of S (x)

Ŝ (qx ) ≡ Ŝ1(qx ) = A0〈|ξqx |2〉 = (βγ (qx )q2
x )−1, (10)

so that its contribution to G(z1, z2, qx ) is (5), determined
by the value of γ (qx ) at the same transverse vector. The
contribution of this term to S(qx, qz ) is

SW(qx, qz ) =
∫

dz1dz2GW(z1, z2, qx )eiqzz12 = |	(qz )|2
βγ (qx )q2

x

,

(11)

The full BW series may be Fourier transformed as

SBW(qx, qz ) ≡
∫

dz1dz2GBW(z1, z2, qx )eiqzz12

=
∞∑

n=1

q2(n−1)
z |	(qz )|2

n!

∫
d2�xS (�x)nei �qx ·�x

= |	(qz )|2
q2

z

∫
d2�x

(
eq2

z S(�x) − 1
)
ei �qx ·�x. (12)
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This sum of the series makes contact with the usual analysis
of the surface structure factor in terms of the two-particle
distribution ρ (2)(�r1, �r2). Following Sinha [5], the contribution
from the IS fluctuations is the average 〈. . . 〉ξ of two shifted
intrinsic density profiles, 〈ρ in(z1 − ξ (�x1))ρ in(z2 − ξ (�x2))〉ξ ,
leading to

S(qx, qz ) =
∫

d2�x12 ei �qx ·�x12

〈
eiqz (ξ ( �x1 )−ξ ( �x2 ))

×
∫

dz1ρ
in(z1 − ξ ( �x1))eiqz (z1−ξ ( �x1 ))

×
∫

dz2ρ
in(z2 − ξ (�x2))e−iqz (z2−ξ ( �x2 ))

〉
ξ

= |	in(qz )|2
q2

z

∫
d2�x12ei �qx ·�x12〈eiqz (ξ ( �x1 )−ξ ( �x2 ))〉ξ

= |	(qz )|2
q2

z

∫
d2�x ei �qx ·�x eq2

zS(�x). (13)

The Gaussian distribution for each ξqx , assumed to get (8),
gives here the Debye-Waller factor for the IS fluctuations,
〈eiqz (ξ (�x1 )−ξ (�x2 ))〉ξ = e−q2

z 〈(ξ (�x1 )−ξ (�x2 ))2〉ξ /2 = e−q2
z (S(0)−S(x12 )).

The |	(qz )|2 factor in (13) is obtained as |	in(qz )|2e−q2
z S(0),

from the Fourier transform of the derivative of the intrinsic
profile,

	in(qz ) =
∫

dz
dρ in(z; qu)

dz
eiqzz, (14)

assuming the Gaussian convolution in (4) with mean square
width 〈ξ 2〉 = S (0).

The only difference between (12) and (13) is the −1
term subtracted from eq2

z S(x). This term would come as the
n = 0 (missing) term in the BW series (8), i.e. the product
ρ(z1)ρ(z2) subtracted from ρ (2)(�r1, �r2) to get the correlation.
In S(qx, qz ) this term gives the specular reflection ray, with
a value A0|	(qz )|2/q2

z for qx = 0 and null for any qx = 0,
which gives the Fresnell reflectivity of a flat interface with the
density profile ρ(z). Therefore it is clear that GBW(z1, z2, qx )
is exactly (under the assumption of Gaussian IS fluctuations)
the diffuse scattering by the corrugated surface. Wertheim’s
term (5) corresponds to the linear expansion of the Debye-
Waller factor eq2

zS(x) − 1 ≈ q2
zS (x) in (13).

In a liquid surface, qz = 0 gives 	(0) = �ρ, the density
difference between the two coexisting phases, and cancels all
the n � 2 terms in the BW series (8). This is the strictest
limit of the GISAXS experiments which has been used in the
analysis of MD simulations [1,4], to get γ (qx ) from S(qx, 0)
through the identification of (5) with the diffuse scattering sig-
nal. Under practical experimental conditions the strict qz = 0
limit is unreachable for liquid surfaces, and it would be useless
for graphene, lipid bilayers, or any other 2D system, since
there is no difference between the density at two sides and
hence 	(0) = 0. Therefore the interpretation of GISAXS data
requires to consider the effects of small but not null qz. Often
this has been done assuming that (6) could be generalized to
an exponent η(qx ) associated to γ (qx ) [13,14,23]. We discuss
below the validity of that approach.

III. MD-ISM FOR A SUSPENDED GRAPHENE SHEET

We have run classical molecular dynamics (MD) sim-
ulations of a suspended graphene sheet using an empir-
ical long-range carbon bond-order potential, the so-called
LCBOPII [24,25]. The parametrization is the same as in
earlier works [26,27], which yields a realistic description
of vibrational, mechanical, and thermal properties [27,28],
with a bending constant of 1.48 eV for a single graphene
layer a low temperature. We use standard algorithms [29,30]
for the isothermal-isobaric ensemble, with N = 8400 carbon
atoms, chains of four Nosé-Hoover thermostats at temper-
ature T = 300 K, coupled to each atomic coordinate, and
the additional chain of four barostats coupled to the in-plane
area of the simulation cell, to fix the applied in-plane tensile
stress Px [31]. The results reported here correspond to Px =
−0.16 N/m, which gives L = 148.26 Å as the mean side of
the square MD box, and a much higher tensile stress Px =
−3.2 N/m that gives L = 149.67 Å. These values of Px cover
the range of estimates for the experimental stress-strain of
suspended graphene [32,33]. The equations of motion have
been integrated with the reversible reference system propa-
gator algorithm (RESPA), which allows different time steps
for the integration of slow and fast degrees of freedom [34].
The time step �t corresponding to the interatomic forces is
1 fs, while for the evolution of the fast dynamical variables,
including the thermostats, we used a time step δt = �t/4.

