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We theoretically investigate the temperature-gradient-dependent or unidirectional Seebeck effect (USE) in
a magnetic/nonmagnetic topological insulator (TI) heterostructure with in-plane magnetization in terms of
the semiclassical electron dynamics and Fermi golden rule. The USE has a quantum origin arising from the
magnon asymmetric scattering of surface Dirac electrons on TI. We discuss the USE in the heterostructures,
Crx (Bi1−ySby )2−xTe3/(Bi1−ySby )2Te3. The USE exhibits cos φ dependence (measured from y direction) on the
orientation of magnetization. It is found that the sign of USE stays unchanged when the system is transferred
from p doping to n doping. The USE shows on inverse-linearly temperature dependent at high temperature.
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I. INTRODUCTION

The three-dimensional (3D) topological insulators (TI)
[1,2] represent a new class of 3D materials with an insu-
lating bulk and conductive surface states. The surface Dirac
electrons have their spin locked to their momentum, namely,
spin-momentum locking [Fig. 2(c)], hosting exotic topolog-
ical quantum effects [3–6] and finding applications in spin-
tronics and quantum computations. On the other hand, the
interconversion of angular momentum between a conduction
electron and local magnetization is one of the vital issues of
contemporary spintronics research [7,8] and spin caloritron-
ics [9–12]. Recently, the realization of a system in which
spin-polarized two-dimensional (2D) Dirac electrons coexist
with ferromagnetism on the surface of magnetic topological
insulators (MTI) through doping magnetic impurities in TI
[5,13] provides a new platform.

Owing to the interplay of the spin-momentum-locked sur-
face states and magnetism, a series of novel transport phe-
nomena are expected, such as quantum anomalous Hall effect
(QAHE) [13], current-nonlinear Hall effect (CNHE) [14]
and unidirectional magnetoresistance (UMR) [15–18]. UMR
has recently been proposed in TI heterostructures [14,18–
21] composed of nonmagnetic TI (Bi1−ySby)2Te3 (BST) [22]
and magnetic TI Crx(Bi1−ySby)2−xTe3 (CBST) [23], which
describes the resistance-value dependence on the sign of the
outer product of current J and the in-plane magnetization M
vectors and is identified to originate from the asymmetric scat-
tering of electron by magnons [18]. It is natural to ask whether
the Seebeck effect depends on the relative orientations of
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the in-plane magnetization with respect to the temperature
gradient in the heterostructures of BST/CBST.

In this paper, we theoretically investigate a temperature-
gradient-direction–dependent or unidirectional Seebeck effect
(USE) induced by magnon asymmetric scattering in the het-
erostructure of BST/CBST. We believe that the proposed
effect is very useful in spin caloritronics. We derive the
formula of nonlinear longitudinal current jx response to the
temperature gradient ∇xT up to the second order based on
the Boltzmann theory. We introduce, phenomenologically, a
quantity �S which is expressed by the difference in Seebeck
coefficients between the cases of the forward and backward
temperature gradients �T [see Figs. 1(a) and 1(b)] to charac-
terize the USE in Sec. II. We derive the formula of magnon
relaxation time and determine the expressions of USE for
BST/CBST heterostructure in Sec. III. The behavior of USE
is discussed in Sec. IV.

II. UNIDIRECTIONAL SEEBECK EFFECT

With the relaxation time approximation, the Boltzmann
equation for the distribution of electrons in absence of electric
field reads [24,25]

f − f0 = −τ (k)
∂ f

∂ra
· va, (1)

where τ represents the relaxation time, and va and ra denote
the a component of the velocity and coordinate position of
electrons, respectively. f0 is the local equilibrium distribution
function. We are interested in the response up to the second
order in temperature gradient and hence have the nonequilib-
rium distribution function f ≈ f0 + f1 + f2 with the term fn

to vanish as (∂T/∂ra)n. After a series of careful derivations in
Appendix A, the formulas of f1 and f2 can be determined and
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FIG. 1. Schematic illustration of the concept for USE in het-
erostructures topological insulator (TI)/magnetic TI under (a) +�T
and (b) −�T temperature gradient. Here, the magnetic field,
magnetization, and temperature gradient are all aligned in-plane.
(c) Schematic illustration for the asymmetry magnon scattering of
Dirac electrons on the spin-momentum-locked Fermi surface. (d) Top
view of the scattering process for magnon emission and absorption.

