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Probing the singlet-triplet splitting in double quantum dots: Implications of the ac field amplitude

G. Giavaras1 and Yasuhiro Tokura 1,2

1Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
2Tsukuba Research Center for Energy Materials Science (TREMS), Tsukuba 305-8571, Japan

(Received 22 June 2019; revised manuscript received 7 October 2019; published 20 November 2019)

We consider a double quantum dot whose energy detuning is controlled by an ac electric field. We demonstrate
an energy configuration for which the ac-induced current flowing through the double dot directly probes the
spin-orbit anticrossing point for small ac field amplitudes. On the contrary, as the ac amplitude increases, a
current antiresonance is formed and the direct information about the spin-orbit interaction is lost. This result
indicates that a large ac amplitude is not necessarily advantageous for the spectroscopy of spin-orbit-coupled
two-spin states. Moreover, we investigate the ac-induced current peaks versus the ac amplitude and show a
current suppression when the ac field forms spin-blocked states. This effect gives rise to a characteristic pattern
for the current which can be controlled at will by tuning the ac amplitude. Our results can be explored by
performing electronic transport measurements in the spin-blockade regime.
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I. INTRODUCTION

Various spin-qubit proposals in semiconductor materials
make use of electron spins trapped in quantum dot systems
[1,2]. Spin-orbit-coupled spins defined in double dots at a con-
stant magnetic field can be manipulated electrically using an
ac electric field [3,4]. One clear signature of the spin-orbit in-
teraction (SOI) is the formation of singlet-triplet anticrossing
points in the two-electron energy spectrum. The magnitude of
the energy gap at the anticrossing point is an important energy
scale because it gives information about the strength and the
direction of the SOI [5–11]. Usually a large gap is the result
of strong SOI. Transport spectroscopy of the two-electron
energy spectrum can be performed by measuring the electrical
current through the double dot in the presence of an ac electric
field [3,4]. Current peaks arise when the appropriate resonant
condition is satisfied [12], and information about the SOI can
be extracted provided the ac-induced current peaks are well
formed in the vicinity of the SOI anticrossing point.

The applied ac field is characterized by the ac frequency
and amplitude. The range of the ac frequency is dictated by
the energy configuration of the two-electron eigenstates in the
double dot and the relevant energy splitting. Therefore, the
ac-induced peaks can be controlled by the ac amplitude only,
provided the ac amplitude can be tuned by the applied voltages
to gate electrodes.

In this work, we consider a double dot (DD) in the spin-
blockade regime [13] and focus on experimentally accessible
DD energy configurations, where singlet and triplet energy
levels anticross. In particular, the focus is on two SOI-coupled
singlet-triplet states forming an anticrossing point, and a
third state with triplet character. We assume that an ac field
periodically changes the energy detuning of the DD, in the
same way as in the experiments [3,4], and investigate possible
implications of the magnitude of the ac amplitude in the
ac-induced current peaks. We show that the current peaks
allow for transport spectroscopy of the SOI anticrossing point

only in a specific ac amplitude range, which is related to the
strength of the SOI. When the ac amplitude is large, the energy
gap of the anticrossing can no longer be probed accurately
and, instead, an “antiresonance” is formed, where typically
the ac current is suppressed. As a consequence, a large ac
amplitude is not necessarily advantageous for spectroscopy,
especially when the presence of the SOI is directly inferred
by the current characteristics versus the ac frequency and
magnetic field. Furthermore, we study the dependence of the
ac-induced current on the energy detuning as well as the
ac field amplitude, and identify a rather general pattern of
high- and low-current regions. These regions stem from the
formation of ac-induced spin-blocked states and thus can be
controlled at will by tuning the ac amplitude.

In the next section, the double quantum dot model and
the electronic transport model are presented. In Sec. III,
the ac-induced transport characteristics for different ac field
frequencies and amplitudes are studied. The basic conclusions
of this work are summarized in Sec. IV.

II. PHYSICAL MODEL

A. Double-dot Hamiltonian

In this work, we consider two serially tunnel-coupled
quantum dots in the spin-blockade regime [13], and assume
the dot charging energy to be much larger than the interdot
tunnel coupling. The quantum dot 1 (dot 2) is coupled to the
left (right) metallic lead; therefore, under an appropriate bias
voltage, current can flow through the system which is sensitive
to spin correlations. We assume that each dot is characterized
by a single orbital level (on-site energy), and dot 2 is lower in
energy so that a single spin is localized in dot 2, and the spin-
blockade regime can be realized [1,2,13], In this regime, the
electronic transport through the DD system follows the charge
cycle [1,2,13]: (0, 1) → (1, 1) → (0, 2) → (0, 1), where the
notation (n, m) indicates n electrons on dot 1 and m electrons
on dot 2. The relevant two-electron states are the (1, 1) triplet
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states |T+〉, |T−〉, |T0〉, the (1, 1) singlet state |S11〉, and the
(0, 2) singlet state |S02〉. The (2, 0) singlet state |S20〉 is much
higher in energy and, to a very good approximation, can be
ignored without affecting the physics [1,2].