The corrugations of the graphene sheet could be analysed
within the language of phonons, as harmonic displacements of
the atomic positions from the sites in the periodic 2D lattice,
giving the acoustic band of frequencies ωA(qx ) with z polar-
ization. Then, the divergence of the structure factor for low qx

appears in the Debye-Waller factor [6,7]. The CWT language,
with the thermal fluctuations of a mathematical surface z =
ξ (�x; qu), corresponds to a continuous limit representation of
the atomic vibrations. The intrinsic sampling method (ISM)
[35–37] was developed to optimize that description over the
largest possible range of qx, in the harder problem of a liquid
surface. For a graphene sheet, the task is much easier, since
it does not require to choose the atomic positions associated
to the interface. As an ideal interface all the carbon positions
are used as surface pivots so that at the maximum resolution
the IS is defined as a triangulated surface with the edges
joining each carbon atom to its nearest neighbors. We use
the periodicity of the simulation box on the x plane to get
the Fourier components of that surface by least-square fits,
up to a large | �qx| � 0.41 Å−1, to leave room for the choice of
the upper cutoff qu that defines z = ξ (�x; qu) as the truncated
Fourier series (1).

The sampling of 20 000 configurations, sorted each
500 MD steps, gives the mean square values 〈|ξqx |2〉 that are
used in (3) to get γ (qx ), as presented in Fig. 1. For biolog-
ical membranes and liquid-vapor surfaces the contribution
from the bending modulus κ gets entangled with internal
fluctuation modes of the interface, but the graphene sheet
shows quadratic behavior γ (qx ) � γ0 + κq2

x over a large qx

range. We get βγ0 = 0.66087 Å−2 and βκ = 63.5669 for
Px = −0.16 N/m, and βγ0 = 7.8749 Å−2 and βκ = 62.045
for the tenser graphene sheet with Px = −3.2 N/m. As a test
for the physical significance of this γ (qx ) we compare it in
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FIG. 1. (Top) Effective wave-vector-dependent surface tension.
The blue line is γ (qx ) from the mean square amplitude of the
fluctuating modes of ξ (�x), in Eq. (3), and the green dashed line is
fit to the quadratic form γ (qx ) = γ0 + κq2

x as explained in the text.
The red line is the dynamical result Eq. (15), from the dispersion
relation of the acoustic vibrational modes. (Bottom) Density profiles.
Red full line: the MD mean density profile ρ(z) in the MD box
of size L = 148.24 Å, blue full line the intrinsic profile ρ in(z; qu)
with qu = 0.21 Å−1, and independent of L. Dashed green line: the
mean density profile obtained from the Eq. (4), with the probabiliy
distribution P(ξ ) along the same MD-ISM used to get ρ in (z; qu),
which is over the direct MD red. Both panels for tensile stress
Px = −0.16 N/m.

the top panel of Fig. 1 with the dynamical (dyn) counterpart,
described from the frequency band ωA(qx ) obtained in the
same MD simulations. Assuming a continuous 2D mass den-
sity ρ2D, the energy cost of the corrugations should be given
by

γ dyn(qx ) = ρ2Dω2
A(qx )/q2

x . (15)

Good agreement between the dynamical and the ISM thermal
fluctuations results for γ (qx ) had been reported for liquid
surfaces [38]. For graphene the agreement becomes excellent
up to much larger qx, all over the quadratic range of γ (qx ) �
γ0 + κq2

x . Nevertheless, we have to warn about the low qx

results, for which the continuous approach should be excel-
lent. However, with our lower tensile stress these IS dynamical
modes are very slow and a good statistical sampling of 〈|ξqx |2〉
is only achieved for very long MD simulation times. Small
deviations from the quadratic form observed in Fig. 1 at low
qx should be taken as the error bars for the accuracy of our
MD results. The probability distribution P(ξ ) for the local
fluctuations of the IS in (4) is found to be accurately Gaussian,

with mean square value

〈|ξ |2〉 ≡ S (0) =
∑

0<qx�qu

〈|ξqx |2〉. (16)

The parameter qu controls how closely the mathematical sur-
face z = ξ (�x; qu) follows the atomic positions, to reach as far
as possible with the continuous description, while still keeping
the CWT assumptions (4). We have fixed qu = 0.21 Å−1 and
the intrinsic profile, calculated as the MD-ISM average

ρ in(z; qu) = 〈�(�x, z + ξ (�x; qu))〉, (17)

forms the narrow peak in Fig. 1, reflecting the small fluctu-
ations in the distance from the atomic positions to the IS.
A lower value of qu would give smoother IS and a broader
ρ in(z; qu), but it would restrict the application of the CWT
Hamiltonian (2) to a narrower band 0 < qx � qu. On the other
direction, a higher qu would give an even narrower peak
in ρ in(z; qu), but it would fail to satisfy the CWT assumption
(4). As shown in Fig. 1, with our choice for qu the convolution
of ρ in(z; qu) and the Gaussian distribution P(ξ ) gives mean
density profile in excellent agreement with the direct average
ρ(z) = 〈�(�r)〉 along the MD simulations.