are given in Eq. (A11). The charge current ja in a direction is

ja = −e
∫

[dk]va f (r, k), (2)

where
∫

[dk] is shorthand for
∫

dk/(2π )2. Based on Eqs. (2)
and (A11), the current jx in x direction is found to be

jx = α(1)
xx (−∇xT ) + (

α
(2)
xx,1 + α

(2)
xx,2

)
(∇xT )2 − α

(2)
xx,1T ∇2

x T,

(3)

with

α(1)
xx = e

∫
[dk]τ (k)vx

εk − μ

h̄T

∂ f0

∂kx
,

α
(2)
xx,1 = −e

∫
[dk](τ (k))2v2

x

εk − μ

h̄T 2

∂ f0

∂kx
,

α
(2)
xx,2 = −e

∫
[dk](τ (k))2vx

(
εk − μ

h̄T

)2
∂2 f0

∂k2
x

. (4)

Therefore, the relationship between temperature gradient
and the thermoelectric voltage �V (= Vright − Vleft ) can be
expressed in a nonlinear form of

�V = l

σxx

[
α(1)

xx (−∇xT ) + α(2)
xx (∇xT )2

]
. (5)

To obtain Eq. (5), we have used �V = lEx = jxl/σxx and
meanwhile assume the uniform temperature gradient in the
system, i.e., ∇2

x T = 0. Here α(2)
xx = α

(2)
xx,1 + α

(2)
xx,2, and l is the

length of the sample. Equation (5) hints that the voltage drop
is nonlinearly dependent on the temperature gradient, which
gives USE: when modulating the direction of temperature
gradient, the voltage absolute value generated through the
Seebeck effect is changed [Figs. 1(a) and 1(b)]. Therefore,

TABLE I. Parity about kx for linear-k Dirac dispersion.

Function Parity

εk Even

vx Odd
∂ f0
∂kx

Odd
∂2 f0
∂k2

x
Even

the Seebeck coefficient S = −(Vleft − Vright )/(Tleft − Tright ),
measured under plus or minus temperature difference �T
[Figs. 1(a) and 1(b)], is noticeably distinguishing and is
temperature-gradient-direction–dependent. Hence, the differ-
ence �S between the two temperature gradient directions can
be applied to characterize the USE, which is determined by

�S = S+ − S− = 2α(2)
xx �T

σxxl
, (6)

with S+ = α(1)
xx /σxx + α(2)

xx �T/(lσxx ) and S− = α(1)
xx /σxx −

α(2)
xx �T/(lσxx ). Equation (6) indicates that �S is linearly

proportional to the temperature gradient. Here we assume
that the magnon scattering is completely independent of other
scattering processes, such as the impurity, phonon, and so on.
Thus, one could have

1

τ
= 1

τ 0
+ 1

τmag
, (7)

where τ 0 is the nonmagnetic scattering relaxation time and
τmag is the scattered relaxation time by magnons. The impurity
scattering is considered to be dominant here, which gives
τ 0 << τmag. To first-order approximation, therefore, the re-
laxation time can be written as τ = τ 0 − (τ (0) )2/τmag, leading
to

α(2)
xx = −e(τ 0)2

∫
[dk]

{[
v2

x

εk − εF

h̄T 2

∂ f0

∂kx

+ vx

(
εk − εF

h̄T

)2
∂2 f0

∂k2
x

]
− 2τ 0vx

τmag

[
vx

εk − εF

h̄T 2

∂ f0

∂kx

+
(

εk − εF

h̄T

)2
∂2 f0

∂k2
x

]}
. (8)

Obviously, Eq. (8) involves two distinguished mechanisms
that result in the nonlinear Seebeck effect and the USE: the
asymmetric energy dispersion along kx direction (the first
term) and the asymmetric magnon scattering (the second
term). In completely linear-k Dirac dispersion, one can actu-
ally find that the first term in Eq. (8) is zero by exploiting the
parity (Table I). Besides, even in the presence of an in-plane
magnetic field or magnetization, this term is still zero. This
is because the Dirac point and the whole dispersion will shift
in k space simultaneously and consistently [Fig. 2(c)] so that
the velocity and the occupation are unchanged. In this work,
we consider only the USE induced by the asymmetric magnon
scattering, namely,

α(2)
xx,mag = 2e(τ 0)3

∫
[dk]

1

τmag(k)

