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Charge transport of a spin-orbit-coupled Luttinger liquid
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The charge transport of a (Tomonaga-)Luttinger liquid with tunnel barriers exhibits universal scaling: the
current-voltage curves measured at various temperatures collapse into a single curve upon rescaling. The
exponent characterizing this single curve can be used to extract the strength of electron-electron interaction.
Motivated by a recent experiment on InAs nanowires [Y. Sato et al., Phys. Rev. B 99, 155304 (2019)], we
theoretically investigate the analogous behavior of a spin-orbit-coupled Luttinger liquid. We find that the scaling
exponent differs for different impurity strengths, being weak (disorder potential) or strong (tunnel barriers),
and their positions, either in the bulk or near the edge of the wire. For each case we quantify the exponent
of the universal scaling and its modification due to the spin-orbit coupling. Our findings serve as a guide in
the determination of the interaction strength of quasi-one-dimensional spin-orbit-coupled quantum wires from
transport measurements.
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I. INTRODUCTION

One-dimensional interacting electron systems, in con-
trast to their higher-dimensional counterparts, invalidate the
Fermi-liquid description. Instead, they can be described as
(Tomonaga-)Luttinger liquids [1–6]. Among other interesting
features, the theory predicts unusual transport properties of
the Luttinger liquid. Namely, a clean Luttinger liquid con-
nected to Fermi-liquid leads has an interaction-independent
conductance [7–9]. However, defects and impurities (in the
form of either tunnel barriers or weak potential disorder) alter
the conductance, which becomes dependent on the interaction
strength [10–16]. The predicted conductance therefore allows
one to confirm the Luttinger-liquid nature of the system and
to deduce its interaction strength through transport measure-
ments.

A typical realization of Luttinger liquids is provided by
nanowires [6,17], in which electrons are confined in two
spatial dimensions and are free to move along the third
dimension. Here the spin-orbit coupling1 is an important
ingredient for exploiting nanowires as elements in spintronics
devices [18–22], including, more recently, topological states
of matter [23–29]. In the latter examples, an external mag-
netic field induces Majorana bound states at the ends of a
spin-orbit-coupled nanowire in proximity of a superconduc-
tor. Even though most theoretical works on these Majorana
nanowires use the single-particle picture in which electron-
electron interaction is ignored, nanowires with both strong

1Throughout this article we use “interaction” for electron-electron
interaction and “coupling” for spin-orbit coupling (with very few
exceptions), to discriminate the two terms more easily for the readers.

electron-electron interaction and strong spin-orbit coupling
might have substantial advantages: it has been suggested
that they are capable of hosting Majorana Kramers pairs
[30–34] and computationally more powerful parafermions
[35–38] without applying magnetic fields. In these proposals,
sufficiently strong electron-electron interaction is required to
establish topological states. Namely, nonlocal pairing should
dominate over local pairing, or, equivalently, the Cooper pair
splitting efficiency should exceed unity. While such high
splitting efficiency has been observed in a Josephson junc-
tion made of InAs double nanowires [39], the interaction
strength of that device remains undetermined. Since most
of the proposals employ the Tomonaga-Luttinger model, it
is crucial to establish a reliable experimental approach to
characterize nanowires with strong spin-orbit coupling within
this formalism.

Recently, Ref. [40] attempted to determine the interaction
strength in nanowires made of InAs. There it was found that
the current-bias curves fit well to the universal scaling formula
of a Luttinger liquid [16,41] for charge density spanning an
appreciable range. Accordingly, the universal scaling formula
was used to deduce the interaction strength in these nanowires.
Since it is well established that the spin-orbit coupling of InAs
nanowires is considerably strong [20,42–45], it is necessary
to clarify whether and how the universal scaling formula is
affected by it.

In Ref. [40] we listed some of the results which we derive
here, namely those that were needed to interpret the data of,
and in the parameter limits appropriate for, that experiment.
In a nutshell, in Ref. [40] we used the formulas for wires
with zero spin-orbit coupling. Here we provide the theory for
wires with arbitrary spin-orbit-coupling strength. Specifically,
we give the derivations of the formulas, analyze their general
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trends, and focus on the changes induced by the finite value of
the spin-orbit coupling.

With this motivation, we investigate theoretically the trans-
port properties of a spin-orbit-coupled Luttinger liquid. De-
spite the fact that, in a purely one-dimensional system, the
spin-orbit coupling can be removed by a gauge transformation
[46–48], in realistic nanowires the presence of transverse
degrees of freedom makes the removal argument invalid.2 As
a result, the spin-orbit coupling can cause band distortion
[49,50]. In the bosonization formalism, it translates into an
additional term breaking the charge-spin separation in the
Hamiltonian [51,52]. Our goal is to analyze how this charge-
spin mixing affects the transport properties.

Here it is in order to comment on theoretical works tak-
ing into account the backscattering process of the electron-
electron interaction (referred to as g1 term). It was shown
to be irrelevant in the renormalization-group (RG) sense in
Ref. [52]. Among the subsequent works, Refs. [48,53] con-
cluded that the spin-orbit coupling combined with the g1 term
can induce a gap in the energy spectrum and thus destabi-
lize the Luttinger liquid phase, whereas Ref. [54] arrived at
the opposite conclusion. Including external magnetic fields
[55–58], intersubband spin-orbit coupling with the chemical
potential close to the subband crossing point [47], or spin-
umklapp scattering [59,60], can also lead to anticrossings or
partial gaps in the spectrum.3 Instead of entering this debate,
we take a pragmatic approach. Our theory is supposed to
provide interpretation for experiments which show no sign of
a gap, such as Ref. [40]. Therefore, we adopt the model in
Refs. [51,52], incorporating the spin-orbit coupling as a band
distortion.

We further note works on signatures of the spin-orbit
coupling in the correlation functions of the Luttinger liquid
[51,52,61]. In contrast to those, we investigate the influ-
ence of spin-orbit coupling on charge transport properties.
Specifically, we calculate the temperature and bias-voltage
dependence of the tunnel current and/or the (differential)
conductance of a Luttinger liquid containing impurities in the
following scenarios: (i) when the impurities are strong and
treated as tunnel barriers located either (ia) near the boundary
(wire end) or (ib) in the bulk of the wire, (ii) when they are
weak, treated as potential disorder, (iii) when both types (i)
and (ii) are present. These impurity types are illustrated in
Fig. 1. In addition to the universal scaling behavior of the
tunnel current in scenario (i), we find the differential conduc-
tance as a power law of the temperature and bias voltage in
the high-temperature and high-bias limits, respectively, in the
above scenarios. One of our main conclusions is that, for real-
istic strengths of the spin-orbit coupling, the current-voltage
curve follows the universal scaling relation of a standard4

Luttinger liquid with modified parameters. The interaction
strength can be therefore obtained reliably from the universal

2In addition to a strictly one-dimensional system, the removal re-
quires both a zero external magnetic field and a linear-in-momentum
spin-orbit coupling.

3Recently a partial gap in the lowest subband of an InAs nanowire
was observed in the absence of magnetic fields [45].

4That is, the one without any spin-orbit-coupling effects.

FIG. 1. Illustrations of investigated impurity types: (a) A bound-
ary barrier, (b) a bulk barrier, and (c) a weak backscattering center.
In all the panels we mark a single impurity as ×, and assume that
it is located at the origin x = 0. In (a) a strong impurity is located
between a Fermi-liquid lead (FL lead, plotted as a dashed line) and a
Luttinger-liquid wire (LL wire, plotted as a solid wavy line), which
are tunnel coupled with the tunnel amplitude ttun. In (b), a strong
impurity breaks the Luttinger-liquid wire into two segments. In (c),
a weak impurity acts as a backscattering center with the potential
strength V0.

scaling behavior, upon fitting the power law. Furthermore,
in the strong-interaction regime the modifications due to the
spin-orbit coupling are negligible. Nevertheless, in general the
effects of spin-orbit coupling enter, and the charge transport is
additionally complicated by the character of impurities in the
wires. Our analysis incorporating various impurity types and
locations resolves these complications.

The paper is organized as follows. In Sec. II we intro-
duce our model. We review the properties of a quasi-one-
dimensional spin-orbit-coupled wire in Sec. II A, and present
our bosonized model, incorporating the effects of the spin-
orbit coupling and the quasi-one dimensionality in Sec. II B.
In Sec. III we consider various types of impurities. For the
strong-impurity scenario considered in Sec. III A, we cal-
culate the universal scaling formula for the tunnel current
in the case of (a) boundary barriers and (b) bulk barriers.
Through the RG analysis, we compute also the conductance
in the high-temperature and high-bias regimes, and show
consistency with the tunnel current calculation. In Sec. III B
we compute the conductance in the high-temperature and
high-bias regimes for the weak-impurity scenario and propose
an interpolation formula for arbitrary temperature and bias.
Finally, in Sec. III C we consider the scenario in which both
strong and weak impurities are present, and reveal a transition
between different power laws upon varying the interaction
strength. We discuss generalization of our calculation and
robustness of the transport signatures for a Luttinger liquid
in Sec. IV. In Sec. V we summarize our main results in
Table I. Appendix A gives the details on the derivation of
the single-particle correlation function. In Appendix B we
present the derivation of the universal scaling relation of
the current-voltage curve, and its asymptotic behavior in the
high-temperature and high-bias limits. In Appendix C we
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TABLE I. Parameters α characterizing the current-voltage curve and the power-law (differential) conductance of a spin-orbit-coupled
Luttinger liquida subject to various types of impurities. The first and second columns give the impurity type and their illustration, respectively.
The third (fourth) column gives the notation (expression) of the corresponding parameter. The fifth (sixth) column gives the corresponding
equation (figure) number. The parameters g′

c, g′
s, g0, and θ are given in Eqs. (11) and (13).