Our choice qu = 0.21 Å−1 is much lower than the main
peak in the structure factor of the graphene sheet at q ≈
3 Å−1. This guarantees that the correlation effects for qx � qu,
described by the BW series (8), are well separated from other
vibrational modes. Notice also that this value of qu is very
close to the value of qx where γ dyn(qx ) begins to separate
from the structural γ (qx ). Liquid surfaces require lower qu

and costly simulations with very large box sizes to get just
a few discrete values within the range qx � 2π/L set by the
simulation box. The larger qu for graphene makes easier to
analyze G(z1, z2, qx ) over a broad range of wave vectors.

IV. MD RESULTS AND BW SERIES FOR
THE DENSITY CORRELATION

For any �qx on the reciprocal lattice of the simulation box,
the density correlation is obtained from〈

1

A0

N∑
i, j=1

ei �qx ·(�xi−�x j )δ(z1 − zi )δ(z2 − z j )

〉

= ρ(z1)δ(z1 − z2) + ρ (2)(z1, z2, qx )

= G(z1, z2, qx ) + ρ(z1)ρ(z2)δ0,qx , (18)

averaged as a (z1, z2) matrix with binning �z = 0.1 Å. The
statistics was accumulated, with z1 and z2 referred to the
instantaneous mean plane z = ξ0 ≡ 0. There are two terms
that distinguish the total correlation G and the pair distri-
bution ρ (2), one is the qx = 0 contribution ρ(z1)ρ(z2) that
gives the specular refectivity contribution in S(0, qz ) for a
flat interface. The second term, independent of qx, is the
ideal self-correlation from the i = j terms in the double sum
over the atomic positions. The bottom row of Fig. 2 presents
G(z1, z2, qx ), for our system with the lowest tensile stress,
excluding the self-correlation term. That term is important in
fluid surfaces and bilayer membranes and it has to be taken
properly into account as part of Gb, since it is not part of the
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FIG. 2. The density-density correlation functions from MD sim-
ulation with tensile stress Px = −0.16 N/m. (Left column) qx =
0.042 Å−1 and (right column) qx = 0.12 Å−1. (Bottom row) To-
tal G(z1, z2; qx ), Eq. (18). (Middle row) Non-CW background
Gb(z1, z2; qx ), Eq. (19). (Top row) Bare CW contribution �G =
G − Gb;

BW series. However, in the case of graphene its contribution
is very small. The left column corresponds to the lowest qx

within our simulation box, qx = 2π/L = 0.042 Å−1, in the
right column is for qx = 0.12 Å−1, three times larger.

The application of the ISM to extract the correlation back-
ground Gb was proposed and tested in a recent publication
[39]. The main concept is the intrinsic density correlation,
Gin(z1, z2; qx ), obtained changing zα (α = i, j) in (18) by
zin
α ≡ zα − ξ (�xα; qu), to refer the position of the two particles

to the IS position above each one. That eliminates the effects
of the IS fluctuations and leaves a Gin which does not depend
on the box size L. In a liquid surface, Gb includes the cor-
relation structure of the dense liquid in the bulk, for z1 and
z2 far away from the interface. For graphene, this intrinsic
background contains only the small effects of the corrugations
with qx > qu, which are not included in ξ (�x; qu). That reduces
Gin to a small trace for z1 and z2 over the narrow peak of
the intrinsic density profile. The actual background correla-
tion Gb is obtained [39] by convolution with the probability
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FIG. 3. The Bedeaux-Weeks density-density correlation function
with the lateral size L of the MD simulation cell and tensile stress
Px = −0.16 N/m. (Left column) qx = 0.042 Å−1 and (right column)
qx = 0.12 Å−1. (Bottom row) GBW(z1, z2; qx ), with the series (8) up
to order n = 20. (Top row) Wertheim’s approximation GW(z1, z2; qx ),
i.e., the n = 1 term of the BW series.

distribution P(ξ ),

Gb(z1, z2, qx ) =
∫

dξ P(ξ ) Gin(z1 − ξ, z2 − ξ, qx ). (19)

This function, represented in the middle row of Fig. 2, is
spread over a larger range of z1 and z2, taking the aspect
of a narrow diagonal band |z1 − z2| � 0.5 Å, in the same
way as the intrinsic density profile (4) if spread to give the
(L-dependent) mean density profile in Fig. 1. The relative
contribution of Gb to the total G in graphene is much lower
than for liquid surfaces [39], even at rather high qx. Therefore,
and contrary to what happens in liquid-vapor surfaces, the
shape of �G ≡ G − Gb in the top row of Fig. 2 is very similar
to the full G in the bottom row. Notice that the ideal-gas
self-correlation (i.e., the i = j terms in (18)) is exactly equal
in G and Gb so that it is fully eliminated in the bare IS
contribution �G. That brings us to the first conclusion of this
work that the correlation background Gb is almost negligible
in graphene. This agrees with the result obtained with dark-
field electron microscopy [40] for a monolayer of graphene.
Even if T is a factor ten smaller than the Debye temperature,
the Debye-Waller factor becomes several times larger than the
T = 0 result. This conclusion is crucial for the experimental
access to γ (qx ) from the surface structure factor S(qx, qz )
in graphene, since we may use the contribution from the IS
fluctuations [(12) and (13)] as (nearly) the whole structure
factor.
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The Bedeaux-Weeks series (8) is the CWT prediction for
�G. The height-height correlation in real space