In the Appendix, we show that for two electrons and in the
basis |S11〉, |T+〉, |S02〉, |T−〉, |T0〉, the DD Hamiltonian is

HDD =

⎛
⎜⎜⎜⎜⎝

0 0 −√
2tc 0 �−

0 −�+ −tso 0 0
−√

2tc −tso δ −tso 0
0 0 −tso �+ 0

�− 0 0 0 0

⎞
⎟⎟⎟⎟⎠. (1)

The Zeeman term on dot i (i = 1, 2) is given by �i = giμBB,
where B is the external magnetic field and gi is the g factor
with �± = (�1 ± �2)/2. The parameter tc is the interdot
tunnel coupling which conserves spin, tso is the spin-flip
tunnel coupling due to the SOI, and δ is the energy detuning.
Some experimental studies [3,4,14,15] on double quantum
dots conclude that for the tunnel couplings, tso < tc, and in
this work we satisfy this condition. The one-electron states
(0, 1) consist of the spin-up |0,↑〉, and spin-down |0,↓〉
configurations, which are Zeeman split due to the magnetic
field B. The one-electron states (1, 0) can usually be ignored
in the spin-blockade regime provided the dots are weakly
coupled [1,2].

We assume that an ac electric field periodically modulates
the on-site orbital energy of dot 2, relative to dot 1. In this
case, we can consider the energy of the (1, 1) states to be
unaffected by the ac field, and the energy of the (0, 2) state
to be time dependent. Thus, according to Hamiltonian (1), the
energy detuning in this work is considered to be time periodic,

δ(t ) = −ε + A cos(2π f t ), (2)

where A, f are the amplitude and frequency of the ac field,
respectively. In semiconductor quantum dots, the value of ε is
controlled by applying appropriate gate voltages [1,2,16] and
the values of A, f are tunable by electrical pulses [3,4,16,17].

For all the calculations, the interdot tunnel coupling is
taken to be tc = 13 μeV, in agreement with experimentally
reported values [1,2]. The g factors of the two dots are taken
to be g1 = 7 and g2 = 7.5. These absolute values are within
the range of the g factors reported for InAs systems [18]. The
g-factor difference of about 8% is consistent with that found
in double quantum dots and could be the result of the SOI
and/or the asymmetric double-dot confining potential. Even
larger g-factor differences have been reported. For instance, in
Ref. [19] the absolute g-factor difference in an InSb double
quantum dot with strong SOI was measured to be as large as
12, e.g., over 20% difference.

The eigenstates of the DD Hamiltonian HDD for A = 0
are denoted by |ψn〉, n = 1, 2, . . . , 5, and are ordered in
increasing eigenenergy. We refer to |ψn〉 as singlet or triplet
states, though |ψn〉 consist of both singlet and triplet compo-
nents due to the SOI and the g-factor difference in the two
dots. Thus, the spin blockade can be lifted and the ac field
can induce singlet-triplet transitions. The corresponding DD
eigenenergies En, n = 1, 2, . . . 5, versus the magnetic field are
shown in the upper frame of Fig. 1, for tso = 1.5 μeV and
ε = 50 μeV. In this work, we are interested in the region
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FIG. 1. The upper frame shows the two-electron eigenenergies
as a function of magnetic field. The two vertical arrows indicate
possible transitions that can be induced by the ac electric field, which
periodically changes the energy detuning of the double quantum dot.
The lower frame shows the energy splitting E5 − E1 and E5 − E2 as
a function of magnetic field.

of the SOI-induced anticrossing point which is formed at
B ≈ 0.134 T, and the corresponding gap is about 0.7 GHz. The
ac field-induced transitions of interest are between the state
|ψ5〉, which has triplet character, and the two SOI-coupled
singlet-triplet states |ψ1〉, |ψ2〉 forming the anticrossing point.
In particular, the two vertical arrows shown in the upper frame
of Fig. 1 specify the ac field-induced transitions which are
under investigation, e.g., h f ≈ E5 − E1 and h f ≈ E5 − E2,
where h is Planck’s constant, and E5 − E1 and E5 − E2 are
shown in the lower frame of Fig. 1. This loose view does not
imply that the other eigenstates, not directly involved in the
transitions, are in general not relevant to the ac field-induced
dynamics. The transitions between the singlet-triplet states
|ψ1〉 and |ψ2〉 can also give information about the anticrossing
point [4], but these transitions are not considered in the present
work.

When the ac field modulates the potential profile of the
DD leading to a time-dependent energy detuning as described
in Eq. (2), the interdot potential barrier may also acquire a
(small) time dependence. This, in turn, means that in our
model, the interdot tunnel coupling can be time dependent and
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can therefore result in singlet-triplet transitions [12]. Here,
we assume that the time dependence of the tunnel coupling
is negligible and can be safely ignored.

B. Master-equation formalism

In this section, we briefly describe the basic features of
the quantum transport model which is based on a Floquet-
Markov master equation [20,21]. Dot 1 (dot 2) is tunnel
coupled to the left (right) lead and, under an appropriate bias
voltage in the spin-blockade regime, electrons flow through
the system [13]. The electrons in the two leads are assumed to
be noninteracting and described by the Hamiltonian

He =
∑
�,k,σ

ε�kd†
�kσ

d�kσ . (3)

The operator d†
�kσ

(d�kσ ) creates (annihilates) an electron in
the lead � = {L, R}, with momentum k, spin σ , and energy
ε�k . Electron tunneling between the two leads and the DD is
described by the Hamiltonian

HT = tT
∑
k,σ

(c†
1σ dLkσ + c†

2σ dRkσ ) + H.c. (4)

Here, c†
iσ is the electron creation operator on dot i with spin σ ,

and tT is the dot-lead coupling constant.
We are interested in finding the density matrix ρ(t ) of

the DD and, because the DD Hamiltonian is time periodic
HDD(t ) = HDD(t + T ), with T = 1/ f , we choose to express
the density matrix ρ(t ) in the Floquet modes basis |u(t )〉. This
choice significantly simplifies the master equation of motion
of ρ(t ) because the steady state can be extracted without
performing a numerical time integration which is usually time
consuming. The Floquet modes are periodic, |u(t )〉 = |u(t +
T )〉, and satisfy the Floquet eigenvalue problem,(