Impurity or defect type Illustration Notation Expression Eq. Fig.

Strong impurity (tunnel barrier) near the wire end Fig. 1(a) αend
1
2 ( 1

g′
c
+ 1

g′
s
)(cos2 θ + g2

0 sin2 θ ) − 1 Eq. (25) Fig. 4

Strong impurity (tunnel barrier) within the wire Fig. 1(b) αbulk ( 1
g′

c
+ 1

g′
s
)(cos2 θ + g2

0 sin2 θ ) − 2 Eq. (26) Fig. 4

Many weak impurities (potential disorder) Fig. 1(c) αimp 2 − [cos2 θ (g′
c + g′

s ) + g2
0 sin2 θ ( 1

g′
c
+ 1

g′
s
)] Eq. (36) Fig. 5

aSee Table II in Ref. [40] for a summary of the corresponding parameters of various Luttinger liquids without spin-orbit coupling.

discuss the density of states of a bosonized model proposed in
Ref. [62]. In Appendix D we discuss an alternative approach
for the analysis in the weak-impurity regime.

II. HAMILTONIAN OF A CLEAN SYSTEM

A. Energy spectrum and spin orientation

Owing to their potential application in spintronics and
topological matter, the spectral properties of semiconductor
nanowires with spin-orbit coupling have been widely studied
in the literature [46–52,62,63]. Here we review the basic
properties of a quasi-one-dimensional spin-orbit-coupled wire
[49–52,62] that are essential for our analysis. We assume that
the wire lies along x direction, and its transverse directions
(y and z) are subject to confinement potentials, taken as
anisotropic harmonic for specificity. The y-axis confinement is
assumed to be much softer than z direction, so the z transverse
degrees of freedom can be neglected. The confinement energy
scale Eg is thus determined by the wire width lw along y
direction. It is known that in the presence of a relatively weak
transverse confinement (meaning that Eg is not very large),
the spin-orbit coupling can cause appreciable band distortion
[49]. More precisely, the Rashba spin-orbit coupling mixes the
opposite spin states of the neighboring transverse subbands,
making the energy spectrum spin dependent and distorting its
originally quadratic dispersion.

Aiming at a quantitative description, we take the two-
subband model introduced in Refs. [50,62]. The energy spec-
trum depends on the dimensionless parameter ksolw, with
kso ≡ m|αR|/h̄2 being determined by the Rashba coefficient
αR and effective mass m of the material. For the parameter
values |αR| = 100–200 meV Å, m = 0.023 me with the elec-
tron mass me, and lw = 100 nm, we obtain ksolw = 0.3–0.6.
For illustration, Fig. 2 shows the spectrum for ksolw = 0.45.
We label the outer (inner) branch of the energy dispersion
as A (B) and the right- (left-)moving electron as R (L) for
the chemical potential μ located within the lowest-subband
regime, as indicated in Fig. 2. Due to the band distortion
induced by the spin-orbit coupling, the Fermi velocities of the
branches A and B are different. We define the band distortion
parameter as the ratio δv/vF with

δv ≡ vA − vB, (1a)

vF ≡ (vA + vB)/2, (1b)

where vA (vB) is the Fermi velocity of the branch A (B).
The band distortion parameter is plotted as a function of μ

in Fig. 3. For parameters relevant to Ref. [40], we obtain
δv/vF � 0.1 in the strong-interaction regime (that is, close to
the bottom of the lowest subband).

In addition to the band distortion, the spin orientation
of the electrons is also affected by the spin-orbit coupling.
Whereas the spins of the right- and left-moving electrons of
the same branch (either A or B) must be opposite due to
the time-reversal symmetry, there is in general no relation
between the spins of electrons moving in the same direction
(namely, between RA and RB, or, equivalently, between LA and
LB). In the literature, Moroz et al. assigned the electron spins
of the same direction of motion as antiparallel [51,52], while
Governale and Zülicke assigned them as parallel [50,62]. In
fact, due to the spin-orbit mixing, the spins of RA and RB

are in general neither exactly parallel nor exactly antiparallel.
The relative orientation between these two spins depends on
the strengths of the spin-orbit coupling and the transverse
confinement, as well as the chemical potential.

To demonstrate it, in Fig. 3 we plot the μ dependence of
the spin expectation values 〈Sy〉 with respect to the transverse
wave functions of the four labeled branches. Similar to the
band distortion, the spin orientation also shows strong μ

dependence. Upon increasing μ, the spins of RA and RB evolve

FIG. 2. Energy spectrum (Ek) of a quasi-one-dimensional spin-
orbit-coupled wire for ksolw = 0.45. The horizontal axis labels the
momentum k along the wire (multiplied by the wire width lw), and
the vertical axis is scaled with Eg ≡ h̄2/(ml2

w ). When the chemical
potential μ (dotted line) intersects with the lowest transverse subband
(solid curves) but not the upper subband (dashed curves), there
exist four distinct branches, which we label as LA, LB, RB, and RA,
according to their Fermi velocities. The color in the background
shows the value of the spinor overlap PAB [see Eq. (2)].
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FIG. 3. Chemical potential (μ) dependence of the spin expecta-
tion value 〈Sy〉 (left axis, in unit of h̄/2) of the eigenstates in the
lowest subband, as well as the band distortion parameter δv/vF (right
axis). For μ < μ∗, the spins of RA and RB are of opposite signs, so
are the spins of LA and LB. The adopted parameters are the same as
those used in Fig. 2.

from nearly antiparallel close to the bottom of the lowest
subband, to not very well aligned when approaching the bot-
tom of the upper subband. The crossover between these two
regimes occurs at μ∗, where the expectation values 〈RB|Sy|RB〉
and 〈LB|Sy|LB〉 vanish. As a result, the two sets of seemingly
contradicting references (Refs. [51,52] and Refs. [50,62]) can
be reconciled—whether the former or the latter gives a better
description depends on which parameter regime we are look-
ing at. Therefore, to investigate the strong-interaction regime
in Ref. [40], which corresponds to the low-μ regime in Fig. 2,
it is more appropriate to consider the scenario described in
Refs. [51,52].

After examining the parameter dependence of the spin
orientation, we discuss the implication of the distinct spin-
state assignments in Refs. [50–52,62] on our analysis. To
proceed, we denote the spin states of the time-reversal pairs
RA and LA as σ =↑ and ↓, respectively. Similarly, the other
pairs RB and LB can be labeled as σ ′ =↑′ and ↓′, respectively.
As mentioned above, there is in general no relation between
σ and σ ′. Concerning transport properties, backscattering on
charge impurities is feasible only between counterpropagat-
ing electrons with nonzero spinor overlap. Since the spin
assignment σ = σ ′ in Refs. [50,62] corresponds to a helical
channel, it is immune against elastic single-particle backscat-
tering on charge impurities. To facilitate backscattering of
electrons in a helical channel, an alternative mechanism has
to be involved, which may arise from broken time-reversal
symmetry, higher-order scattering, or an inelastic process (for
example, see Refs. [64,65] and references therein). In the
present work, however, since we consider charge impurities as
the dominating mechanism responsible for the transport, only
backscattering processes between two nonorthogonal states
(that is, RA ↔ LB and RB ↔ LA) can cause finite resistance.
In consequence, it is more appropriate to consider the spin-
state assignment σ = −σ ′ suggested in Refs. [51,52] for our
analysis.5 To further quantify the backscattering strength, we

5Nonetheless, one may be interested in the spin-orbit effect on the
bosonized model of the helical channel presented in Ref. [62]. In

compute the scalar product of two nonorthogonal states in
different branches for a fixed μ,

PAB ≡ |〈RA|LB〉| = |〈RB|LA〉|, (2)

which is shown in the background color of Fig. 2. In spite of
the misaligned spins, the strength of backscattering between
branches decreases only modestly when the chemical poten-
tial is increased.

Based on the above consideration, we are motivated to in-
troduce the following fermion operators for the four branches:

LA → ψL↓, LB → ψL↑, RB → ψR↓, RA → ψR↑, (3)

where we have removed the redundant prime for branch
B. With this electron spin assignment, the energy spectrum
can be linearized and the fields ψrσ can be bosonized in
the standard way [see Eq. (7) below]. The strength of the
impurity-induced backscattering is affected by the spin mis-
alignment, which influences the prefactors of the conductance
and current. In our calculation, it can be incorporated through
renormalized coupling constants by replacing the tunnel am-
plitude ttun in Eq. (18) with (assuming that PAB is well above
zero)

t2
tun → t2

tun

(
1 + P2

AB

2

)
, (4)

and the backscattering strength V0 in Eq. (39) with

V 2
0 → V 2

0 P2
AB. (5)

Nevertheless, the spin misalignment does not affect the uni-
versal scaling exponents that we aim to determine.

In consequence, the distinct Fermi velocities of the two
spin branches are symptomatic for the spin-orbit-induced
band distortion discussed here, with the ratio δv/vF depend-
ing on the specific model used to compute the spectrum. In
order to keep our analysis general, from now on we take
δv/vF as a phenomenological parameter quantifying the band
distortion effect. In the bosonized Hamiltonian, this band
distortion leads to a charge-spin mixing term [51,52], which
we present in the next subsection.