S (�x) =
qu∑

0<qx

〈|ξqx |2〉ei �qx �x =
qu∑

0<qx

ei �qx �x

βγ (qx )q2
x A0

, (20)

may be calculated directly from the MD-ISM results for
〈|ξqx |2〉, within the MD system size. With S (�x) and ρ(z) we
calculate the factors Ŝn(qx ), to get GBW(z1, z2, qx ) in (8). The
study of the convergence of the BW series (8) is presented as
Ref. [41]. The results presented in the bottom row of Fig. 3
show a great similarity with G � �G (bottom and top rows
in Fig. 2), and clear differences with GW (top row Fig. 3),
which is the n = 1 term of the series. This Wertheim’s term
(5) exhibits perfect factorization ρ ′(z1)ρ ′(z2) and the ∼q−2

x

divergence at low qx. The factors Ŝn(qx ) for n � 2 in (8) and
(9) have a finite qx = 0 limit, i.e., they do not contribute to
the long-range decay of G(x12, z1, z2), but still they can give
an important contribution. Notice that, contrary to the n = 1
case, these Ŝn(qx ) depend on the system size and they are not
qx-local; i.e., to get their value for a given qx we need the full
γ (qx ) function, including its upper limit qu.

It is clear that Wertheim’s term (5) is far from being the full
contribution of the IS fluctuations to the density correlation
of suspended graphene, the accurate representation of G is
only obtained with the full BW series, and the theoretical
assumptions leading to that prediction seem to be rather
accurate up to large qx. For the lowest qx, the practical con-
vergence of the BW series is reached for n ≈ 3–5. However,
for qx three times larger we have to add up to n ≈ 20. That
tendency follows the results for cold liquid surfaces [39], with
structured density profiles, that got important contributions to
GBW beyond Wertheim’s term. The density profile of graphene
is a narrow peak, so we expect a very slow convergence of the
series, but we may use the Gaussian fit to the density profile
Fig. 1 to get the derivatives of ρ(z), up any high n.

Within the MD-ISM, the definition of �G ≡ G − Gb and
its CWT prediction GBW in (8) are linked by the (qu-
controlled) separation between the IS fluctuations and the
remaining background. The choice of a lower qu would still
give CWT-consistent results, with a broader ρ in(z) giving the
same ρ(z) through the convolution (4) with a narrower P(ξ ).
But in that case we would transfer some IS fluctuations to be
considered as part of the background Gb, rather as part of �G,
and that may spoil the result Gb � �G � G discussed above.

V. THE SURFACE STRUCTURE FACTOR
OF SUSPENDED GRAPHENE

We analyze here the results of the previous section but
now in terms of the structure factor S(qx, qz ), which may
open the experimental access to γ (qx ). Figure 4 shows the
results as a function of qz, for two values of qx, in the
system with tensile strength Px = −3.2 N/m. The left column
compares the total S(qx, qz ), directly from our MD simulation,
with SBW from (12), and with Wertheim’s term SW from
(11). They all agree in the low-qz limit, taking the form
S ≈ (ρ2Dqz )2/(βγ (qx )q2

x ). This parabolic dependence ∼q2
z , at

low qz, is peculiar of 2D systems like graphene, which have
|	(qz )| ∼ ρ2Dqz and hence |	(0)| = 0. Liquid surfaces, with
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FIG. 4. The structure factor S(qx, qz ) with tensile stress Px =
−3.2 N/m. We show two values of qx: (top) qx = 0.042 and (bottom)
0.12 Å−1. Left column, with the simulation lateral size L = LMD:
The green line shows the direct MD result S(qx, qz ); the blue line
SBW(qx, qz ) (up to order n = 20 for convergence), and the black
dashed line is Wertheim approximation SW(qx, qz ). Right column
shows the dependence of SBW(qx, qz ) with the lateral size. The full
blue line SBW (as on the left) with L = LMD. The results using
Eqs. (12) and (20) in larger periodic boxes are: dashed lines L =
2LMD, dotted line: L = 8LMD and dashed-dotted line: L = 32LMD.
The red line is the result of Eq. (21), the continuous limit for very
large L, without periodic boundaries.

a positive 	(0) = �ρ, have S(qx, qz ) with a broad maximum
at qz = 0 which makes GISAXS the best experimental probe
to measure the surface fluctuations in those systems. Thus, for
graphene (or other 2D structures), the simplest interpretation
of the structure factor as SBW � SW is restricted to the region
where S(qx, qz ) is rather small, and that region shrinks as qx

grows. The maximum signal of the IS fluctuations appears
in the region where the theoretical analysis has to go clearly
beyond Wertheim’s (n = 1) term in the BW series.

For the lower qx (top row in Fig. 4), the BW prediction is
very close to the full MD result over the whole range of qz.
For the higher value of qx (bottom) there is some discrepancy,
which quantifies the small visual differences between the
bottom-right panels in Figs. 2 and 3. The main possible source
for the discrepancies are small deviations from the CWT
assumptions of perfect Gaussian independent distributions for
each IS Fourier component. The deviations are more visible
at the larger qx, as SBW moves away from its divergence, and
also at larger qz where the rapid decay of |	(qz )|2 ∼ e−q2

z S(0)

in (12) should be balanced (within the CWT assumptions) by
the rapid growth of eq2

z S(x). Nevertheless, the most useful ex-
perimental data should correspond to much lower qx (that give
larger S signal), and for those low qx values the assumption
S � SBW is very accurate.
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FIG. 5. The height-height correlation function in real space,
S (0) − S (x) = �(x)/(2πβγ0) for tensile stress Px = −0.16 N/m.
The full blue line is obtained using Eq. (20), with γ (qx ) = γ0 + κq2

x ,
in a large box with L = 1 μm. The dashed red line shows the fit to
the shape �(x) = ln(x/x0 ) in the range where this approximation is
valid, q−1

u � x � L. The inset shows (with the same colours) the two
curves for low x and their difference (black line) 2πβγ0�(x), with
�(x) ≡ �(x) − ln(x/x0 ). The vertical arrow indicates the x0 value.