HDD(t ) − ih̄
∂

∂t

)
|u j (t )〉 = κ j |u j (t )〉, (5)

where κ j are the corresponding Floquet energies. The Floquet
modes are expanded in the singlet-triplet basis,

|u j (t )〉 =
5∑

n=1

b j,n(t )|STn〉, (6)

with the coefficients bj,n(t ) = b j,n(t + T ), and |STn〉 are the
singlet-triplet basis vectors. Both HDD(t ) and b j,n(t ) are
expanded in a Fourier series and the resulting eigenvalue
problem is solved numerically. The Floquet energy spectrum
consists of identical energy zones of width h f , and inspection
of one of the zones provides information on the resonant
condition(s) as the ac amplitude increases [22]. In contrast,
the bare eigenenergies of the time-independent part of HDD

fail to predict the well-known frequency shifts in the context
of the Bloch-Siegert theory [23].

The equation of motion of the density matrix ρ(t ) of the
DD takes into account sequential electron tunneling from
the leads into the DD, and vice versa, with a change in
the electron number by ±1. Using, for the matrix elements
of ρ(t ), the notation ρn j (t ) = 〈un(t )|ρ(t )|u j (t )〉 and, for the
Floquet energies, κn j = κn − κ j , the equation of motion can

be written as follows:(
∂

∂t
+ i

h̄
κn j

)
ρn j (t )

=
∑
m,l

{−ρl j (t )Xnm;lm(t ) − ρnm(t )Ql j;lm(t )

+ ρml (t )[Qnm; jl (t ) + Xl j;mn(t )]}. (7)

The tensors X , Q define the transition rates which determine
the dot-lead tunneling. In the steady state, ρ(t ) = ρst (t ), and
we assume that ρst (t ) is periodic with the same period as that
of the ac field. For the regime of parameters in this work,
we can further assume that to a good approximation, ρst (t )
is equal to its zero-frequency Fourier component. Then, ρst

becomes approximately time independent, and this can also
be assumed to be the case for X and Q. If we consider the
interaction of dot 2 with the right lead and, for simplicity, the
spin-up only contribution, then

Xin;l j = 

∞∑
L=−∞

{[c2↑(L)]in[c2↑(L)]∗l j fR(κ jl − Lh̄ω)

+ [c2↑(L)]∗ni[c2↑(L)] jl f −
R (−κ jl − Lh̄ω)}, (8)

with the matrix elements

[c2↑(M )]nm = 1

T

∫ T

0
e−iMωt 〈un(t )|c2↑|um(t )〉dt, (9)

and the cyclic frequency ω = 2π f . The density of states D
of the right lead is taken to be energy independent, leading
to the constant dot-lead tunneling rate  = 2π |tT|2D/h̄. The
Fermi function of the right lead is fR with f −

R = 1 − fR,
and Q is found from X by replacing fR → f −

R , f −
R → fR.

The matrix elements involve one- and two-electron Floquet
modes, but only for the latter is a numerical computation
needed. Moreover, in the transition rate X , the same notations
|u j (t )〉 for the Floquet modes and κ j for the Floquet energies
are considered for both one and two electrons. The interaction
of dot 1 with the left lead can be treated in the same way,
and the resulting equation of motion is solved numerically.
Finally, the current flowing through the right lead is given
by the average of the current operator I = −ei[HT, NR]/h̄,
where NR is the electron number operator for the right lead
and [HT, NR] = tT

∑
k,σ (c†

2σ dRkσ − d†
Rkσ

c2σ ).

III. AC-INDUCED TRANSPORT CHARACTERISTICS

In this section, the ac-induced current is computed for
different ac field frequencies and amplitudes, and the focus
is on the two transitions which are depicted schematically
in the upper frame of Fig. 1. The dot-lead tunneling rate is
 = 170 MHz and the energy detuning is ε = 50 μeV, unless
otherwise specified.

A. Current versus ac frequency

Figure 2 shows the current as a function of the ac field
frequency and magnetic field for two different ac amplitudes
A. The frequency and magnetic field ranges are sensitive to
the energy detuning (ε = 50 μeV). Larger values of detuning
require higher magnetic fields and ac frequencies, but ac
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FIG. 2. Current as a function of ac frequency and magnetic field.
For the upper frame, the ac amplitude is A = 5 μeV, and for the
lower frame, A = 100 μeV.

frequencies of the order of 50 GHz are within experimental
reach [24,25]. When A = 5 μeV, two curves of high cur-
rent are formed. These curves can be attributed to the two
singlet-triplet resonant transitions depicted schematically in
Fig. 1. When the condition h f ≈ E5 − E1 or h f ≈ E5 − E2

is satisfied, an ac-induced current peak is formed. The peak
width is sensitive to the character of the involved states, and
the peak is broad when the singlet character dominates over
the triplet. For this reason, the visibility of the two high-
current curves is enhanced near the anticrossing point, i.e.,
f ≈ 27 GHz and B ≈ 0.134 T. Away from the anticrossing
point, the SOI-induced singlet-triplet coupling weakens and
the two curves acquire very different widths. The reason is that
for the transition between |ψ1〉 and |ψ5〉, both involved states
have triplet character, whereas for the transition between |ψ2〉
and |ψ5〉, the state |ψ2〉 has singlet character. In essence,
for A = 5 μeV, the two curves of high current map out the
singlet-triplet energy levels, and the SOI gap which is about
0.7 GHz can be directly extracted from the current plot. This
procedure has been demonstrated experimentally in different
types of double quantum dots [3,4].
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FIG. 3. Resonant current (peak height) as a function of magnetic
field for A = 5 μeV, and different spin-orbit tunnel couplings.