B. Bosonized Hamiltonian

We now present our model based on the bosonization
formalism [6]. We introduce the Hamiltonian H = H0 + Hso

as a model of a clean spin-orbit-coupled wire. We postpone
the discussion of additional terms induced by impurities to
Sec. III. The first term H0 describes a standard, spinful

Appendix C we analyze the power-law density of states of that
model, which turns out to be weakly dependent on the band distor-
tion.
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Luttinger liquid6

H0 =
∑

ν

∫
h̄dx

2π

{
uνgν[∂xθν (x)]2 + uν

gν

[∂xφν (x)]2

}
. (6)

Here gν is the interaction parameter in the ν sector (with the
index ν ∈ {c, s} referring to the charge and spin sectors, re-
spectively) and uν = vF /gν is the corresponding renormalized
velocity with vF defined in Eq. (1). The boson fields (φν, θν )
are connected to the fermion fields through the standard
bosonization formula,

ψrσ (x) = 1√
2πa

eirkF xe− i√
2

[rφc (x)−θc (x)+rσφs (x)−σθs (x)]
. (7)

Here the Klein factor is omitted, a is the short-distance
cutoff, kF is the Fermi wave vector,7 and the index
r ∈ {R ≡ +1, L ≡ −1} refers to the fermion operator describ-
ing the right- and left-moving particle, respectively. The boson
fields satisfy the following commutation relation [6]:

[φν (x), θν ′ (x′)] = i
π

2
sgn(x′ − x)δνν ′ . (8)

Equation (6) itself describes a system in which the spin-
orbit-induced band distortion is absent, and reveals the sep-
aration of the charge and spin sectors, the hallmark of
the standard Luttinger liquid. Throughout this article we
will constantly compare the known formula derived from
Eq. (6) with our results including the influence of the band
distortion.

The term Hso incorporates the band distortion induced by
the spin-orbit coupling [49,51,52]

Hso = δv

∫
h̄dx

2π
{[∂xφc(x)][∂xθs(x)] + [∂xφs(x)][∂xθc(x)]}

(9)

as a mixing between the charge and spin sectors. As demon-
strated in Fig. 3, the typical values of δv are small compared
to the averaged Fermi velocity vF .

Since the Hamiltonian H0 + Hso is quadratic in the bo-
son fields, it can be diagonalized by using new boson
fields, (

φ′
s(x)

θ ′
c(x)

)
=

(
cos θ −g0 sin θ

1
g0

sin θ cos θ

)(
φs(x)

θc(x)

)
, (10a)

(
φ′

c(x)

θ ′
s(x)

)
=

(
cos θ g0 sin θ

− 1
g0

sin θ cos θ

)(
φc(x)

θs(x)

)
, (10b)

6Here we assume the wire length to be much longer than any other
length scale, such as Fermi wavelength, thermal length, and average
impurity separation, so that the wire can be regarded as a Luttinger
liquid extending over the entire space. Moreover, in such a long wire
the g1 backscattering term is renormalized to a vanishing contribution
to the effective action for any repulsive interaction [52], so we neglect
the g1 term here.

7Similar to the definition of vF , the parameter kF becomes the
average of the Fermi wave vectors in the two spin branches when
the spin-orbit coupling is included.

with the parameters

g0 =
√

2gcgs√
g2

c + g2
s

, (11a)

θ = 1

2
arctan

(
δv

vF

√
2gcgs

√
g2

c + g2
s

g2
s − g2

c

)
. (11b)

It can be checked that these new boson fields satisfy the
commutation relation (8) upon replacing the fields (φν, θν ) →
(φ′

ν, θ
′
ν ). In terms of the new fields, the Hamiltonian reads

H =
∑

ν

∫
h̄dx

2π

{
u′

νg′
ν[∂xθ

′
ν (x)]2 + u′

ν

g′
ν

[∂xφ
′
ν (x)]2

}
, (12)

where the modified interaction parameters and velocities by
the spin-orbit coupling are given by

g′
c = gcg0

gs

[
g2

s − (
g2

0 + g2
s

)
sin2 θ

g2
0 − (

g2
0 + g2

c

)
sin2 θ

]1/2

, (13a)

g′
s = gsg0

gc

[
g2

c − (
g2

0 + g2
c

)
sin2 θ

g2
0 − (

g2
0 + g2

s

)
sin2 θ

]1/2

, (13b)

and

u′
c = uc

g0gs cos(2θ )

[
g2

0 − (
g2

0 + g2
c

)
sin2 θ

]1/2

× [
g2

s − (
g2

0 + g2
s

)
sin2 θ

]1/2
, (13c)

u′
s = us

g0gc cos(2θ )

[
g2

0 − (
g2

0 + g2
s

)
sin2 θ

]1/2

× [
g2

c − (
g2

0 + g2
c

)
sin2 θ

]1/2
, (13d)

respectively. In the absence of spin-orbit coupling (that is,
when δv, θ → 0), we recover the limit (g′

c, g′
s, u′

c, u′
s) →

(gc, gs, uc, us), as expected. The above formulas quantify the
effects of the band distortion, Eq. (9), on the interaction
parameters and velocities. For fixed δv, the parameters θ and
g0 decrease with a decreasing gc. Therefore, g′

ν approaches
its value at zero spin-orbit coupling (gν) when gc approaches
zero. As a result, the modification of the interaction param-
eters by the band distortion is smaller for more strongly
interacting wires.

For a moderate strength of the interaction, since the mod-
ified interaction parameters enter the exponents of the cor-
relation functions, we expect to see influence on observable
quantities. In particular, we are interested in the charge trans-
port of a spin-orbit-coupled wire for arbitrary strength of
interaction. Since the ballistic conductance of a clean spin-
orbit-coupled system displays no signature for a Luttinger
liquid [52], as originally found for systems without spin-orbit
coupling [7–9], in the following we seek for signatures in the
presence of impurities.

III. TRANSPORT PROPERTIES IN THE PRESENCE
OF VARIOUS IMPURITIES

We aim at finding out how the charge-spin mixing term
in Eq. (9) influences the transport properties of the system.

195423-5



CHEN-HSUAN HSU et al. PHYSICAL REVIEW B 100, 195423 (2019)

To this end, we compute the current and/or the differential
conductance of the system described by Eq. (12) in the
presence of various types of impurities illustrated in Fig. 1.
We consider a wire adiabatically connected to the leads, a
common assumption as in, e.g., Refs. [8,14,15,66,67]; for
the effect of an abrupt contact in a microscopic model, see
Refs. [68,69].

A. Strong impurities–tunnel barriers

We begin with an isolated strong impurity and model it as
a weak tunnel barrier. Assuming that the barrier is located at
the origin, the two sides of the barrier are described by

H1 =
∑

ν

∫ 0

−∞

h̄u′
1νdx

2π

{
g′

1ν[∂xθ
′
1ν (x)]2 + [∂xφ

′
1ν (x)]2

g′
1ν

}
,

(14a)

H2 =
∑

ν

∫ ∞

0

h̄u′
2νdx

2π

{
g′

2ν[∂xθ
′
2ν (x)]2 + [∂xφ

′
2ν (x)]2

g′
2ν

}
,

(14b)

obtained by generalizing Eq. (12) to possibly different pa-
rameters on the two sides. We include an additional index
j ∈ {1, 2} to label the semi-infinite subsystem on the left and
right side of the barrier, respectively. The two subsystems are
connected through a tunneling process described by

Htun = −ttun

∑
σ

c†
1σ c2σ + H.c., (15)

where ttun is the tunnel amplitude and c jσ is the fermion
operator with spin σ ∈ {↑,↓} at x = 0 in the left ( j = 1) or
right ( j = 2) side. It is related to the right and left movers in
Eq. (7) by

c jσ = ψ jRσ (0) + ψ jLσ (0), (16)

where we generalize the field in Eq. (7) to ψ jrσ by including
the subsystem index j.

The tunnel current through the barrier depends on whether
the barrier is located near the boundary8 or in the bulk of the
wire. When it is near the boundary, the barrier corresponds
to a junction between a Luttinger liquid wire and a Fermi-
liquid lead. In this case, one side of the barrier (say, for
x < 0) is described by the parameters of a lead with negli-
gible interaction9 such that (g′

1c, g′
1s) = (1, 1), whereas on

the other side (for x > 0) the wire parameters are (g′
2c, g′

2s) =
(g′

c, g′
s). When the barrier is in the bulk of the wire, on the

other hand, the barrier corresponds to a junction between two
Luttinger liquids. Therefore, both H1 and H2 have parameters
(g′

1c, g′
1s) = (g′

2c, g′
2s) = (g′

c, g′
s). In the following, we first

8We stress that the “boundary (end) barrier” may be located close
to, but not necessarily precisely at, the wire end, as discussed in
Refs. [16,40].

9For (g1c, g1s ) = (1, 1) we get (g′
1c, g′

1s ) = (1, 1) for an arbitrary
value of spin-orbit coupling. Our results therefore include the possi-
bility that the strength of spin-orbit coupling is different in the wire
and in the Fermi-liquid lead.

keep general parameters for the two subsystems j, and specify
them later.