The right column in Fig. 4 explores the dependence with
the system size, relevant to compare MD simulations with
experiment data, when the surface structure factor S(qx, qz )
(6) represents the sampling over an area ∼1 μm2, much
larger than the MD box, and without periodic conditions.
The broadening of the density profile ρ(z), and hence the
narrowing of |	(qz )|, with increasing L > LMD should be
well described within the CWT assumption (4). Using in
(20) the quadratic form γ (qx ) � γ0 + κq2

x we have got S (x)
and Ŝn(qx ), to obtain SBW(qx, qz ) for large (periodic) boxes,
up to L = 32LMD (i.e., about half a micron), well beyond
the feasible size of a full MD simulation. Only the n = 1
coefficient Sn(qx ) in (10) remains independent of L, while
those for n � 2 grow, reflecting the growth of the maximum
S (�x), at x = 0, as S (0) = 〈|ξ (�x)|2〉 ∼ log(L)/(2πβγ0). The
results for S(qx, qz ) show visible changes when we double
the MD size, but a good convergence to a size independent
structure factor is obtained for L > 8LMD.

To analyze that large L limit, the factor eq2
z S(x) in (12)

may be written as eq2
zS(0)e−η�(x), with the function �(x) ≡

2πβγ0(S (0) − S (x)), as used in Fig. 5 over the range (x � L)
in which it depends only on the radial distance x = |�x| and it
is independent of the system size. The size effects and the
periodic boundary conditions the simulation box appear only
for x � L, as a flattening from the CWT prediction �(x) =
ln(x/x0), due to the periodic boundaries.

The constant x0 depends on γ (qx )/γ0 and on the upper
cutoff qu. If the bending constant is large (qκ ≡ √

γ0/κ � qu)
the cutoff qu becomes irrelevant and we get x0 = 2e−�E/qκ �
1.123

√
κ/γ0, where �E is the Euler’s constant. With out lower

tensile stress we have qκ = 0.102 Å−1, well below qu but not
as much as to make the latter fully irrelevant, and our numer-
ical result x0 = 11.33 Å is close, but not exactly equal, to the
theoretical prediction (11.01 Å) for qκ � qu. With the tenser

graphene sheet we get x0 = 4.13 Å, which reflect more the
cutoff qu than the larger qκ = 0.356 Å−1. Therefore the two
values of the tensile stress presented here cover the physical
distinction between the sharp atomic band-top (represented by
qu) and the gradual increase of γ (qx ) (represented by qκ ) as
the relevant aspects that control the shape of �(x) at short
distance.

Since |	(qz )|2eq2
z S(x) = |	in(qz )|2e−η�(x), in terms of the

(L independent) intrinsic density profile, the only dependence
with the size (an boundary conditions) of SBW(qx, qz ) comes
from the (large) values of �(x) for large x, near the integration
limit. For large L, the factor e−η�(x) is very small on that region
and the structure factor should converge to a large L limit,
independent of the boundary conditions,

SBW(qx, qz ) = |	in(qz )|2
βγ0

∫ ∞

0
dx

e−η�(x) − 1

η
J0(qxx),

(21)

where we have to assume that the upper limit for x = |�x|, at
some very large value x � x0 and qxx � 1, is smoothed to
avoid the oscillatory effects from the Bessel function J0(qxx).
That should give a fair representation for the experimental
sampling over the coherence section of a x-ray beam and in
the left column of Fig. 4 we show that it is very close to the
result in large periodic boxes.

Notice that when BW series is approximated by SW(qx, qz ),
the only dependence with L comes in |	(qz )|2, with the mean
density profile. As ρ(z) becomes broader, with increasing L,
Wertheim’s prediction SW(qx, qz ) becomes lower, particularly
at large qz, making clear that it is not a good representation of
the structure factor in a large system. The η = 0 limit of (21)
gives a size independent version of Wertheim’s term, with the
intrinsic |	in(qz )| instead of that with the mean density profile
(11). In a liquid-vapour surface, the limit qz = 0 reconciles
these two versions of Wertheim’s prediction, since |	in(0)| =
|	(0)| = �ρ, but for graphene or any other 2D structure, the
limit qz = 0 is useless.

For any η = q2
z /(2πβγ0) < 2, the evaluation of (21) may

be split as SBW = S0 + S�, where

S0(qx, qz ) = 4π |	in(qz )|2
q2

x q2
z

�(1 − η/2)

�(η/2)

(x0qx

2

)η

. (22)

in terms of the gamma function �, was obtained by Sinha
[5,42] assuming that the asymptotic form �(x) = ln(x/x0)
may be used over the full range 0 � x in (21), so that
e−qz (S(0)−S(x)) = (x0/x)η. This is the usual starting point for the
interpretation of surface diffraction data, and we use here the
subindex in S0 to indicate that it depends only on γ0 [through
η = q2

z /(2πβγ0)] and on x0, as the only relevant measures of
the short-range behavior of S (x). As far as η < 2, S0 should
be the most important contribution to SBW at low qx, as shown
in Figs. 6 and 7.