In contrast, when the ac amplitude is A = 100 μeV, as
shown in Fig. 2, the two curves of high current can no
longer be clearly distinguished. Moreover, when the condi-
tion (g1 + g2)μBB = h f is satisfied, an “antiresonance” is
formed, i.e., the ac-induced current is approximately equal to
the background current (A = 0). The antiresonance is more
pronounced near the anticrossing point ( f ≈ 27 GHz, B ≈
0.134 T). At a fixed field B, the frequency f at which the
antiresonance is formed is not explicitly related to the ac
amplitude. However, we show below that when the ac ampli-
tude increases, the ac-induced current peaks start to overlap,
favoring the observation of the antiresonance.

It has been demonstrated [4] that the ac-induced current
peaks vanish very near the anticrossing point when the ac-
induced transitions involve the two eigenstates (|ψ1〉 and
|ψ2〉), which form the anticrossing. The results in Fig. 2
demonstrate that the effect of the ac field can be different
when the transitions include a third eigenstate not explicitly
involved in the anticrossing. This is due to the large popu-
lation difference between the eigenstates. In particular, the
eigenstate |ψ5〉 has tripletlike character and therefore it is
highly populated, whereas very near the anticrossing, |ψ1〉 and
|ψ2〉 have almost identical characters and are almost equally
populated. As a result, the effective transition rate between
|ψ5〉 and |ψ1〉 (or |ψ2〉) is much higher compared to the
rate between |ψ1〉 and |ψ2〉. The peak height is sensitive to
the dot-lead tunneling rate , and increasing  at fixed ac
amplitude A tends to suppress the peaks.

Based on the results in Fig. 2, we can conclude that the
singlet-triplet energy levels which anticross cannot be probed
at arbitrary ac amplitudes. This conclusion sets an important
constraint on the ac amplitude. In some transport experiments
[3,4], the detection of a singlet-triplet anticrossing gap with
an ac field is a reliable signature of the presence and strength
of the SOI. However, the results in Fig. 2 suggest that the SOI
when combined with an ac electric field can produce current
characteristics which do not explicitly reveal the anticrossing
gap. Thus, the detection of the SOI gap requires the appropri-
ate choice of the ac amplitude.

In Fig. 3, we tune the magnetic field in the range 0.1 � B �
0.2 T and plot, for each B, the resonant current, i.e., the peak
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FIG. 4. Current as a function of ac frequency for different ac
amplitudes. For the upper frame, the magnetic field is B = 0.134 T,
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height. Here, we take [26] A = 5 μeV and different SOI tun-
nel couplings tso. The peak corresponds to the magnetic-field-
dependent ac frequency, namely, f = (E5 − Ei )/h, where Ei

is the energy level of the state with singlet character, and there-
fore i = 1 or 2 (see, also, Fig. 1). The peak height increases
with tso since the singlet-triplet mixing increases, leading to
an enhanced transition rate. The B field at which the peak
height is maximum depends on tso and can be different from
the anticrossing point (B ≈ 0.134 T). This shows the overall
importance of the background populations (defined for A = 0)
of the eigenstates, which are sensitive not only to tso but also to
the B field [27]. In this context, the g-factor difference between
the two dots affects the populations by coupling |T0〉 to singlet
states, but the results in Fig. 2 demonstrate that the SOI
anticrossing point can be probed even when the maximum
current occurs away from the anticrossing point.

To examine in more detail the pattern of the current,
we plot in Fig. 4 the current as a function of the ac fre-
quency f for various ac amplitudes A. In this case, we
choose two fixed values for the magnetic field: B = 0.134 T,
which corresponds to the anticrossing point, and B = 0.2
T, which is far from the anticrossing point. When A is
small, two peaks can be identified that are centered at the
resonant frequencies f1 and f2, where h fi ≈ E5 − Ei, i =

1, 2. Consequently, the corresponding singlet-triplet split-
ting is approximately given by h( f2 − f1). Increasing A re-
sults in broader peaks which gradually start to overlap; this
behavior is more evident at B = 0.134 T. Provided A is
small enough such that the peaks have negligible overlap, an
approximate expression for the transition rates in the coherent
regime can be derived using a similar methodology to that de-
veloped in Ref. [12]. For large A, the Landau-Zener dynamics
is relevant and one case for a four-level quantum dot system
has been studied recently [28].

As seen in Fig. 4, the peak height is in general different
for the two values of magnetic field. This is due to the fact
that the transition rates as well as the background populations
(A = 0) of the eigenstates involved in the transitions are, in
general, magnetic field dependent, even for g2 ≈ g1. The peak
height also changes significantly with A. According to Fig. 4,
the peak height increases with A up to a maximum value and
then starts to decrease. For B = 0.2 T, the maximum occurs
at A ≈ 30 μeV, and, for B = 0.134 T, the maximum occurs
at A ≈ 120 μeV. The dependence of the current on the ac
amplitude is examined below.

A current antiresonance has been theoretically predicted
to arise in a Coulomb-blockaded DD in the presence of two
microwave fields [29], and in a spin-blockaded DD with a
Zeeman asymmetry which is driven by an oscillating magnetic
field [30]. A current antiresonance can also be formed without
a microwave irradiation [31]. The important conclusion of this
section, i.e., the SOI anticrossing point cannot be probed at
arbitrary ac amplitudes, is independent of the formation of the
antiresonance and the g-factor difference.