To the leading order, the tunnel current through the barrier
is given by [70,71]

I = et2
tun

h̄2

∑
σ

∫ ∞

0
dt {e−ieV t/h̄〈[c†

1σ (t )c2σ (t ), c†
2σ (0)c1σ (0)]〉

− eieV t/h̄〈[c†
2σ (t )c1σ (t ), c†

1σ (0)c2σ (0)]〉}, (17)

with the elementary charge e, the reduced Planck constant h̄,
and the voltage difference V between the two sides of the
barrier. Here the notation [. . . , . . . ] is the commutator and
〈· · · 〉 is the average with respect to the unperturbed action
[before introducing Eq. (15)]. It is convenient to write Eq. (17)
as

I = − 2et2
tun

h̄2

∑
σ

Im
[
χ ret

σ (−eV/h̄)
]
, (18)

with Im[· · · ] being the imaginary part and the following
correlation functions:

χ ret
σ (ω) ≡ −i

∫ ∞

0
dt eiωt [χσ (t ) − χσ (−t )], (19a)

χσ (t ) ≡ 〈c†
1σ (t )c1σ (0)〉1〈c2σ (t )c†

2σ (0)〉2, (19b)

where 〈· · · 〉 j is the average corresponding to Hj in Eq. (14).
The single-particle equal-space correlation function in the

above formula is defined at the boundary of the Luttinger
liquid. To take the boundary into account properly, we treated
it along the lines of Ref. [6], as presented in Appendix A. At
finite temperature T , the single-particle correlation function is

〈c†
jσ (t )c jσ (0)〉 j = 1

2πa

∑
r=±

[
πkBT/a

i sinh(πkBT t/h̄)

]β jrσ +1

, (20)

with the Boltzmann constant kB and the bandwidth a ≡
h̄vF /a. The exponent β jrσ , given in Eq. (B1), corresponds
to the density of states at the boundary of the subsystem j.
Plugging the above formula into Eq. (19), with some algebra
and approximations presented in Appendix B, we get the
current-voltage curve at finite temperature as

I ∝ T α+1 sinh

(
eV

2kBT

)∣∣∣∣�
(

1 + α

2
+ i

eV

2πkBT

)∣∣∣∣
2

, (21)

with the gamma function �(x). The current-voltage relation
has the same form as in Ref. [16] except for a parameter
modified by the spin-orbit coupling,

α = α1 + α2. (22)

The explicit form of α j depends on the density of states on
the two sides of the barrier and thus the location of the barrier,
which will be specified later.

So far we have considered a wire with a single barrier
which causes a voltage drop V . As discussed in Ref. [41],
assuming that there are Nb independent barriers10 in the wire,
each of which causes a similar voltage drop with V being
the bias voltage across the entire wire, Eq. (21) is valid upon

10See, however, Ref. [72] for calculations beyond this assumption.
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replacing V → V/Nb. Here the barrier number Nb corresponds
to the parameter γ = 1/Nb in Refs. [40,41]. As a result, it
is possible to experimentally determine the number of the
barriers in the wire through the current-voltage characteristics.

Before specifying the barrier type to obtain the exponent in
Eq. (22) in terms of the parameters in Eqs. (11) and (13), we
make four remarks on Eqs. (21) and (22). First, the current-
voltage curve exhibits a universal scaling behavior, analogous
to the zero spin-orbit-coupling case [16]. Namely, the rescaled
current I/T α+1 is a function of the ratio V/T . Therefore, the
curves I/T α+1 plotted versus V/T for various bias voltages
and temperatures collapse onto a single curve.

Second, in addition to the full dependence on the tem-
perature and bias voltage, the asymptotic behavior of the
(differential) conductance11G ≡ dI/dV may be of interest. In
the eV � kBT regime, Eq. (21) gives the linear-response con-
ductance with a power-law temperature dependence, whereas
in the opposite limit we find a nonlinear current-voltage
curve; the detailed discussions on the asymptotic behavior of
Eq. (21) are presented in Appendix B. The behavior in these
limits can be summarized as

G ≡ dI

dV
∝

{
T α, for eV � kBT,

V α, for eV � kBT,
(23)

that is, a power-law conductance with the identical exponent
α in the high-temperature and high-bias regimes.

Third, the value of α, which parametrizes the universal
scaling relation Eq. (21), depends on the interaction parame-
ters, so that the current-voltage curve can be used to extract the
strength of the electron-electron interaction in the wire. Such
characterization, however, strongly depends on the location of
the barrier, as discussed below.

Finally, it may be tempting to guess the parameter α in
Eq. (22) using the corresponding form in the absence of
the spin-orbit coupling. Namely, one may naively replace
(gc, gs) → (g′

c, g′
s) in the following expressions [11–13]:

αend(δv = 0) = 1

2gc
+ 1

2gs
− 1, (24a)

αbulk (δv = 0) = 1

gc
+ 1

gs
− 2, (24b)

for boundary and bulk barriers, respectively. Such a replace-
ment would, however, have given an incorrect result. The
reason can be traced back to the fact that the tunnel Hamil-
tonian is written with the original fermions. When expressing
these fermions in terms of the new fields φ′

ν and θ ′
ν , additional

coefficients arise from the transformation from the fields φν

and θν into the new ones using Eq. (10). As a result, α as a
function of g′

c and g′
s has a different functional than Eqs. (24),

as we now demonstrate.
Let us consider the boundary barrier, so that there is a

noninteracting lead to the left ( j = 1) and a spin-orbit-coupled

11In the presence of the strong impurities (tunnel barriers), the
resistance contribution from the barriers dominates over the contact
resistance between the lead and the wire. We therefore neglect the
latter and evaluate the wire conductance as the derivative of Eq. (21).

Luttinger liquid to the right ( j = 2) of the barrier, as illus-
trated in Fig. 1(a). With the exponent of the single-particle
correlation function α j derived in Appendix B, we obtain the
current-voltage curve Eq. (21), with α given by

αend = 1

2

(
1

g′
c

+ 1

g′
s

)(
cos2 θ + g2

0 sin2 θ
) − 1. (25)

It goes over to Eq. (24) in the limit of δv, θ → 0.
We now turn to the case in which the tunnel barrier

is located in the bulk of the wire. The tunneling process
corresponds to a particle transiting from the boundary of a
Luttinger liquid into the boundary of the other, as illustrated
in Fig. 1(b). It gives rise to a current-voltage curve of the form
of Eq. (21) again, but with a different exponent,12 namely

αbulk =
(

1

g′
c

+ 1

g′
s

)(
cos2 θ + g2

0 sin2 θ
) − 2. (26)

Again, Eq. (24) follows for δv, θ → 0. Comparing to Eq. (25),
we see that αbulk is twice of αend. The exponent can be
expanded in series of sin θ . In the leading order, the spin-orbit-
induced change is

αbulk − αbulk (δv = 0)

≈ − (gc + gs) sin2 θ

4g2
cg2

s

(
g2

c + g2
s

)
× [(

g2
c − g2

s

)2 + 4gcgs
(
g2

c + g2
s − 2g2

cg2
s

)]
. (27)

For gc not close to gs, we can further express it in terms of the
intrinsic interaction and band distortion parameters. We get,
up to second order in δv/vF ,

αbulk − αbulk (δv = 0)

≈ −δv2(gc + gs)

8v2
F

[
1 + 4gcgs(

g2
c − g2

s

)2

(
g2

c + g2
s − 2g2

cg2
s

)]
.

(28)

For gc close to gs (including the noninteracting limit), on the
other hand, the coefficient of the above expression diverges, so
the approximation is inaccurate close to this limit. Nonethe-
less, Eq. (28) is a good approximation when the electron-
electron interaction is sufficiently strong, say for gc � 0.7 and
gs = 1.

To demonstrate how Eqs. (25) and (26) depend on the
band distortion, we plot in Fig. 4 the gc dependence of the
δv-induced change αbulk ≡ αbulk − αbulk (δv = 0) for sev-
eral values of δv/vF , as well as the zero-spin-orbit value of
the exponent αbulk.13 As shown in Fig. 4(a), the parameter
αbulk (δv = 0) [see Eq. (24)] increases with a decreasing gc.
In other words, the suppression of the power-law conductance
at low energies is stronger for systems with stronger interac-
tion, a feature of the standard Luttinger liquid [11,12]. For

12Not to be confused with the exponent corresponding to the wire
bulk density of states, relevant for tunneling into the bulk of the
Luttinger liquid, considered in some references, such as Ref. [41].

13The discussion in this paragraph is valid for αend too, since αbulk =
2αend for any value of δv including zero.
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FIG. 4. (a) Interaction parameter (gc) dependence of the bulk
parameter (αbulk) for gs = 1 and δv = 0. The parameter αbulk or αend

characterizes the current-voltage curve Eq. (21) and the power-law
conductance given in Eq. (23) for a bulk or end barrier, where the
subscripts specify the barrier types illustrated in the inset, corre-
sponding to (a) and (b) of Fig. 1. The associated parameter αend

(αbulk) is given in Eq. (25) [Eq. (26)]. These two are related to each
other by αbulk = 2αend. (b) Interaction parameter (gc) dependence of
the change (αbulk) due to the spin-orbit-induced band distortion
δv/vF for gs = 1. The inverse of αbulk from (a) is plotted in gray.

a nonzero δv, there is a nonmonotonic change in αbulk, as
shown in Fig. 4(b). For parameters of Ref. [40], the small
value of δv/vF � 0.1 leads to negligible changes αbulk. We
include also larger values of δv/vF , which are relevant for
nanowires with weaker transverse confinement or stronger
spin-orbit coupling. However, even with an exaggerated value
of δv/vF = 0.6, one can see that the change αbulk for small
gc is small compared to its zero-spin-orbit value [the opposite
value of αbulk (δv = 0) is plotted in Fig. 4(b) for comparison].
It means that in the strong-interaction regime even very strong
band distortion leads to negligible effects on the current-
voltage curves. On the other hand, in the moderate-interaction
regime where the band distortion does modify the parame-
ters, αbulk decreases (rather than increases) upon increasing
the degree of the band distortion. These features were the
main argument for our conclusion in Ref. [40] that the large
extracted α values from the experimental data indeed reflect
the strong electron-electron interaction in the system, instead
of arising from strong spin-orbit coupling of InAs nanowires.