Figure 6 presents the results for SBW (full lines) and S0

(straight dotted lines), for several (small) values of η, as
functions of qx. Since qz is fixed by the experimental angle
of incidence, the 2 − η slope of the ln(S) − ln(qx ) should
represent the structure factor at low qx, when the short-
ranged function �(x) contributes very little and SBW � S0.
Then, those straight lines should give direct access to βγ0 =
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several incident angles that fix qz and η = q2

z /(2πβγ0).

q2
z /(2πη) from the diffuse scattering at very small deviations

from the specular reflection (i.e., at low qx). That may be
particularly relevant for suspended graphene sheets, since a
direct macroscopic measure of their surface tension may not
be available.

In a liquid surface, the maximum scattering signal is ob-
tained at the closest practical approach to the perfect grazing
incidence qz = η = 0. For graphene, the maximum structure
factor appears for 0.1 � η � 0.5, depending on the value of
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FIG. 7. The black full lines are the results for SBW = S0 + S�,
Eqs. (21)–(23), for the systems with low (Pxy = −0.16 N/m, left)
and high (Pxy = −3.2 N/m, right) tensile stress. The red dotted
lines are Sinha’s S0 asymptotic form, Eq. (22), which may only
be calculated for η = q2

z /(2πβγ0) < 2. The full red lines are the
usual local approximation Sloc(qx, qz ), Eq. (24), in terms of a η(qx ) =
q2

z /(2πβγ (qx )) used in S0. The range of validity the local approxi-
mation is restricted by the poles of �(1 − η(qx )/2), which move to
larger qz as the surface tension γ0 increases.

qx. In practice, it would be difficult to extract the value of x0

from the experimental results for S ≈ S0 at very low qx, since
it is entangled with the value of 	in(qz ), which may depend on
how the graphene sheet is suspended. Any information on κ ,
and in general on γ (qx )/γ0, has to be searched in the deviation
between the SBW(� S) and S0 lines, around qx ∼ 0.1 Å−1 in
Fig. 6.

We find the generic relation

S�(qx, qz ) = |	in(qz )|2xη

0

βγ0

∫ ∞

0
dx

e−η�(x) − 1

η xη−1
J0(qxx), (23)

between the deviation, S� ≡ SBW − S0 (expected for large
qx) and the short-ranged core, �(x) = �(x) − ln(x/x0),
in the height-height correlation function. If qκ � qu, we know
the analytic decaying form �(x) ∼ √

qκ/qxe−qx/qκ , while in
the opossite case (qκ > qu, as in our tenser system) �(x)
has oscillatory decay. In any case, �(x) is a short-ranged
function, with decay length comparable to x0, which may
be numerically calculated from (20), and (always for η < 2)
integrated in (23) with no influence of the system size L.

Any validation of a structural model for graphene, as
that used in our MD simulation, with experimental data for
the structure factor of a suspended graphene layer should
address S�(qx, qz ). This function contains the dependence
with the atomic force field in the model and (in the mesoscopic
CWT description) the dependence with κ and qu, that reflect
the atomic interactions in the energy cost to corrugate the
layer. Sinha’s [5,42] S0 is the main contribution to S for
qx � 0.1 Å−1, it depends on the macroscopic γ0 imposed
to the suspended layer (both in the MD simulation and in
the experimental set up), but it does not reflect the details of
the atomic interactions, and cannot provide a validation of the
model.

The interpretation of x-ray surface scattering in liquid
surfaces [13,23], beyonds Sinha’s term (22), used an effective
local relationship between S(qx, qz ) and γ (qx )

Sloc(qx, qz ) ≡ So(qx, qz; η(qx ))

≡ 4π |	in(qz )|2
q2

x q2
z

�(1 − η(qx )/2)

�(η(qx )/2)

(x0qx

2

)η(qx )
,

(24)

where the dependence (22) of the asymptotic contribution S0

with η = q2
z /(2πβγ0) is changed into the same dependence

with η(qx ) = q2
z /(2πγ (qx )), to describe the full structure

factor S0 + S�. As shown in Fig. 7, this local approximation
works rather well for low qz, but it breaks down as we
approach the pole of �(1 − η/2) at η(qx ) = 2. In our system
with the lower tensile stress, the range of validity falls short
of the maximum S(qx, qz ), so that the strongest signal of
the structure factor could not be analysed within this simple
qx-local assumption. For our system with the higher tensile
stress the validity of (24) covers a much larger range of qx,
including the maximum, but it is also much closer to the
plain asymptotic assumption S � S0. There has been some
discussion [42] on whether the mean or the intrinsic density
profile should be used in Sinha’s (22) and by extension in (24).
The comparison with our results for SBW = S0 + S� makes
clear that the intrinsic profile is the correct choice; it makes
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the structure factor independent of the sampled area and it
extends the accuracy of the local approximation as much as
possible, for qz > 0.

Depending on the experimental technique used to sample
S(qx, qz ), larger values of qz might be accessible and, for
suspended graphene with low γ0, the optimal range of ob-
servation may shift to η > 2. In that case the divergence at
low qx disappears, and both Sinha’s S0 and the empirical local
description (24) become useless, but still the corrugations of
the surface create density correlations that are well described
by SBW in (21) and carry information on γ (qx ).