According to Fig. 4 (upper frame), when the magnetic
field corresponds to the anticrossing point B = 0.134 T, the
ac-induced current peaks versus the ac frequency may be used
to estimate the values of the SOI gap, under the condition
that the ac amplitude A is small. To quantify this condition,
we measure the distance �p between the two current peaks
centered at the left and right of the antiresonance, and compare
�p with the exact value of the SOI gap derived from the
exact two-electron eigenenergies of the Hamiltonian (1) (for
A = 0). Figure 5 shows the distance �p between the peaks
for different ac amplitudes A, and three values for the tunnel
coupling tso. The exact value of the SOI gap is also indicated.
In all cases, when A � 35 μeV, the value of the distance �p

predicts the value of the exact SOI gap with a small error. The
relative error decreases with tso because the corresponding
SOI gap increases. As an example, for A ≈ 30 μeV, the
relative error is about 11% for tso = 0.5 μeV, whereas the
relative error is about 0.6% for tso = 3.0 μeV. An important
aspect is that the peak width depends not only on the ac
amplitude but also on the strength of the SOI, which in our
model is determined by the tunnel coupling tso and the energy
detuning ε. The reason is that for the parameter range of this
work, the ac-induced transition rates are enhanced with tso,
and the electrically driven transitions we study here vanish
when tso = 0. The results in Fig. 5 also demonstrate that the
error tends to increase with A since the two peaks start to
overlap and shift (Fig. 4), and, as a consequence, the value
of �p deviates from the exact SOI gap.

Even though a smaller ac amplitude can lead to a more
accurate estimation of the SOI gap, the dot-lead tunneling rate
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 sets another constraint on the ac amplitude A. A small A can
give rise to coherent effects only when  is small, eventually
inducing a small current which might be difficult to measure.
Measuring the ac-induced current peaks for only one value of
the ac amplitude may not be conclusive because the degree
of overlap of the current peaks cannot be inferred. Therefore,
a more efficient strategy to probe the SOI gap would be to
tune the ac amplitude and monitor the behavior of the current
peaks.

B. Approximate Hamiltonian

Some insight into the current characteristics can be ob-
tained within an approximate time-independent Hamiltonian.
It has been shown that a single spin driven by an alternating
magnetic field displays resonances (single or multiphoton)
when the two Floquet energies anticross [22]. This property
is general enough and has been employed to predict the exis-
tence of resonances for two coupled spins whose energy levels
are time dependent [32,33]. In this context, the eigenenergies
of the approximate time-independent Hamiltonian should also
exhibit anticrossing points when a resonance occurs. This
remark is relevant not only when the starting point is the
exact Floquet Hamiltonian, but also when deriving an approx-

imate Hamiltonian without directly employing the Floquet
formalism.

To derive an approximate Hamiltonian, we start with
the time-dependent DD Hamiltonian given by Eq. (1) and
apply a unitary transformation U (t ). The nonzero diago-
nal elements are Unm(t ) = δnm exp[iφn(t )], and the phases
are φ3 = − sin(2π f t )A/h f , φ4 = −2π f t , otherwise φn = 0.
This transformation eliminates the time dependence from the
energy detuning and transfers it to the tunnel couplings. It also
shifts downwards, by −h f , the bare energy level �+ of |T−〉
because near the anticrossing point we are interested in the
transitions satisfying �+ − h f ≈ −�+, where −�+ is the
bare energy level of |T+〉. The transformed Hamiltonian is

W =

⎛
⎜⎜⎜⎜⎝

0 0
√

2Tc 0 �−
0 −�+ aso 0 0√
2T ∗

c a∗
so −ε bso 0

0 0 b∗
so �+ − h f 0

�− 0 0 0 0

⎞
⎟⎟⎟⎟⎠, (10)

and the tunnel couplings are

Tc = − tc

∞∑
m=−∞

(−1)mJmeim2π f t ,

aso = − tso

∞∑
m=−∞

(−1)mJmeim2π f t , (11)

bso = − tso

∞∑
m=−∞

Jmei(m−1)2π f t ,

where Jm is a Bessel function of the first kind with the
argument A/h f [Jm = Jm(A/h f )]. This Hamiltonian is exact,
and we proceed by assuming that the time-independent terms
of this Hamiltonian can well describe the relevant dynamics.
Thus, in the above tunnel couplings, we ignore all the time-
dependent terms:

Tc = −tcJ0, aso = −tsoJ0, bso = −tsoJ1, (12)

and in the transformed (moving) frame, we arrive at an ap-
proximate time-independent Hamiltonian W0 which has some
interesting properties.

For example, the energy spectrum of W0 can be used to
predict the current resonances by examining the formation
of the anticrossing points. Especially in the regime A � h f ,
the spectrum of W0 approximates very well the exact Floquet
spectrum. Most importantly, the diagonalization of W0 reveals
the existence of the eigenstate [34]

c+|T+〉 + c−|T−〉, (13)

when �+ = h f /2 or, equivalently, (g1 + g2)μBB = h f , with
the coefficients c+/c− = −J1/J0. This eigenstate contains
no |S02〉 component, which is responsible for the current;
therefore, it acts as a “dark” eigenstate. Namely, it does not
allow the ac field to enhance the current and, consequently,
the ac-induced current (A �= 0) is approximately equal to the
background current (A = 0). This dark eigenstate, which has
a Bell-like structure, is the origin of the current antiresonance
described above (e.g., Fig. 2). As also emphasized, the an-
tiresonance exists independent of the magnitude of the ac
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amplitude as well as for a vanishingly small g-factor differ-
ence, in agreement with the existence of the dark eigenstate
predicted by W0.