Here we additionally point out that, in general, the change
α of the parameter can be sizable compared to its zero-spin-
orbit value α(δv = 0). As an example, for δv/vF = 0.1 and
gc = 0.9 we obtain α/α(δv = 0) ≈ −27 %, which could
be observable. As displayed in Fig. 4, for gc even closer to
unity, the magnitude of the correction can be comparable with

the zero-spin-orbit value, resulting in a vanishing exponent.
This feature implies that, for weakly interacting systems,
the spin-orbit coupling can quench the transport signature
for a Luttinger liquid subject to tunnel barriers. Overall, we
expect that the band-distortion effects found here become
most significant in the moderate-interaction regime or even
weak- (but finite-)interaction regime.

We now employ an alternative, renormalization-group
(RG) approach [6,11,12] to compute the conductance. To
this end, we derive the RG flow equation for the tunnel
amplitude, which is related to the scaling dimension of the
equal-space correlation function at the origin. Following a
similar procedure as presented in Appendices A and B, we
get

dt̃ (�)

d�
= −1

2
(α1 + α2)t̃ (�), (29)

with the dimensionless tunnel amplitude t̃ (�) ≡ ttun(�)/a(�)
and dimensionless length scale defined through a(�) =
a(0)e�. Since for repulsive interaction the parameter α1 + α2

is positive, the tunnel amplitude flows to zero, implying an
insulating phase at low energies. However, to get the relevant
solution, the RG flow equations should be stopped at a scale �∗
associated with the shorter of ln[a/(kBT )] and ln[a/(eV )].
The conductance through the tunnel barrier is obtained by
integrating the RG flow up to the scale �∗, leading to

G ∝ 2e2

h
[t̃ (�∗)]2 ∝ [Max(eV, kBT )]α1+α2 , (30)

which holds for both types of barriers.
We now specify the barrier type. For a boundary barrier,

the conductance is given by

Gend(T,V ) ∝
{

T αend , for eV � kBT,

V αend , for eV � kBT,
(31)

which is consistent with both the high-temperature and the
high-bias behavior of Eq. (21). Similarly, for a tunnel barrier
in the bulk, we get

Gbulk (T,V ) ∝
{

T αbulk , for eV � kBT,

V αbulk , for eV � kBT,
(32)

again consistent with the tunnel current. The result that the RG
approach gives the same power-law conductance as the tunnel
current approach should not be surprising: both of them are
essentially calculating the density of states at both sides of
a barrier. Compared to the tunnel current, the RG approach
gives only the asymptotic behavior of the conductance (in
certain limits and without prefactors). On the other hand, it
can be used to compute the conductance in the case of weak
impurities, where the other method is not feasible.

B. Weak impurities–potential disorder

We now consider the transport properties in the presence
of weak impurities, each of which acts as a backscattering
center. Accordingly, we retain Eq. (12) for the entire wire.
Let us consider first one of such impurities at the origin, as
illustrated in Fig. 1(c). We model it as generating a deltalike
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potential

Vimp(x) = V0δ(x), (33)

with the strength V0 and the Dirac delta function δ(x). By
coupling to the charge density, it leads to the following term:

Himp =
∑
rr′σ

∫
dx Vimp(x)[ψ†

rσ (x)ψr′σ (x)]

≈ 2V0

πa
cos[

√
2φc(0)] cos[

√
2φs(0)], (34)

where in the second line we keep only the backscattering term,
as the forward scattering does not affect the conductance.
The above term contributes to the second-order terms of the
effective action in V0 [6,11,12], from which we derive the RG
flow equation for the backscattering strength,

dṼ0(�)

d�
= αimp

2
Ṽ0(�). (35)

In the above, we introduce the dimensionless coupling con-
stant Ṽ0(�) ≡ V0(�)/a(�) and the parameter

αimp = 2 −
[

cos2 θ (g′
c + g′

s) + g2
0 sin2 θ

(
1

g′
c

+ 1

g′
s

)]
. (36)

In the absence of spin-orbit coupling, it becomes
αimp(δv = 0) = 2 − gc − gs, consistent with Refs. [11,12,14].
Up to the second order in sin θ , we get

αimp − αimp(δv = 0)

≈ − sin2 θ (gc + gs)(gc − gs)4

4g2
cg2

s

(
g2

c + g2
s

) (
g2

c + g2
s + 3gcgs

)
. (37)

In terms of the intrinsic parameters, we derive the following
approximate formulas for the change of αimp:

αimp(δv) − αimp(0) ≈ − δv2

8v2
F

(gs − gc)2

gc + gs

(
g2

c + g2
s + 3gcgs

)
.

(38)
In contrast to Eq. (28), the divergence upon expanding
sin2 θ ∝ (gc − gs)−2 is eliminated by the factor (gc − gs)4 in
Eq. (37). As a result, the above approximation holds also for
gc ≈ gs, including the noninteracting limit.

We now comment on the RG flow equation (35). For repul-
sive interaction we have αimp > 0, so that the backscattering
strength grows under the RG flow. Therefore, a single weak
impurity gives rise to the conductance correction δG1, with

δG1

G0
∝ −Ṽ 2

0 (�∗) ∼ −Ṽ 2
0 (0)e�∗αimp , (39)

with the conductance quantum G0 = 2e2/h. The scale �∗,
again, depends on other parameters, which we specify later.

Before moving on to the discussion of the many-impurity
case, we have a few comments on the above result. First,
with the RG approach we construct two flow equations—one
for the tunnel amplitude t̃ derived for a tunnel barrier and
the other for the backscattering strength Ṽ0 derived for a
weak impurity. For repulsive interaction, the former equa-
tion [Eq. (29)] indicates that the tunnel amplitude is RG
irrelevant and flows toward zero, so the two semi-infinite
Luttinger liquids become isolated at low energies. The same

conclusion follows from Eq. (35), where the backscattering
strength increases under the RG flow, so that the conductance
is suppressed by repulsive interaction.14 As a consequence,
the RG approach provides consistent results for the two
complementary limits of impurities, as in the absence of the
spin-orbit coupling [4,6].

Second, in contrast to a standard Luttinger liquid, the
presence of the spin-orbit coupling defies the duality mapping
between a bulk barrier and a weak impurity. Namely, in the
absence of the spin-orbit coupling, the corresponding RG flow
equations [see Eqs. (29) and (35)] can be mapped into each
other upon swapping the parameters gν ↔ 1/gν [12]. In a
spin-orbit-coupled wire, however, such a duality mapping is
absent.

We now demonstrate how a power-law conductance can
arise in the scenario of many weak impurities, relevant for a
wire much longer than the average impurity separation. We
assume that these impurities can be treated as independent
(see Appendix D for a discussion of this assumption) and each
of them causes a conductance correction as computed above.
Namely, the RG flow for Ṽ0 is integrated up to the scale �∗,
leading to the wire conductance in the presence of a single
weak impurity

G0 + δG1 = G0 − c1G0

[
a

Max(kBT, eV )

]αimp

, (40)

with a dimensionless constant c1 independent of temperature
and voltage. From Eq. (40) we obtain the resistance induced
by a single impurity,

δR1 ≈ −δG1

G2
0

∝ [Max(kBT, eV )]−αimp . (41)

If there are Nimp impurities in the wire, adding their resis-
tances in series gives the total resistance as 1/G0 + NimpδR1

with the lead-wire contact resistance 1/G0. For large Nimp,
the total resistance (defined as 1/Gimp) is dominated by the
contribution from the impurities (so that the contact resistance
is negligible), leading to

Gimp(T,V ) ∝
{

T αimp , for eV � kBT,

V αimp , for eV � kBT,
(42)

which is a power law with the same exponent in the high-
temperature and high-bias regimes.15

14A related calculation was done in Ref. [52], which studied
the conductance correction due to a single weak impurity for a
spin-orbit-coupled wire. There it was found that the conductance
correction can always be neglected because their corresponding αimp

is negative. The discrepancy comes from a different form of the
electron-electron interaction considered there (see the discussion in
Ref. [52] and also in Appendix A). In contrast, here we find that
V0 is a relevant perturbation for repulsive interaction. We note that,
in the limit of zero spin-orbit coupling, our results recover those in
Refs. [6,11,12].

15We note that the same power-law conductance can be obtained
by starting with many impurities which are not independent, as
discussed in Appendix D. Such extended disorder generates a ran-
dom backscattering potential and causes resistance, which can be

195423-9



CHEN-HSUAN HSU et al. PHYSICAL REVIEW B 100, 195423 (2019)

FIG. 5. (a) Interaction parameter (gc) dependence of the parame-
ter (αimp) for gs = 1 and δv = 0. The inset illustrates a weak impurity
corresponding to Fig. 1(c). Many such weak impurities cause a
power-law conductance [see Eq. (42)] with the exponent αimp defined
in Eq. (36). (b) Interaction parameter (gc) dependence of the change
(αimp, multiplied by 100 for clarity) of the exponent αimp with
respect to its value for δv = 0 for gs = 1 and several values of δv/vF .