[
v2

x

εk − εF

h̄T 2

∂ f0

∂kx

+ vx

(
εk − εF

h̄T

)2
∂2 f0

∂k2
x

]
. (9)
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FIG. 2. (a) Schematic configuration for the measurement of in-
plane magnetic field (or magnetization) φ dependence of �S, the
azimuth angle φ is measured from the y axis. (b) The in-plane mag-
netization orientation (i.e., φ) dependence of normalized �S/�S0.
Here �S0 is �S at φ = 0. (c) Schematic diagram of the band
structure under in-plane magnetization M//em = (sin φ, cos φ) and
spin-momentum locking of the surface Dirac state in TI. (d) Top view
of the magnon scattering in 2D Dirac dispersion. The orientation of
spin eigenfunctions |↑> and |↓> are illustrated when magnetization
is parallel to em.

III. MODEL

One of candidate materials to observe the USE originating
from the asymmetric scattering of electrons by magnons is the
TI heterostructure BST/CBST. By tuning the composition y,
one can modulate the Fermi energy E f of the surface state
inside the bulk band gap [14,18,20–22]. Hence, the carriers
from the top and bottom surface states with a single Dirac
cone will dominate the conduction. In addition, owing to
the heterostructure, only one surface involved in the MTI
layer interacts effectively with magnetic interaction [20,21].
Besides, the magnetization M of CBST initially points along
the z direction and leads to an exchange gap in the surface
Dirac state. When the in-plane magnetic field B is applied
up to B0 (∼0.7 T) [18], the orientation of magnetization
will gradually be changed to the in-plane direction and the
Dirac surface states will eventually become gapless. In this
work, we consider the situation in which the magnetization
is already oriented in-plane, with M = (mx, my) = m�em and
�em = (sin φ, cos φ) [see Fig. 2(a)], where the azimuth angle
φ is measured from the y axis. Owing to the coupling be-
tween the electron spin and localized magnetic moments, the
Hamiltonian of the Dirac surface electrons is affected by the
magnetization M and can be written as

H0 = (m sin φ + vF h̄ky)σ̂x + (m cos φ − vF h̄kx )σ̂y, (10)

where vF is the Fermi velocity, h̄ represents the Planck
constant, σ̂ denotes the Pauli matrices for the two basis
functions of the energy band, m indicates the magnitude of

magnetization M, and the definition of the azimuthal angle
φ is given in Fig. 2(a). For simplicity, we also ignore the k2

term and hexagonal warping (k3 term) in the surface state of
BST/CBST. The energy eigenvalues are

εk = n
√

(vF h̄kx − m cos φ)2 + (vF h̄ky + m sin φ)2, (11)

where n(= ±1) is the band index. Equation (11) hints that
the Dirac point and the whole dispersion shifts towards the
�ekm = (cos φ,− sin φ) direction with the magnetic field or
magnetization along direction �em [Figs. 2(a) and 2(c)]. In the
following, we consider the interaction between the surface
conduction electron and the localized spin composed of Cr
d orbits. When M is along the �em direction, the localized
spin is pointing in the −�em direction. Therefore, the angular
momentum of the magnon is +1. Owing to the conservation
of angular momentum, the interaction Hamiltonian H ′ is

H ′ ≈
∑

i

jex(c+
i,↑ci,↓bi + c+

i,↓ci,↑b+
i )

=
∑
kq

jex(c+
k+q,↑ck,↓bq + c+

k−q,↓ck,↑b+
q ), (12)

where jex is the exchange-coupling constant, and b+(b)
and c+(c) denote the creation (annihilation) operator of
the magnon and surface Dirac electron, respectively. Equa-
tion (12) involves two processes: magnon absorption
(c+

k+q,↑ck,↓bq) and magnon emission (c+
k−q,↓ck,↑b+

q ). In the
magnon absorption process, when the Dirac electron from
the surface states |k,↓> is scattered to state |k + q,↑>,
a magnon with momentum q is absorbed due to the con-
servation of momentum and angular momentum [left plane
of Fig. 1(c)]. In the magnon emission process, the electron
spin is reversed from ↑ (sφ = 1/2) to ↓ (sφ = −1/2) by the
emission of magnon [right plane of Fig. 1(c)] resulting from
the spin-momentum locking of the surface Dirac state and the
conversation of angular momentum.