The predictions of the approximate Hamiltonian W0 are ac-
curate enough in the regime where �+ is different from ε, but
when �+ ≈ ε, another treatment can be sought for improved
accuracy [35]. This observation can be understood by inspect-
ing the exact Floquet Hamiltonian as derived now from W (t )
instead of HDD(t ). In particular, the coupling terms between
the diagonal elements Wii ± nh f of the Floquet Hamiltonian
suggest that a general Floquet mode should include at least the
basis states exp(in2π f t )|S11〉, n = 0, 1. The coupling terms
which involve Bessel functions Jm with |m| > 1 can typically
be ignored within an approximate Floquet Hamiltonian. Some
additional properties of W0 are examined in Sec. III C, where
the dependence of the ac-induced current peaks on the ac
amplitude is investigated.

C. Current versus ac amplitude

According to Fig. 4, the height of the current peaks induced
by the ac field depends sensitively on the ac amplitude A,
and exhibits a nonmonotonous behavior. Furthermore, the
approximate Hamiltonian W0 reveals the possibility of tuning
the DD system to the so-called coherent destruction of tun-
neling regime [21,36–39], where the interdot tunnel coupling
vanishes for specific values of the ratio A/h f . In our ac-driven
DD, there are three effective tunnel coupling terms given
in Eq. (12), which are sensitive to the ratio A/h f . When
J0(A/h f ) = 0, the spin-conserved tunnel coupling vanishes,
Tc = 0, and therefore |S11〉 and |T0〉 are blocked states (|↑,↓〉,
|↓,↑〉) because they cannot coherently tunnel to the |S02〉
singlet. Simultaneously, when J0(A/h f ) = 0, the SOI spin-
flipped tunnel coupling between the |T+〉 and |S02〉 states
vanishes because aso = 0, and thus |T+〉 is also a blocked state.
In this regime, the ac-induced current should be suppressed
because only the |T−〉 state is tunnel coupled to the |S02〉 state.
Similarly, the current should also be somewhat suppressed
when J1(A/h f ) = 0 because the SOI tunnel coupling between
the |T−〉 and |S02〉 states vanishes (bso = 0) and now |T−〉 acts
as a blocked state.

To study the dependence of the ac-induced current on the
ac amplitude, we focus on the transition between |ψ5〉 and
|ψ2〉, so that the ac frequency is f = (E5 − E2)/h, and use
the equation of motion given by Eq. (7) to determine the
current characteristics in the steady state. In Fig. 6, we plot
the current as a function of the ac amplitude for tso = 1.5 μeV
and tso = 3 μeV. For these two cases, the frequency f is
different since the SOI gap is different. For convenience, we
also plot J2

m, m = 0, 1. Some of the current characteristics
can be understood using the above arguments regarding the
formation of blocked states. For example, the current displays
a local minimum (it is suppressed) when either J0 = 0 or
J1 = 0. Moreover, in the asymptotic regime, defined for A >

2.5h f , the current displays an oscillatory behavior and the
overall current decreases following the overall reduction in
the interdot tunnel-coupling terms [Eq. (12)] between the
spin-blocked states and the |S02〉 singlet state. In Fig. 6
the field corresponds to the anticrossing B = 0.134 T, but the
SOI forms another anticrossing at B ≈ 0.014 T (Fig. 1). At

 0
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FIG. 6. Current as a function of ac amplitude A at fixed magnetic
field B = 0.134 T. For the solid line, the ac frequency is f =
26.53 GHz and the SOI tunnel coupling is tso = 3 μeV. For the
dotted line, f = 26.85 GHz and tso = 1.5 μeV. In both cases, the
frequency satisfies f = (E5 − E2)/h as depicted in Fig. 1. The inset
shows J2

m(r), m = 0, 1 for 0 < r < 10.

this field the ac-induced current due to the transitions between
|ψ2〉 and |ψ4〉 (or |ψ5〉) has different form from that in Fig. 6,
but these transitions are not considered in the present work.

As seen in Fig. 6 for A � 2.5h f , two regimes can be iden-
tified. Specifically, as the amplitude A increases, the current
first increases and then it starts to decrease. The increase of
the current is expected because the ac field induces transitions
(Fig. 1) between states with different populations: a state with
mostly triplet character and high population (|ψ5〉), and a state
with large |S02〉 component and lower population (|ψ2〉). The
approximate Hamiltonian W0 suggests that the increase of the
current is related to the increase of the tunnel-coupling term
bso. This term gradually lifts the (partial) spin blockade due
to the blocked |T−〉 state by allowing transitions from |T−〉 to
|S02〉. However, the tunnel couplings aso and Tc decrease with
A; therefore, the current should reach a maximum value and
then should start to decrease. The crossover point is sensitive
to the exact frequency (magnetic field) and the dot-lead rate
. The largest ac amplitude A considered in this work is of
the order of 1.5 meV (when A ≈ 10h f ), and such relatively
large amplitude can usually be generated in quantum dots
by applying electrical pulses [3,4,16,17,40]. Electrical noise
in quantum dots is device dependent and may influence the
current characteristics, but coherent effects due to the ac field
have been demonstrated in various devices when the noise
level is low, enabling transport spectroscopy of spin states and
estimation of the spin-orbit gap [3,4].