Importantly, the two power laws in the opposite limits with
the same exponent can be grasped by a single function using
Eq. (21) upon replacing the parameter α by αimp. In other
words, we take Eq. (21) as an interpolation formula valid
for arbitrary bias and temperature. It can be then used as
the fitting curve of data displaying universal scaling. In this
many-weak-impurity scenario, the variable V denotes the bias
voltage across the entire wire. In contrast to the tunnel barrier
scenario, where the replacement V → V/Nb in Eq. (21) is nec-
essary for multiple barriers, here Eq. (21) remains unchanged
regardless of the number of weak impurities.

In Fig. 5 we plot the exponent αimp at zero spin-orbit
coupling and its change αimp for several values of δv/vF

as functions of gc. Similar to Fig. 4, the exponent αimp for
δv = 0 [see Fig. 5(a)] increases with a larger strength of the
interaction (that is, a smaller gc value), and the band distortion
can only reduce αimp [see Fig. 5(b)]. In comparison with
Fig. 4, on the other hand, the effect of the band distortion on
the exponent αimp is quantitatively much weaker. Moreover,
in contrast to Fig. 4, where αend and αbulk are unbounded
in the strong-interaction regime, the corresponding parameter

calculated upon applying the replica method. However, assuming
that the renormalization of the interaction parameters due to the
extended disorder is negligible, the power-law resistance will be the
same as the isolated impurities considered here [6].

for weak impurities is bounded in the range αimp ∈ [0, 1].
Therefore, it is possible to rule out weak impurities as the
dominant resistance contribution if the α value extracted
from the current-voltage measurements exceeds unity. Fur-
thermore, if both types of impurities are present, the resistance
due to tunnel barriers dominates weak impurities for strong
interaction, while the relation is opposite for weak interaction.
Therefore, we predict a transition of the power-law conduc-
tance by varying electron-electron interaction, as discussed
below.

C. Coexisting strong and weak impurities

Here we discuss the scenario in which impurities of all
the types are present. Provided that the effects of the tunnel
barriers and weak impurities on the resistance do not interfere
with each other so that each resistance source can be treated
separately as in Secs. III A and III B, their contributions can
be added into the total resistance of the entire wire. In general,
the three resistance sources [corresponding to Eqs. (31), (32),
and (42)] enter the total resistance as

Rtot ∝ h

2e2

∑
n

cn

[
a

Max(eV, kBT )

]αn

, (43)

where n ∈ {end, bulk, imp} indicates the resistance source.
In the above, cn’s are the corresponding prefactors. Since
in typical experiments we have a � eV, kBT , the total re-
sistance of a wire is dominated by the contribution with
the largest exponent. Therefore, for any repulsive interac-
tion, as long as there exists a tunnel barrier in the bulk of
the wire, the charge transport of the wire is characterized
by the current-voltage curve and the DC conductance with
αbulk.

Interestingly, if there exist both boundary barriers and
weak impurities, but no bulk barriers, the dominant exponent
depends on the strength of the electron-electron interaction.
In Fig. 6 we plot the difference between the exponents
representing the boundary barrier and the weak impurity as
a function of the interaction parameter gc for the value of
δv/vF = 0.2. The sign of the difference (αend − αimp) then
indicates whether the boundary barriers or the weak impurities
dominate. The transition happens at a point denoted as g∗

c.
In the strong-interaction (gc < g∗

c) regime, the current-voltage
curve and the DC conductance are characterized by αend,
whereas in the weak-interaction (gc > g∗

c) regime, they are
characterized by αimp. The value of g∗

c weakly depends on
the strength of the spin-orbit coupling (see Fig. 6 inset). For
δv/vF = 0.2, we find g∗

c ≈ 0.49, very close to g∗
c = 1/2 for

δv/vF = 0. Concluding, the transport properties of a Lut-
tinger liquid strongly depend on the types and locations of
the impurities.

IV. DISCUSSION

A. Effects of multiple subbands

Having analyzed wires with a single occupied subband,
we now look at the case with the Fermi energy intersecting
multiple transverse subbands. In the absence of spin-orbit
coupling, the corresponding problems were solved for tunnel
barriers [13] and weak impurities [15]. Instead of repeating
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FIG. 6. Transition of the power-law conductance. The main
panel shows the difference (αend − αimp) as a function of the inter-
action parameter (gc ) for gs = 1 and δv/vF = 0.2. The exponents
αend and αimp are given in Eqs. (25) and (36), respectively. The point
at which αend = αimp (denoted as g∗

c) indicates a transition between
the regimes with different power-law conductance. For gc < g∗

c (blue
shaded region), the power-law conductance is characterized by αend,
whereas for gc > g∗

c it is characterized by αimp. The inset shows the
dependence of g∗

c value on δv/vF .

similar calculations, here we discuss what we expect for a
spin-orbit-coupled system.

In the tunneling regime, the current through a barrier
depends on the density of states on the two sides of the barrier.
For each subband, the power-law density of states is charac-
terized by an effective exponent, which can be obtained by
solving an eigenvalue problem as in Ref. [13]. The tunneling
current through a multisubband wire is determined by the
sum of the currents through each subband. As a result, the
total current is dominated by the subband with the largest
conductance, or, equivalently, the smallest effective exponent
among the subbands. In the absence of the spin-orbit coupling,
the smallest exponent corresponds to the lowest transverse
subband [13]. Since, based on our single-subband results, we
expect that the spin-orbit coupling leads to small modifica-
tions of the exponents, we expect that the total tunnel current
will show universal scaling with an exponent corresponding
to the lowest subband.

Weak impurities, on the other hand, induce backscattering
in the highest occupied subband [15]. It leads to a conductance
correction with an exponent, which can be computed as in
Ref. [15]. Again, based on our single-subband results, we
expect little effects of the spin-orbit coupling on this exponent.
Provided that there are many weak impurities, their resistance
contributions dominate the contact resistance with the leads,
leading to a power-law conductance characterized by the same
exponent.

For both tunneling and disorder regimes, we expect that
the effective exponents reduce to zero when the subband
number becomes infinity, thereby recovering the Fermi-
liquid behavior in higher dimensions. As pointed out in
Ref. [15], we expect that the Luttinger liquid behavior can
be observable for wires in which not many subbands are
populated.

B. Transport signatures for a Luttinger liquid

Here we comment on the robustness of the Luttinger-
liquid behavior displayed in the charge transport of quantum
wires. The power-law resistances induced by various types of
impurities, which we obtain from the RG analysis, allows us to
determine the dominant contribution from their corresponding
exponents, assuming these resistance sources are independent.
As discussed above, when there are multiple resistances due
to barriers or impurities in series, the current and power-law
conductance of the wire are characterized by the largest expo-
nent α among the constituent resistance sources. On the other
hand, when there are multiple subbands or wires in parallel,
the total current and power-law conductance are characterized
by the smallest α. In any case, the universal scaling behavior
can be observed even for wires in few-transverse-mode regime
[40] and nanotube bundles [41]. Consequently, the universal
scaling behavior persists in rather general situations [with or
without spin-orbit coupling, with (single or multiple) barriers
or disorder potential, in the single- or multimode regime, in a
single or multiple wires], providing quite robust signatures for
a Luttinger liquid.

Such signatures provide a useful tool to characterize the
interacting one-dimensional electron systems through their
transport properties. In addition to the effects of spin-orbit
coupling, our work points out that extracting the interaction
strength is complicated by the impurity character in the
system. In order to make sensible extraction of the interac-
tion strength, it requires assumptions on the impurity type
and location. A similar complication has been discussed in
the context of the edge conductance of a two-dimensional
topological insulator [73,74], where both an isolated strong
magnetic impurity and many weak magnetic impurities can
cause power-law conductance, though with distinct exponents
[64,65,73,75].

Nonetheless, here we find two ways to overcome such
complications. First, we point out that the exponent of the
power-law conductance due to weak impurities is bounded,
so an experimental value exceeding this bounded value can
rule out weak impurities as the dominant resistance source.
Second, by making use of the full current-voltage curve, one
can extract also the barrier number, which can serve as an
indicator of the dominant resistance source. For concreteness,
let us assume that there are two boundary barriers and many
weak impurities coexisting in a wire with δv/vF = 0.2. Even
though both resistance sources lead to Eq. (21) upon replacing
V → V/N , the corresponding curves are quantitatively dis-
tinguishable, with (α, N ) → (αend, 2) for boundary barriers
and (α, N ) → (αimp, 1) for weak impurities. In addition, as
demonstrated in Fig. 6, the relative strength of their con-
tribution to resistance changes with the interaction strength,
which can be varied by applying gate voltage. It leads to a
transition of the power-law conductance at the point g∗

c ≈ 1/2
(corresponding to α∗ ≈ 1/2). Across the transition point, the
exponent changes from αend (for α � α∗) to αimp (for α � α∗),
whereas the N value changes from two to one at the same
point α∗. Remarkably, such behavior was indeed observed
in Ref. [40]. In conclusion, by fitting the full current-voltage
curve, the extracted barrier number can indicate the dominant
resistance source and can be used for an independent check.
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V. SUMMARY