Based on the Fermi golden rule, the magnon relaxation
time τmag is found to be [14,18]

1

τmag(k)
≈

∑
k′

Wmag(k′|k)[1 − f (k′)], (13)

with

Wmag
(
k′|k) = Wabs(k′, σ ′; nk′−k − 1 | k, σ ; nk′−k )

+Wemit(k′, σ ′; nk−k′ + 1 | k, σ ; nk−k′ ),(14)

where 1 − f (k′) represents the probability of final state of
the electron in which the electron is unoccupied. nk de-
notes the number of magnons, Wabs(Wemit ) are the scattering
probabilities for the magnon absorption (emission) process,
respectively, and are characterized as

Wabs = 2π

h̄
|〈k′, σ ′; nk′−k − 1|H ′|k, σ ; nk′−k〉|2

× δ(εk′ − εk − h̄ωk′−k ),
(15)

Wemit = 2π

h̄
|〈k′, σ ′; nk−k′ + 1|H ′|k, σ ; nk−k′ 〉|2

× δ(εk′ − εk + h̄ωk−k′ ).
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Taking the interaction Hamiltonian H ′ [Eq. (12)] into Eq. (15),
we have

Wabs = 2π

h̄
j2
exnk′−k|〈σ ′ | c+

↑ c↓ | σ 〉 |2 δ(εk′ −εk− h̄ωk′−k ),
(16)

Wemit = 2π

h̄
j2
ex(nk−k′ + 1)|〈σ ′ | c+

↓ c↑ | σ 〉 |2

× δ(εk′ − εk − h̄ωk−k′ ),

where | σ 〉(| σ ′〉) indicates the initial (final) electron spin
state, respectively. The spin orientation of surface electron in
MTI around the Dirac cone is not fixed but rotates around the
z axis [see Fig. 2(c)]. In the following, we consider the scat-
tering from the position α to θ as shown in Fig. 2(d), namely,
| σ 〉 =| α〉 and | σ ′〉 =| θ〉. Here, the spin eigenfunction at α

(or θ ) in {|↑〉, |↓〉} representation is

| α〉 = sin
φ + α

2
|↑〉 + cos

φ + α

2
|↓〉,

| θ〉 = sin
φ + θ

2
|↑〉 + cos

φ + θ

2
|↓〉,

(17)

where |↑〉 (|↓〉) represents the state in which the spin direction
is antiparallel (parallel) to the in-plane magnetic field, respec-
tively. Therefore, taking the formulas of | σ 〉 =| α〉 (| σ ′〉 =|
θ〉) determined by Eq. (17) into Eq. (16) and accompanied
with a series of derivation in Appendix B, the magnon relax-
ation time in Eq. (13) is found to be

1

τmag(α, φ,�k)
= 1

τm
F

∫ 2π

0
dθVmag(θ + φ, α + φ,�k),

(18)
with 1

τm
F

= kF
(2π )

j2
exA

vF h̄2 , A is the area of the sample, and the
integrand Vmag(θ, α,�k) is given in Eq. (B10).

IV. RESULTS AND DISCUSSION

By approximating the conductivity as σxx ≈
(e2/4π h̄)vF kF τ 0 [see Eq. (C5)], we found the quantity
�S determining the USE in Eq. (6) to be (see details in
Appendix C)

�S

�T
= −ζ

AεF

lT

∫ ∫ ∫
dxdαdθVmag

(
θ + φ, α + φ,

kBT x

h̄vF

)

× xex cos3 α

(ex + 1)2

(
1 + 1 − ex

ex + 1
x

)
, (19)

where x = h̄vF �k/(kBT ), with �k measured from kF (Fermi
wave number). The typical scale ζ = 4kB j2

ex(τ 0)2
/(eh̄3vF ) is

around 1.2 × 109[eKm]−1 for heterostructures BST/CBST.
We use the following typical values: the Fermi velocity vF ≈
1 × 105 m/s [26], and the nonmagnetic scattering relaxation
time τ 0 ≈ 10−13 s estimated by τ 0 = μm/e. Mobility μ of
(Bi1−xSbx )2Te3 ranges from 100 to 500 cm2 V−1 s−1 [22]
when tuning the composition x. We use μ = 300 cm2 V−1 s−1

for an estimation. Although the value of the exchange-
coupling energy jex is not well known for the heterostruc-
tures BST/CBST, here we adopt jex ≈ 0.1 eV from Ref. [27],
which is a typical value for exchange coupling of surface
states Sb2Te3 and the magnetic impurities.