VI. THE WAVE-VECTOR-DEPENDENT
SURFACE TENSION

We turn now to question how γ (qx ) can be obtained from
the density correlations. In computer simulations (and in den-
sity functional theories), the full access to G(z1, z2, qx ) makes
the task simpler. In a recent work [39], the problem was ad-
dressed for simple and cold liquid surfaces. A main difficulty
was to subtract the background Gb of density correlations not
associated to the IS fluctuations. That problem was solved
through the access (in computer simulations) to the intrinsic
pair correlation, as explained above. We have seen here that
for graphene Gb � G, and the correlation background may
be ignored. The second difficulty, which is shared (and even
stronger) for graphene, is the fact that Wertheim’s term (5)
cannot be taken as a good approximation to the full BW series.
If Wertheim’s (n = 1) term (5) were the main contribution to
�G = GBW, then the derivative of the density profile, ρ ′(z),
would be the eigenfunction of GBW with a divergently large
eigenvalue as qx → 0. Therefore it was proposed [20,21] to
define a normal mode (NM) surface tension

βγNM(qx ) = 〈ρ ′|ρ ′〉
q2

x 〈ρ ′|G|ρ ′〉 , (25)

in the usual bra-ket notation

〈ρ ′|G|ρ ′〉 =
∫

dz1dz2 ρ ′(z1)G(z1, z2, qx )ρ ′(z2) (26)

and

〈ρ ′|ρ ′〉 =
∫

dzρ ′(z)2. (27)

This NM assumption appeared to be well founded in the
MD-ISM analysis of a Lennard-Jones (LJ) liquid surface,
with a typical size for the MD simulation box [43]. However,
both for cold liquids (with structured density profiles, in
the same simulation box size) or for LJ in a much larger
surface size, it was later found [39] that the contributions
of the n � 2 terms in the BW series become important. In
that case, it is only through the deconstruction (dc) of the
BW series that the true γ (qx ) may be obtained, in terms of
the matrices An,m = 〈(dnρ/dzn)|(dmρ/dzm)〉 and Bn,m(qx ) =
〈(dnρ/dzn)|G|(dmρ/dzm)〉 over the nonorthogonal basis of
the higher order derivatives of the density profile that appear in
the BW series. The procedure and its convergence is presented
as Ref. [41]. In Fig. 8, we present βγdc(qx ) = [q2

xC1,1]−1 for
graphene, calculated from the first diagonal element of the
matrix C = A−1BA−1, when we use rank 20 matrices to cover
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FIG. 8. The wave-vector-dependent surface tension γ (qx ) for
tensile stress Px = −0.16 N/m. Blue full circles: γ (qx) from the
fluctuations of the intrinsic surface (3). Dashed blue line the
quadratic fit γ (qx ) � γ0 + κq2

x to the blue full circles. Blue empty
squares: γdc(qx ) = [q2

xC1,1]−1 from deconstruction (dc) of simulation
G(z1, z2, qx ). Red empty squares: normal mode result (25), based on
Wertheim’s correlation term (5). Green squares: γ (qx ) from the local
relation (24) between the simulation S(qx, qz ) and γ (qx ), as used on
the interpretations of x-ray surface scattering in liquid surfaces.

the practical convergence of the BW series. The agreement
with the direct ISM γ (qx ) is excellent, while the NM version
(which corresponds to neglect any Bn,m for n, m > 1) fails
completely.

Recovering γ (qx ) from the experimentally accessible
S(qx, qz ) could be more difficult than from the function
G(z1, z2; qx ) got from computer simulations. The dependence
on z1 and z2 is partially lost, since the inverse Fourier trans-
form with respect to qz would give only the dependence on
z1 − z2.

The interpretations of x-ray surface scattering in liquid
surfaces [13,23] have been made with the local version (24),
solving

S(qx, qz ) = Sloc(qx, qz ) ≡ So(qx, qz; η(qx )) (28)

as an equation for η(qx ) with the experimental S. In Fig. 8,
we include the result of this hypothesis when we use our
MD simulation data for S(qx, qz ) to represent the experimental
structure factor of graphene, that could be obtained from any
surface diffraction experiment. The proximity of the S0(qx, qz )
and Sloc(qx, qz ) lines in Fig. 7 implies that any noise in
S(qx, qz ) could be strongly amplified in the results for η(qx )
and γ (qx ). Nevertheless, we found that (28) gives a very
accurate result for γ (qx ) over the full range qx � 0.2 Å−1,
as far as we keep the incident angle (i.e., the value of qz)
low enough to get η = q2

z /(2πβγ0) � 0.4. That restriction
would not be a practical impediment for large tensile stress.
However, in loosely suspended graphene sheets with very
small γ0, the simple “local” interpretation would only be valid
for those qz that give a weak signal, and most of it comes
directly from S0(qx, qz ). The interpretation of the results for
larger values of S(qx, qz ), when the difference S� = S − S0
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becomes important, may be beyond the range of the local ap-
proximation (24) and could require the full (nonlocal) theory
of Bedeaux and Weeks, with the generic expression (21).

VII. DISCUSSION

We have presented MD simulations for a realistic model of
suspended graphene, to analyze its density correlation func-
tion G(z1, z2, qx ) and the structure factor S(qx, qz ). The later
could be experimentally accessible from different diffraction
techniques (x rays, neutrons, electrons or atomic beams),
each with its own (atomic or nuclear) form factor, and with
different constrains in the accessible values of qx and qz,
which we do not discuss here. Our goal is to explore how
the common surface structure factor could be used to measure
the corrugations of the graphene sheet and how it should be
compared with the results of computer simulations for models
of that system, that make accessible more information than the
experiments.