In summary, we theoretically investigate the transport
properties of a spin-orbit-coupled Luttinger liquid in a quasi-
one-dimensional confinement. We calculate the temperature
and bias-voltage dependence of the tunnel current and con-
ductance subject to various types of impurities. Our main
conclusion is that, for realistic strengths of the spin-orbit cou-
pling, the current-voltage curves follow the universal scaling
relation of a non-spin-orbit-coupled Luttinger liquid with a
modified parameter α. For convenience, we summarize these
results in Table I. Importantly, the spin-orbit coupling leads to
mostly negligible modifications if the electron-electron inter-
action is strong. Our findings can be applied to characterize
spin-orbit-coupled quantum wires such as InAs and InSb in
order to design devices for spintronics and topological matter.
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APPENDIX A: SINGLE-PARTICLE
CORRELATION FUNCTION

In this Appendix we calculate the single-particle equal-
space correlation function at the origin x = 0,

Grσ (0, t ) ≡ 〈ψ†
rσ (0, t )ψrσ (0, 0)〉, (A1)

where the subscripts r and σ label the right/left movers and
up/down spins, respectively, and the argument (x, t ) is given
by the spatial and real-time coordinates. In terms of the boson
fields [see Eq. (7)], the correlator reads

Grσ (0, t ) = 1

2πa

〈
e

i√
2

[rδφc−δθc+rσδφs−σδθs]
〉
, (A2)

where, since we are interested in the equal-space correlator,
we define the following notations for simplicity:

δφν ≡ φν (0, t ) − φν (0, 0),

δθν ≡ θν (0, t ) − θν (0, 0). (A3)

Transforming into the diagonalized basis [see Eq. (10)], the
bracket in Eq. (A2) becomes〈

exp

{
i√
2

[(
r cos θ− σ

g0
sin θ

)
δφ′

c + (rσg0 sin θ− cos θ )δθ ′
c

− (rg0 sin θ + σ cos θ )δθ ′
s +

(
rσ cos θ + 1

g0
sin θ

)
δφ′

s

]}〉
.

(A4)

The correlator depends on whether we are looking at the
boundary or at the bulk of the wire. The correlator at the wire

boundary behaves differently from the one in the bulk and
needs more caution [6,11]. On the other hand, it is straight-
forward to compute the correlator in the bulk using Eq. (12),
which allows us to obtain the density of states ρbulk

rσ (ε) ∝
εβbulk

rσ in the bulk. For a given set of (r, σ ), the exponent
is

βbulk
rσ = g′

c

4

(
cos θ − rσ

g0
sin θ

)2

+ (cos θ − rσg0 sin θ )2

4g′
c

+ g′
s

4

(
cos θ+ rσ

g0
sin θ

)2

+ (cos θ+rσg0 sin θ )2

4g′
s

− 1.

(A5)

It becomes (gc + gs + 1/gc + 1/gs)/4 − 1 in the absence of
spin-orbit coupling. The bulk density of states ρbulk

rσ (ε) can be
probed by scanning tunneling spectroscopy [11,16,51,61]. Be-
fore continuing, let us comment on the difference of the expo-
nent for the single-particle correlation function obtained here
and those in Refs. [51,52]. The discrepancy arises from the
different form of the electron-electron interaction. Namely,
here we follow Refs. [6,11], and keep gs = 1 in the limit of
zero spin-orbit coupling. On the other hand, in Refs. [51,52]
the interaction parameters in the charge and spin sectors gc

and gs are dependent (see the discussion in Sec. IV there for
details [52]), such that they have gs > 1 even in the absence
of spin-orbit coupling. In consequence, these different choices
result in distinct exponents of the correlation functions.

Next, we consider the correlator at the boundary of the
wire by assuming that the Luttinger liquid given by Eq. (12)
extends over semi-infinite space (x > 0) and terminates at the
origin x = 0. To proceed, we use the trick from Ref. [6], which
makes use of chiral boson fields to map the semi-infinite
system onto an infinite system. Specifically, we express the
boson fields in the sector ν as

φ′
ν (x, t ) =

√
g′

ν

2

[
φL

ν (x, t ) − φR
ν (x, t )

]
, (A6a)

θ ′
ν (x, t ) = 1

2
√

g′
ν

[
φL

ν (x, t ) + φR
ν (x, t )

]
, (A6b)

where φR/L
ν are right-/left-moving chiral boson fields. In the

above, we rescaled the fields by the interaction parameters g′
ν

such that φR/L
ν represent free chiral bosons. These chiral fields

allow us to define

φR
ν (x, t ) → φ̃∞

ν (x, t ), (A7a)

φL
ν (x, t ) → φ̃∞

ν (−x, t ), (A7b)

where φ̃∞
ν is a free chiral boson field defined in a system

extending over the entire one-dimensional space. Finally, we
can reexpress the chiral fields as

φ̃∞
ν (x, t ) → θ∞

ν (x, t ) − φ∞
ν (x, t ), (A8)

where the fields φ∞
ν and θ∞

ν are analogous to φ′
ν and θ ′

ν except
that they are free and defined in an infinite space.
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Performing the transformations (A6)–(A8), we rewrite the
correlation function as

Grσ (0, t )= 1

2πa

〈
exp

{
i√
2

[
(rσg0 sin θ−cos θ )√

g′
c

(
δθ∞

c −δφ∞
c

)

− (rg0 sin θ + σ cos θ )√
g′

s

(
δθ∞

s − δφ∞
s

)]}〉
, (A9)

where we have introduced the notations δφ∞
ν and δθ∞

ν anal-
ogous to Eq. (A3). Since in the above formula the fields
φ∞

ν and θ∞
ν are free and defined in an infinite space, their

correlation functions can be computed directly, leading to the
finite-temperature correlation function

Grσ (0, t ) = 1

2πa

[
πakBT/(h̄vF )

i sinh (πkBT t/h̄)

](cos θ−rσg0 sin θ )2/(2g′
c )

×
[

πakBT/(h̄vF )

i sinh (πkBT t/h̄)

](cos θ+rσg0 sin θ )2/(2g′
s )

.

(A10)

The expression simplifies to

Grσ (0, t ) = 1

2πa

[
πkBT/a

i sinh (πkBT t/h̄)

]βrσ +1

, (A11)

with a ≡ h̄vF /a denoting the bandwidth associated with
the short-distance cutoff. The parameter in the exponent
is

βrσ = (cos θ − rσg0 sin θ )2

2g′
c

+ (cos θ + rσg0 sin θ )2

2g′
s

− 1,

(A12)

which becomes (1/gc + 1/gs)/2 − 1 in the absence of spin-
orbit coupling.

The correlation function at the boundary of the wire,
Eq. (A11), is directly related to the current through a tunnel
barrier, as presented in Sec. III A. In addition, Eq. (A11)
allows us to get the density of states at the boundary of the
wire ρend

rσ (ε) ∝ εβrσ for a given set of (r, σ ), which can be
probed using scanning tunneling spectroscopy [11,16,51,61].
In Appendix C, the zero-spin-orbit values of the bulk and
boundary exponents [see Eqs. (A5) and (A12)] are plotted
in Fig. 7. The exponent Eq. (A12) is used to derive the
RG flow equation for the tunnel amplitude, as discussed in
Sec. III A.

APPENDIX B: CORRELATION FUNCTION AND
CURRENT-VOLTAGE CHARACTERISTICS

In this Appendix we present the calculation of the cor-
relation function χ ret

σ (ω) given in Eq. (19a), which is used
to compute the current-voltage characteristics for a wire
with a tunnel barrier. We follow the procedure presented in
Appendix A to obtain two single-particle correlation func-
tions, each of which corresponds to one of the subsystems
in Eq. (14). The result is given by Eq. (A11), with the
exponent Eq. (A12) generalized in order to incorporate the
two subsystems on the two sides of the barrier. Namely, let us

FIG. 7. (a) Exponents of the density of states as a function of
the interaction parameter (gc) for gs = 1 and δv = 0. The black
(gray) curve corresponds to the boundary (bulk) exponent β ′

σ (β ′ bulk
σ )

given in Eq. (C7) [Eq. (C6)]. Since we are plotting the zero-spin-
orbit value, these curves are identical to those given in Eqs. (A5)
and (A12) and do not depend on the species r or σ . We therefore
neglect the superscript and the subscript. (b) Interaction parameter
(gc) dependence of the change of the boundary exponent (multiplied
by 100 for clarity) with respect to its zero-spin-orbit value for gs = 1
and several values of δv/vF . The curves correspond to the boundary
exponent β ′

σ given in Eq. (C7), upon taking average over σ = 1 and
σ = −1.

define the exponent corresponding to the subsystem j,

β jrσ ≡ α j + rσδα j, (B1a)

α j ≡
(

1

2g′
jc

+ 1

2g′
js

)(
cos2 θ j + g2

j0 sin2 θ j
) − 1, (B1b)

δα j ≡
(

− 1

2g′
jc

+ 1

2g′
js

)
g j0 sin(2θ j ), (B1c)

with the parameters g′
jc, g′

js, g j0, and θ j corresponding to
the subsystem j defined in Eq. (14). Introducing the above
notations in Eqs. (A11)–(A12) and plugging the latter into
Eq. (19), we get the sum of four terms (for a given σ ). Each
of the four terms can be written as

χ ret
σ (ω) = sin(απ/2)

2π2a2

(
πkBT

a

)α+2

×
∫ ∞

0
dt eiωt

∣∣∣∣ sinh

(
πkBT t

h̄

)∣∣∣∣
−α−2

, (B2)
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with the parameter α given by one of the following,