To disclose the microscopic origin of USE induced by
magnon scattering intuitively, we first neglect the magnon

dispersion and use gμBB as a magnon energy [28] for sim-
plicity. Thus, �S/�T in Eq. (19) can be further simplified as
(see details in Appendix C)

�S

�T
= −ζ

3πAτm
F εF

8lT
cos φ

∫
dx

(
1

τ+ − 1

τ−

)
xex

(ex + 1)2

×
(

1 + 1 − ex

ex + 1
x

)
, (20)

with

1

τ+ = 1

eβ h̄ω − 1

(
1 − 1

e(x+β h̄ω) + 1

)
1

τm
F

, (21)

1

τ− =
(

1

eβ h̄ω − 1
+ 1

)(
1 − 1

e(x−β h̄ω) + 1

)
1

τm
F

. (22)

Here, τ+(τ−) is the relaxation time of magnon scattering
from the left (right) branch to the right (left) one [Fig. 1(d)].
The first factors of Eqs. (21) and (22) give the probability of
magnon absorption and emission, respectively, and the second
ones show the probability that the final state of the electrons
is unoccupied.

Since 1/τ+ and 1/τ− are not equal in general, Eq. (20)
gives a finite USE, which is attributed to the magnon asym-
metric scattering of electron in the TI, namely, the scattering
rates are different in magnon absorption and emission pro-
cesses. Equation (20) also hints that the in-plane magnetiza-
tion directional dependence of normalized �S/�S0 ∝ cos φ,
�S0 is �S at φ = 0◦. Thus, when the magnetization M is par-
allel or antiparallel to the y axis (i.e., φ = 0 , π , 2π ), the |�S|
will reach its maximum. However, the USE will disappear
when magnetization is aligned to the direction of the tem-
perature gradient (i.e., M//x). The cos φ dependence on the
orientation of magnetization of the USE can be ascribed to the
asymmetric magnon scattering induced by the my(∝ cos φ)
part of magnetization. The magnon scattering rate 1/τmag can
be divided into two parts: symmetric part 1/τ S

mag [Eq. (D2)]
and antisymmetric part 1/τA

mag [Eq. (D2)] when reversing kx (a
consequence of a mirror operation with respect to the ky − kz

plane in momentum space). mx(∝ sin φ) (my)of magnetization
only contributes to the symmetric (antisymmetric) scattering.
Thus, only the antisymmetric part makes a contribution to the
USE [see details in Appendix C]. Therefore, the USE shows
cos φ dependence on the orientation of magnetization.

In the following, we investigate the USE without neglect-
ing the magnon band dispersion. In the long-wave-number
case, the band dispersion of magnon is [29]

h̄ω = Dsq
2 + gμBB

= 4Dsk
2
F sin2 (θ − α) + gμBB, (23)

where Ds is the spin stiffness constant, and g ≈ 2 for the
localized Cr moment in CBST. Figure 2 shows the in-plane
magnetization orientation dependence of normalized �S (∝
cos φ) when considering the band dispersion of magnon. The
result is consistent with the case in which the magnon disper-
sion is neglected. When the magnetic field or magnetization
is aligned along the y direction, the signal of �S reaches the
maximum.

Figure 3(a) shows the variation of �S with Fermi energy
at different temperatures. The sign of �S does not change
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FIG. 3. (a) �S/�T as a function of the Fermi energy for dif-
ferent temperature with the magnetic field B = 1T . (b) �S/�T as
a function of temperature gradient for different magnetic field. The
magnetic field in (a) is taken at 1T . The Fermi energy Ef is fixed at
0.1eV in (b). Magnon scattering rate 1/ητmag(α,�k) as function of
Fermi energy for different polar angle α in (c) and �k in (d). α is
polar angle measured from kx axis and �k is the radium measured
from Fermi momentum kF . Where η = ε0 j2

exA/(2πv2
F h̄3) with ε0 =

1eV in (c)(d). The energy vF h̄�k is fixed at 1.5kBT in (c) and α = 0
in (d).

when the system is transferred from electron (E f < 0) to
hole (E f > 0). This can be understood by considering the
scattering process for holes in the same way as shown in
Fig. 1(d) for electrons. With modulating the Fermi energy
through gate voltage to the appropriate value (close to Dirac
point), the signal of the unidirectional Seebeck effect �S can
reach its maximum for both electrons and holes. The appear-
ance of a peak in Fig. 3(a) can be qualitatively understood
as follows: with increasing the absolute value of Fermi |E f |,
the energy of magnon contributing to the scattering processes
increases so that the related magnon population decreases
and the density of state of carries (holes or electrons), on
the contrary, increases. The combination of these two mecha-
nisms leads to a magnon scattering rate 1/τmag [Fig. 3(c)] that
increases rapidly first and then gradually decreases due to the
increase of magnon population, giving rise to a peak feature
of �S/�T .