Along our simulations we got directly S(qx, qz ) and anal-
ysed the thermal fluctuations of the graphene in the theoretical
framework of the capillary wave theory (CWT), developed for
liquid surfaces. This continuous description for the transverse
acoustic band of lattice vibrations is made through a surface
Hamiltonian, with a wave-vector -dependent surface tension
γ (qx ) = γ0 + κq2

x , and we show (see Fig. 1) that it is very
accurate up to qx � qu ≈ 0.2 Å−1. The CWT allows the
analysis of the long-ranged correlations developed by the
large mean square amplitude of the corrugations with low qx.
Our results prove that suspended graphene is a most promising
system to get experimental access to the function γ (qx ) from
experimental results for S(qx, qz ). Contrary to the case of liq-
uid surfaces, which have a large correlation background from
compressibility (bulklike) fluctuations, graphene is the closest
realization of a pure interface. We show here that nearly all
the density correlation structure G(z1, z2, qx ) obtained in our
MD simulation may be very well reproduced (see Figs. 2
and 3) by the theoretical prediction of Bedeaux and Weeks
(BW), within the CWT, in terms of a series (8) to include
the full effects of the intrinsic surface corrugations, i.e., the
Debye-Waller factor of the fluctuating surface [5]. Since the
function γ (qx ) describes these surface fluctuations, we may
hope to gain experimental access to it from the structure
factor obtained in diffraction experiments. However, that task
has been controversial for liquid surfaces, with puzzling and
contradictory results for γ (qx ), except for its thermodynamic
limit γ (0) = γ0. The analysis for the graphene sheet presented
here, and hopefully its experimental verification, may help to
validate the interpretation of some x-ray surface diffraction
experiments in liquids, although still with the difficulty asso-
ciated to the need to subtract their correlation background.

It is crucial to consider the theoretical BW prediction
for G(z1, z2, qx ) as a full series (8), not only as its first
term (5) proposed earlier by Wertheim, and which has been
extensively used in the interpretation of computer simulations
and diffraction experiments, as well as in the theoretical con-
nection between CWT and the density functional formalism.
The need to extend the CWT prediction for G(z1, z2, qx )

beyond Wertheim’s term had been recently pointed out [39]
for structured cold liquid surfaces, and also for the surface of
a simple (Lennard-Jones) liquid if G(z1, z2, qx ) sampled over
a large area, with linear size in the range of 1 μm typical of
the x-ray beam width in diffraction experiments. In the case of
suspended graphene, the higher-order terms of the series (up
to n ≈ 20 terms, for practical convergence) become absolutely
necessary. Any term beyond n = 1 in the BW series is regular
in qx = 0 and nonlocal (in Fourier space); i.e., their contri-
butions to G(z1, z2, qx ) and S(qx, qz ), for a given qx require
the full function γ (qx ), from the limit qx = 2π/L imposed
by the system size to the upper cutoff qu. The relationship
between S(qx, qz ) and γ (qx ) is global and rather convoluted.
Nevertheless the simple local approximation (24) could be
quite accurate (at low qz) and could provide a simple practical
tool to get γ (qx ) from experimental diffraction data. An
important result, from our comparison of the exact nonlocal
SBW = S0 + S� with the approximated local function Sloc is
that it clarifies the need to use the intrinsic density profile,
rather than the mean one ρ(z), to get the factor |	in|. Only in
the strict grazing scattering condition, qz = 0, we may recover
Wertheim’s simple relation to get γ (qx ) from S(qx, qz ) in
liquid surfaces, because only in that case all the n � 2 terms
in BW series vanish, and 	(0) = 	in = �ρ makes irrelevant
the distinction between the mean and the intrinsic density
profile.

However, for graphene (or any other fluctuating 2D system
like bilayer membranes), the strict grazing limit qz = 0 is
useless, because the lack of density contrast between the
two sides of the fluctuation surface makes 	(0) = 0 and
cancels any signal of the corrugations in S(qx, 0). There-
fore, for graphene, bilayer membranes and also for liquid
surfaces under practical experimental conditions, we have to
analyze the diffraction signal for positive (small) values of
η = q2

z /(2πβγ0). The divergence [5] S(qx, qz ) ∝ 1/q2−η
x is

the clear signal of the surface fluctuations at very low qx,
which has been clearly observed in liquid surfaces [2,3,13,14]
and (since qz is fixed by the experimental set up) it gives
direct access to measure γ0 from the diffuse scattering signal
very close to specular reflection. The deviation from the pure
1/q2−η

x decay (see Fig. 6) is a measure for the difference
γ (qx )/γ0 − 1 ≈ (q/qκ )2 + . . . , with qκ ≡ √

γ0/κ , and also
for the influence of the upper cutoff qu.

The simple quadratic form of γ (qx ) for suspended
graphene, appears over a rather broad range of qx. From the
experimental results for S(qx, qz ) the value of γ0 should be
accessible from the exponent η at very low qx, at a given qz,
and the deviation from the straight lines (Fig. 6) in the ln(S)-
ln(qx ) could be fitted with qκ = √

γ0/κ as single parameter.
If a larger γ0 makes qκ grow to approach qu, this upper
cutoff for the continuous description of the atomic fluctuations
would become relevant, and change the shape of the curves
in Fig. 6. Altogether, the analysis of experimental data for the
diffuse scattering on a graphene sheet seems to be possible and
certainly interesting, both as a direct access to the properties
of this 2D material and as the cleanest experimental test for
the interpretation of x-ray surface diffraction experiments in
liquid surfaces.
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