In double quantum dots, the energy detuning can usually be
controlled by gate voltages [1], and thus it is interesting to ex-
plore the detuning dependence of the ac-induced current near
the SOI singlet-triplet anticrossing point. For convenience, in
the upper frame of Fig. 7, we plot the two-electron eigenen-
ergies as a function of the energy detuning (A = 0) for the
magnetic field B = 0.134 T. The anticrossing point which is
formed at ε = 0 is due to the |S11〉, |S02〉 coupling and it exists
even for zero SOI. Here, we focus on the region near the SOI
singlet-triplet anticrossing point, formed at ε ≈ 50 μeV, and
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FIG. 7. The upper frame shows the two-electron eigenenergies
as a function of energy detuning for the magnetic field B = 0.134 T.
The vertical arrow at the anticrossing point ε ≈ 50 μeV specifies
the ac frequency f used in the lower frame, specifically, f =
(E5 − E2)/h = 26.85 GHz. The lower frame shows the current as
a function of energy detuning and ac amplitude at fixed frequency
f = 26.85 GHz and magnetic field B = 0.134 T.

plot, in the lower frame of Fig. 7, the current as a function of
the energy detuning and ac amplitude. For all the calculations,
the Floquet-Markov equation of motion (7) is used again. The
field is B = 0.134 T and the ac frequency is f = 26.85 GHz,
with f = (E5 − E2)/h at ε ≈ 50 μeV. Therefore, we refer to
this particular detuning as the “resonant” detuning where the
current is expected to be high, whereas for this particular case
under study f �= (E5 − E1)/h at any ε.

In Fig. 7, a high-current region can be identified in the
detuning range 47 � ε � 62 μeV, especially for A/h f � 2.5.
This range of the detuning includes the resonant detuning
value as well as the two detuning values satisfying the res-
onant conditions suggested by the approximate Hamiltonian
W0, i.e., ε ≈ �+ and ε ≈ h f − �+, which give ε ≈ 54.7 μeV
and ε ≈ 56.2 μeV, respectively. These two values are greater
than the resonant detuning and, as a result, the extent of
the high-current region along the detuning axis is larger for
ε > 50 μeV. But, for ε < 50 μeV, the high-current region

decays faster as the system is gradually tuned off resonance.
When the ac amplitude increases for A/h f > 2.5, the cur-
rent displays minima at the values of A/h f which generate
ac-induced blocked states, J0 = 0 or J1 = 0, and the current
pattern is similar to that presented in Fig. 6. The minima
have a characteristic wide shape off resonance which becomes
narrower near a resonance where the current increases. The
details of the pattern of the current versus A and ε depend on
the choice of the exact ac frequency f . In Fig. 7, the frequency
is f = (E5 − E2)/h, but a very similar pattern occurs for f =
(E5 − E1)/h, and, in general, for choices of frequencies away
from the anticrossing point. The high-current regions can be
easily identified by considering the corresponding resonant
conditions which involve the parameters ε, f , and �+. In
contrast, the current is, in general, lower off resonance and
when blocked states are formed.

IV. CONCLUSION

In this work, we considered a double quantum dot in the
spin-blockade regime and in the presence of an ac electric
field which periodically changes the energy detuning. We fo-
cused on specific energy configurations (Fig. 1) which involve
two SOI-coupled singlet-triplet states forming an anticrossing
point, and a third state with mostly triplet character. We
studied the electronic transport characteristics at the anti-
crossing point and found strong ac-induced current peaks,
in contrast to the vanishingly small peaks observed for a
pair of singlet-triplet states [4]. We showed that for small ac
field amplitudes, the current peaks map out the two-electron
energy levels and the SOI-induced anticrossing point. In this
case, the gap of the anticrossing can be estimated, giving
direct information about the strength of the SOI. As the ac
amplitude increases, the resonant pattern changes drastically
and a current antiresonance is formed. Eventually, the SOI
anticrossing point can no longer be probed. We examined the
ac-induced current versus the ac amplitude and showed that
current suppression can take place when the ac field gives rise
to blocked states for specific values of the ac amplitude and
ac frequency. As a result, the pattern of the current consists of
low- and high-current regions, which can be controlled by the
ac field.

The weak-driving regime in which the resonant current
peaks map out the SOI anticrossing point has been demon-
strated in different double quantum dot systems. However,
the stronger driving regime in which the resonant current
peaks strongly overlap and/or coherent interdot tunneling is
suppressed seems to remain unexplored. In our work, we
demonstrated a realistic range of parameters for which the
crossover from the weak- to the strong-driving regime can be
identified, and pointed out possible experimental implications.
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APPENDIX: DOUBLE DOT IN THE SPIN BLOCKADE

In this Appendix, we derive the double quantum dot Hamil-
tonian used in the main text. Specifically, we employ the
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two-site Hubbard Hamiltonian,

hDD =
2∑

i=1

εi(ni↑ + ni↓) +
2∑

i=1

Uini↑ni↓

+ 1

2

2∑
i=1

giμBB(ni↓ − ni↑) + V n1n2 + hT, (A1)

which allows for up to two electrons on each dot i, with i = 1,
2. We define the number operator ni = ni↑ + ni↓ with niσ =
c†

iσ ciσ for dot i and spin σ =↑,↓. The fermionic operator
c†

iσ (ciσ ) creates (annihilates) an electron on dot i with on-
site orbital energy εi. The Zeeman splitting on dot i due to
the applied magnetic field B is equal to giμBB, where gi is
the g factor of dot i, and μB is the Bohr magneton. When
two electrons occupy the same dot i, the intradot Coulomb
energy is Ui, and when two electrons occupy different dots,
the interdot Coulomb energy is V .