The temperature T dependence of �S at different magnetic
fields is shown in Fig. 3(b). As expected, the unidirectional
Seebeck effect tends to zero when T approaches zero owing
to frozen magnon. Indeed, in the extremely low temperature
regime T 
 h̄ωmin (h̄ωmax = gμBB), namely, T 
 1.34 K for
B = 1T, �S tends to zero owing to the frozen magnon. At
the limit of high temperature T � h̄ωmax (h̄ωmax = 2Dsk2

F +
gμBB is the maximum energy of magnon), �S, as expected,
varies inversely proportional with T . Therefore, a peak of �S
will develop at finite temperature, and the peak shifts to higher

temperature with increasing the magnetic field. To understand
the temperature dependence behaviors of the USE in high
temperature qualitatively, we go back to the case in which the
magnon dispersion is ignored for a more transparent picture.
In the considered temperature regime, the number of magnons
linearly depends on temperature (nB ≈ kBT/h̄ω) and the
difference between 1/[exp(x + βωh̄) + 1] and 1/[exp(x −
βωh̄) + 1] is inversely dependent on T , leading to the tem-
perature independence of 1/τ+ − 1/τ−in Eq. (20), giving rise
to the inverse-linear temperature dependence of �S. Besides,
the impact of varying magnetic field is also insignificant in
this temperature regime.

To numerically estimate the proposed effect, we take
�S/ζAl−1�T ≈ 0.3 eV/K [Fig. 3(a)] for T = 10 K. We also
note that the USE in heterostructures BST/CBST can be
estimated by the difference of voltage VUSE before and af-
ter reversing the direction of the temperature gradient as
follows: VUSE = |�S�T |. The typical ζ in heterostructures
BCT/CBST has been estimated to be of the order of 1.2 ×
109 [eKm]−1. Thus VUSE � 72 mV with �T = 10 mK, and
w = A/l = 0.2 μm is the width of the sample, which is
measurable [30].

V. CONCLUSION

In summary, we study the unidirectional Seebeck effect
in the heterostructures of TI/MTI. It is found that Seebeck
coefficient S is temperature-gradient-direction dependent and
has a noticeable distinguishing feature when measured under
positive (+x axis) or negative (−x axis) temperature differ-
ence �T . We have derived this difference �S = S+ − S−
to characterize the unidirectional Seebeck effect induced by
the magnon asymmetric scattering through the semiclassi-
cal framework of electron dynamics. Moreover, the quantity
�S = S+ − S− is strongly dependent on the orientation of
the in-plane magnetization. When the in-plane magnetic field
or magnetization is vertical to the temperature gradient, |�S|
reaches its maximum. However, the signal of �S will disap-
pear when applying an magnetic field collinear to the temper-
ature gradient. Fixing the magnetic field to the y direction, the
unidirectional Seebeck effect is inverse-linearly dependent on
temperature and insensitive to the magnetic field in the “high”
temperature regime (T � h̄ωmax) in which T is far larger than
the maximum energy of magnon contributing to scattering.
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APPENDIX A: THE NONEQUILIBRIUM DISTRIBUTION
FUNCTION IN THE PRESENCE OF TEMPERATURE

GRADIENT

With the relaxation time approximation, the Boltzmann
equation for the distribution of electrons in absence of the
electric field is

f − f0 = −τ
∂ f

∂ra
· va. (A1)

To the response up to the second order in temperature gradient
∇T , the local distribution function f (r, k) is written as

f (k, r) = f0(k, r) + Aa
∂T

∂ra
+ Bab

∂T

∂ra

∂T

∂rb
+ O[(∂aT )3]

= f0(k, r)+ f1(∂aT )+ f2(∂aT ∂bT ) + O[(∂aT )3],

(A2)