α ∈ {α1 + α2 + σ (δα1 + δα2), α1 + α2 − σ (δα1 + δα2),

α1 + α2 + σ (δα1 − δα2), α1 + α2 − σ (δα1 − δα2)}.
(B3)

These four terms with different α’s can be computed sep-
arately and then summed up. The integral over time in the
second line of Eq. (B2) gives the beta function, which can be
converted into the gamma function with the relation B(x, y) =
�(x)�(y)/�(x + y). It gives

�(−α − 1)�
(
1 + α

2 − ih̄ω
2πkBT

)
2�

( − α
2 − ih̄ω

2πkBT

) . (B4)

Applying Euler’s reflection formula �(1 − z)�(z) =
π/ sin(πz) for noninteger z and taking the imaginary part, we
get, for a given α in Eq. (B3),

Im
[
χ ret

σ (ω)
] = − 1

8π3a2

h̄

kBT

(
2πkBT

a

)α+2

sinh

(
h̄ω

2kBT

)

× 1

�(α + 2)

∣∣∣∣�
(

1 + α

2
+ ih̄ω

2πkBT

)∣∣∣∣
2

. (B5)

While the sum of the contributions with distinct α’s does not
produce a single curve, we note that, for realistic values of
δv/vF � 0.1, the deviations δα’s in Eq. (B3) are negligible.
In addition, since both the terms with α + δα and α − δα

contribute to the sum, the leading-order correction in current
caused by the small parameter δα here will be δI (δα) ∝ δα2.
In contrast, the band-distortion-induced change α in the
main text results in the first-order correction δI (α) ∝ α.
Since for typical parameters we have δα2 � |α|, it allows
us to neglect δα and to approximate α as α1 + α2. As a result,
we can write the sum as Eq. (B5) multiplied by a factor
of 4, with α given in Eq. (22). Finally, inserting Eq. (B5)
into Eq. (18) gives Eq. (21) in the main text. We remark
that the approximation on negligible δα is justified for the
experiment in Ref. [40], which clearly observed the universal
scaling behavior of the current-voltage characteristics in InAs
nanowires in spite of presumably strong spin-orbit coupling
of the material.

Finally, we demonstrate that the asymptotic behavior of
Eq. (21) in the high-temperature and high-bias regimes are
indeed consistent with the power-law conductance obtained
from the RG approach. In the high-temperature (kBT � eV )
regime, we expand Eq. (21) in powers of V and retain the
leading-order term, resulting in the linear response I ∝ V T α .
In the high-bias (eV � kBT ) regime, on the other hand, the
following asymptotic form of the gamma function can be used
[76]:

lim
|y|→∞

|�(x + iy)| =
√

2π |y|x− 1
2 e−π |y|/2, (B6)

which leads to I ∝ V α+1. We note that there is a factor of π

in the exponential on the right-hand side, which is crucial for
the cancellation of the gamma function and hyperbolic sine
function with different arguments. In summary, the asymp-
totic behavior of Eq. (21) gives the conductance Eq. (23), so
the current-voltage characteristics obtained by computing the

tunnel current is consistent with the conductance derived from
the RG approach.

APPENDIX C: DENSITY OF STATES OF THE
GOVERNALE-ZüLICKE MODEL

In this Appendix we discuss the density of states of the
bosonized model proposed by Governale and Zülicke. We as-
sume that the system parameters are (fine-)tuned to the regime
in which the electrons have the spin orientation described in
Refs. [50,62]: In our notation, the spins of RA and LB are
antiparallel and the overlap PAB is zero. In this configuration
the wire is helical and immune against backscattering on
charge impurities. Within our model, the Luttinger liquid has
no resistance. Nevertheless, one can inspect the effects of the
spin-orbit coupling on other physical quantities. Here we look
at the density of states.

Upon bosonization using Eq. (7), we get H ′ ≡ H0 + H ′
so,

where H0 retains the same form as Eq. (6), with the index ν ∈
{c, s} now meaning the symmetric and antisymmetric combi-
nation of the fields involving branch A and B, respectively. In
other words, instead of real spin, the pseudospin index σ now
indicates the branch σ ∈ {A, B}. In contrast to Refs. [51,52],
the charge-spin mixing term now takes the following form:

H ′
so =δv

∫
h̄dx

2π
[(∂xφc)(∂xφs) + (∂xθc)(∂xθs)], (C1)

where the coordinates of the fields are suppressed for simplic-
ity.

Diagonalizing the Hamiltonian H ′, we get

H ′ =
∑

ν

∫
h̄dx

2π

[
u′′

νg′′
ν (∂xθ

′′
ν )2 + u′′

ν

g′′
ν

(∂xφ
′′
ν )2

]
, (C2)

where the new fields are(
φ′′

c

φ′′
s

)
=

(
cos θ ′ g′

0 sin θ ′

− 1
g′

0
sin θ ′ cos θ ′

)(
φc

φs

)
, (C3a)

(
θ ′′

c

θ ′′
s

)
=

(
cos θ ′ 1

g′
0

sin θ ′

−g′
0 sin θ ′ cos θ ′

)(
θc

θs

)
, (C3b)

with the parameters

g′
0 = gc

gs

√
1 + g2

s

1 + g2
c

, (C4a)

θ ′ = 1

2
arctan

(
δv

vF

gcgs

√(
1 + g2

s

)(
1 + g2

c

)
g2

s − g2
c

)
. (C4b)

The modified interaction parameters and velocities are related
to the original parameters through

u′′
c

g′′
c

= uc

gc
cos2 θ ′ + us

gs(g′
0)2

sin2 θ ′ + δv

2g′
0

sin(2θ ′), (C5a)

u′′
s

g′′
s

= us

gs
cos2 θ ′ + uc(g′

0)2

gc
sin2 θ ′ − δvg′

0

2
sin(2θ ′), (C5b)

u′′
c g′′

c = ucgc cos2 θ ′+usgs(g
′
0)2 sin2 θ ′+δvg′

0

2
sin(2θ ′), (C5c)

u′′
s g′′

s = usgs cos2 θ ′ + ucgc

(g′
0)2

sin2 θ ′ − δv

2g′
0

sin(2θ ′). (C5d)
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Following the same procedure as in Appendix A, we compute
the density of states in the bulk and at the end of the wire. For
a given σ , the former is given by ρbulk

σ (ε) ∝ εβ ′bulk
σ with the

exponent,

β ′bulk
σ = g′′

c

4

(
cos θ ′ + σ

g′
0

sin θ ′
)2

+ (cos θ ′ + σg′
0 sin θ ′)2

4g′′
c

+ g′′
s

4
(cos θ ′ − σg′

0 sin θ ′)2

+
(

cos θ ′ − σ
g′

0
sin θ ′)2

4g′′
s

− 1. (C6)

On the other hand, at the end of the wire, the density of states
becomes ρend

σ (ε) ∝ εβ ′
σ with

β ′
σ = (cos θ ′ + σg′

0 sin θ ′)2

2g′′
c

+
(

cos θ ′ − σ
g′

0
sin θ ′)2

2g′′
s

− 1.

(C7)

The exponents in Eqs. (C6) and (C7) are analogous to
Eqs. (A5) and (A12) of the bosonized model introduced
in Refs. [51,52]. The exponents can be extracted through
the density of states measurement using scanning tunneling
spectroscopy. Their behavior is displayed in Fig. 7. Similar
to the standard Luttinger liquid [11,16], the suppression of
the density of states is stronger at the end than in the bulk of
the wire. In contrast to the strong dependence on the position
of the probe [see Fig. 7(a)], the spin-orbit-induced change is
negligible [see Fig. 7(b)].

APPENDIX D: AN ALTERNATIVE APPROACH FOR THE
WEAK-IMPURITY ANALYSIS

Here we discuss an alternative approach for the analysis in
the weak-impurity regime. In Sec. III B we start our analysis
by treating a weak impurity as an isolated object (referred to
as weak barrier in Ref. [11]), such that it creates a potential
which is nonzero only near x = 0 with the strength V0. Fol-
lowing Ref. [11] to construct the RG flow equation for Ṽ0, we
obtain the exponent αimp of the conductance correction due to
a single impurity. Then, as discussed in Ref. [6], assuming that
the contributions from multiple impurities are additive, many
weak impurities lead to a power-law conductance character-
ized by the parameter αimp.

Alternatively, one can start with random backscattering
potential generated by impurities which are not isolated, as
in Ref. [6]. In that reference, such disorder is named “ex-
tended disorder” or “uniform disorder” and assumed to be
of Gaussian type. Then, one can apply the replica method to
average over the disorder and then perform the RG analysis.
In this case, there would be additional RG flow equations for
the interaction parameters gc and gs and velocities, depending
on the disorder strength. The additional RG flow equations
arise because in this case impurities can affect bulk quantities,
in contrast to isolated impurities, which cannot. Importantly
for us, the renormalization of gc, gs due to weak disorder is
typically negligible, which would lead to the same power-
law conductance in the high-T or high-V regimes as in the
isolated-impurities scenario. As a result, there would be no
significant difference for the power-law conductance, which is
the main focus of this work. We note that, if other phenomena
such as localization are concerned, the extended disorder sce-
nario would better describe the physical picture, as discussed
in Ref. [6]. Nevertheless, to give a better connection between
the strong- and weak-impurity cases, we adopt the isolated-
impurity picture for our discussion throughout the article.
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