The two dots are tunnel coupled and tunneling between the
two dots is modeled by the Hamiltonian hT = hc + hso, with

hc = −tc
∑

σ

(c†
1σ c2σ + H.c.) (A2)

and

hso = tso(c†
1↑c2↓ − c†

1↓c2↑ + H.c.). (A3)

The Hamiltonian hc describes electron tunneling between
the two dots with coupling tc, which measures the degree
of overlap between the states localized in different quantum
dots [41]. The Hamiltonian hso accounts for a Rashba-like
spin-orbit interaction [42–44], and induces interdot tunneling
via a spin flip with coupling tso. This coupling is inversely
proportional to the spin-orbit length, which is sensitive to the
details of the double-dot geometry as well as the direction
of the applied magnetic field relative to the spin-orbit axis
[3,7,8,10]. Because this direction is device dependent, in our
work we assume different couplings tso in the regime tso < tc,
which is in agreement with other studies [3,4,14,15]. The mi-
croscopic details of the spin-orbit interaction are not important
in our work since the key requirement for the formation of
the ac-induced peaks studied in the main text is the nonzero
coupling tso. As shown below, the Hamiltonian hc can only
hybridize singlet states; in contrast, the Hamiltonian hso leads
to hybridized singlet-triplet states. Therefore, both hc and
hso form anticrossing points in the energy spectrum and the
degree of state hybridization is maximum in the vicinity of
these points.

So far, the double-dot Hamiltonian given by Eq. (A1) is
general enough and not specific to the spin-blockade regime.
We now focus on the spin-blockade regime and, without loss
of generality, we assume for simplicity that U1 = U2 = U ,
V = 0, and choose, for the orbital energies,

ε1 = +U

2
+ ε

2
, ε2 = −U

2
− ε

2
, (A4)

with the parameters satisfying U  tc, |ε|. Specifically, the
charging energy U can be as large as 10–20 meV, whereas
tc is typically less than 1 meV. The energy detuning ε is
usually tunable with electrostatic gates and quantifies the

energy difference,

ε = E (1, 1) − E (0, 2). (A5)

The notation E (n, m) denotes the energy of the bare charge
state with n (m) electrons on dot 1 (dot 2). The single-electron
states of the Hilbert space are c†

iσ |0〉 with i = 1, 2, spin σ =↑
,↓ and |0〉 is the vacuum state. Because of the small ratio
tc/(ε1 − ε2), the hybridization between dot 1 states and dot 2
states is typically very small.

The two-electron states of the Hilbert space are

|S20〉 = c†
1↑c†

1↓|0〉, |T+〉 = c†
1↑c†

2↑|0〉,
|↑,↓〉 = c†

1↑c†
2↓|0〉, |↓,↑〉 = c†

1↓c†
2↑|0〉, (A6)

|T−〉 = c†
1↓c†

2↓|0〉, |S02〉 = c†
2↑c†

2↓|0〉.
Alternatively, we can define states with definite spin number,
i.e., singlet states |S20〉, |S11〉 = (| ↑,↓〉 − | ↓,↑〉)/

√
2, |S02〉

and triplet states |T−〉, |T0〉 = (| ↑,↓〉 + | ↓,↑〉)/
√

2, |T+〉.
The energy of the state |S20〉, e.g., when two electrons occupy
dot 1, is E (2, 0) = 2ε1 + U = 2U + ε, whereas the energy of
all states with one electron on each dot is E (1, 1) = ε1 + ε2 =
0, and the energy of the |S02〉 state is E (0, 2) = 2ε2 + U =
−ε. Because of the large energy scale difference (of the order
of 2U ), the state |S20〉 has a minor effect on the spin-blockade
physics and can be ignored. As a result, there are five relevant
two-electron states in the spin-blockade regime:

|S11〉, |T+〉, |S02〉, |T−〉, |T0〉. (A7)

At low temperatures (0.1 K), three- and four-electron states
are not involved in the transport cycle and can be ignored.
Furthermore, when the Fermi energy of the right lead EF

satisfies ε2 < EF < ε2 + U , a single electron occupies dot 2
during the transport cycle, while a second electron is allowed
to tunnel from dot 2 to the right lead.

To account for the effect of the ac electric field, we assume
that the orbital energies of the two dots are modulated in a
“symmetric way,” thus,

ε1 = +U

2
+ ε

2
− A

2
cos(2π f t ),

ε2 = −U

2
− ε

2
+ A

2
cos(2π f t ).

(A8)

The amplitude of the ac field is A and the frequency is f .
The assumption of symmetric modulation is not unique; we
can, equivalently, assume, for instance, that ε1 is unaffected by
the ac field and ε2 = −U

2 − ε
2 + A cos(2π f t ). In this case, the

conclusions in the main text remain unchanged. The particular
choice in Eq. (A8) allows us to define the time-dependent
energy detuning,

δ = −ε + A cos(2π f t ), (A9)

and write the orbital energies as

ε1 = +U

2
− δ

2
, ε2 = −U

2
+ δ

2
. (A10)

Then, in the two-electron basis |S11〉, |T+〉, |S02〉, |T−〉, |T0〉, the
Hamiltonian hDD has the form given in Eq. (1) in the main text.
This approximate Hamiltonian is valid in the spin-blockade
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regime and has also been employed in other works [3,12,45–
47]. From this Hamiltonian, we see that the only time-
dependent term corresponds to the energy of the |S02〉 singlet
state (diagonal term) and is equal to the detuning δ. Even
though the Coulomb energy U is the largest energy scale, it
does not explicitly appear in the Hamiltonian because the |S20〉

state is ignored. The Hamiltonian (1) in the main text also
shows that when A = 0, the |S02〉, |S11〉 states are hybridized
due to the tc term, and similarly the |S02〉, |T±〉 states are
hybridized due to the tso term. In particular, the ac-induced
current peaks studied in the main text are formed only when
tso �= 0.
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