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1(∂aT ) = Aa∂aT,

f2(∂aT ∂bT ) = Bab∂aT ∂bT,

∂a → ∂

∂ra
,

(A3)

where f0(k, r) is the local equilibrium distribution function,
which is itself fixed by the temperature at r [31], giving rise
to

∂ f0

∂ra
= ∂ f0

∂T

∂T

∂ra
(A4)

with

∂ f0

∂T
= (εk − μ)

kBT 2
(1 − f0) f0 = − (εk − μ)

T

∂ f0

∂εk
. (A5)

By substituting the formula of f in Eq. (A2) into Eq. (1) and
comparing the expansion coefficients in the first order of ∂aT ,
one obtains

f1(∂aT ) = − τ
∂ f0

∂ra
· va + O[∂aT ∂bT ]. (A6)

Thus, we can have

f1(∂aT ) = −τ
∂ f0

∂T
∂aT · va. (A7)

By iteration, then, we can have

f2(∂aT ∂bT ) = −τ
∂ f1

∂ra
· va

= τ 2

(
∂2 f0

∂T 2
∂aT ∂bT + ∂ f0

∂T
∂abT

)
vbva. (A8)

Here, we introduce a trick to transfer ∂ f0/∂T into ∂ f0/∂k
through a partial differential treatment

∂ f0

∂k
= ∂ f0

∂εk
· ∂εk

∂k
= −∂ f0

∂T

h̄vT

(εk − μ)
. (A9)

In the above, we have used the relation ∂ f0

∂T = − (εk−μ)
T

∂ f0

∂εk

[Eq. (A5)] and ∂εk
∂k = h̄v. From Eq. (A9), it is easy to obtain

the following identities:

∂ f0

∂T
· va = −εk − μ

h̄T

∂ f0

∂ka
,

∂2 f0

∂T 2
vavb = εk − μ

h̄T 2

∂ f0

∂ka
vb +

(
εk − μ

h̄T

)2
∂2 f0

∂ka∂kb
. (A10)

By taking these identities into the formulas of f1 [Eq. (A7)]
and f2 [Eq. (A8)], one obtains

f1 = τ

T h̄
(εk − μ)

∂ f0

∂ka
∂aT,

f2 = − τ 2

T h̄
(εk − μ)vb

∂ f0

∂ka

(
∂abT − 1

T
∂aT ∂bT

)

+ τ 2

h̄2T 2
(εk − μ)2 ∂2 f0

∂ka∂kb
∂aT ∂bT . (A11)

APPENDIX B: MAGNON RELAXATION TIME τmag

The magnon relaxation time τmag can be determined
through Fermi golden rule given in Eq. (13). For simplicity,
we divide τmag into

1

τmag(k)
= 1

τ+
mag(k)

+ 1

τ−
mag(k)

, (B1)

with
1

τ+
mag(k)

=
∑

k′
Wabs(k′ | k)[1 − f (k′)],

1

τ−
mag(k)

=
∑

k′
Wemit(k′ | k)[1 − f (k′)],

(B2)

where Wabs and Wemit are given in Eq. (16). Substituting
formulas of | σ 〉 =| α〉 (| σ ′〉 =| θ〉) determined by Eq. (17)
into Eq. (16), we have

Wabs = 2π

h̄
j2
exnk′−k cos2 α + φ

2
sin2 θ + φ

2
× δ(εk′ − εk − h̄ωk′−k ),

Wemit = 2π

h̄
j2
ex(nk−k′ + 1) sin2 α + φ

2
cos2 θ + φ

2
× δ(εk′ − εk − h̄ωk−k′ ). (B3)

For a two-dimensional case,
∑

k′ = A
(2π )2

∫
dk′, where A is

the area of the sample. Here we introduce a polar coordinate
(α, k1) in which the original point is located at the Dirac cone
point, namely, k0 = m(cos φ,− sin φ)/vF h̄ [see Fig. 1(d)],
yielding

k =
(

k1 cos α + m cos φ

vF h̄
, k1 sin α − m sin φ

vF h̄

)
. (B4)

Thus, the energy eigenvalues in Eq. (11) and the integrated
form of dk can be rewritten, respectively, as

εk = εk1 = nvF h̄k1,

εk − εF = nvF h̄�k,∫
dk −→

∫
dk1 =

∫
dα

∫
k1dk1 ≈ kF

∫
dα

∫
d�k,

(B5)
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where �k is measured from kF (Fermi wave number). In
the following, we take the conduction band as an example,
namely, n = 1, and consider the scattering from the position
α to θ as shown in Fig. 2(d). Thus

1

τ+
mag(k)

= 1

h̄

j2
exA

2π
kF

∫
dθ

∫
dk′

1 cos2 α + φ

2
sin2 θ + φ

2

× 1

exp(h̄ωβ ) − 1

(
1 − 1

exp [β(vF h̄k1 − εF )] + 1

)

× δ[vF h̄
(
k′

1 − k1
) − h̄ω]

= 1

τm
F

∫
dθ

Q+
mag(�k1)

exp (h̄ωβ ) − 1
cos2 α + φ

2
sin2 θ + φ

2
,

(B6)

with

Q+
mag(�k1) =

∫
dk′

1

(
1 − 1

exp[β(vF h̄k′
1 − εF )] + 1

)

× δ

(
k′

1 − k1 − ω

vF

)

= 1 − 1

exp β[(h̄ω + h̄vF �k)] + 1
(B7)

and 1
τm

F
= kF

2π

j2
exA

vF h̄2 . h̄ω corresponds to the magnon energy with
2kF sin (θ − α) wave number. Similarly, one can have

1

τ−
mag(k)

= 1

τm
F

∫ 2π

0
dθ sin2 φ + α

2
cos2 φ + θ

2

×
(

1

exp (h̄ωβ ) − 1
+ 1

)
exp β(h̄vF �k − h̄ω)

exp β(h̄vF �k − h̄ω) + 1
.

(B8)

Based on Eqs. (B1), (B7), and (B8), we obtain

1

τmag(k)
= 1

τmag(α,�k)

= 1

τm
F

∫ 2π

0
dθVmag(θ + φ, α + φ,�k), (B9)

with the integrand Vmag(θ + φ, α + φ,�k) defined as

Vmag(θ + φ, α + φ,�k)

= cos2

(
α + φ

2

)
sin2

(
θ + φ

2

)
V +

mag(θ, α,�k)

+ sin2

(
α + φ

2

)
cos2

(
θ + φ

2

)
V −

mag(θ, α,�k),

(B10)

where

V +
mag(θ, α,�k) = 1

eβ h̄ω − 1

(
1 − 1

eβ(h̄vF �k+h̄ω) + 1

)
,

V −
mag(θ, α,�k) =

(
1 − 1

eβ(h̄vF �k−h̄ω) + 1

)

×
(

1

eβ h̄ω − 1
+ 1

)
. (B11)

APPENDIX C: THE FORMULA OF �S INDUCED BY THE
MAGNON ASYMMETRY SCATTERING IN

HETEROSTRUCTURES TI/MTI

Taking the magnetic relaxation time in Eq. (18) into
Eq. (9), we can have α(2)

xx,mag in polar coordinates (α,�k) (see
Appendix B for detail), where α is the polar angle measured
from kx axis and �k is the radius measured from kF (Fermi
momentum), as

α(2)
xx,mag = 2e

(
τ 0

)3

τm
F

kF

∫
d�k

∫
dα

∫
dθVmag

× (θ + φ, α + φ,�k)

×
[
v2

x

vF �k

T 2

∂ f0

∂kx
+ vx

(
vF �k

T

)2
∂2 f0

∂2kx

]
. (C1)

For vx(k),

vx = 1

h̄

∂εk

∂kx
= vF cos α. (C2)

For ∂ f0

∂kx
,

∂ f0

∂kx
(α,�k) = − P

(P + 1)2 βvF h̄ cos α. (C3)

For ∂2 f0

∂k2
x

,

∂2 f0

∂k2
x

(α,�k) = −β h̄vF

kF

P

(P + 1)2 sin2 α + (β h̄vF )2 cos2 α

× P(P − 1)

(P + 1)3

≈ (β h̄vF )2 P(P − 1)

(P + 1)3 cos2 α, (C4)

with P = eβ h̄vF �k . Here, in the third line of Eq. (C4), we
can ignore the first term since β h̄vF kF � 1 except for the
immediate vicinity of the Dirac point. Meanwhile,

σxx = −e2

h̄

1

(2π )2

∫
dkτ (k)vx(k)

∂ f

∂kx

≈ −e2

h̄

τ 0kF

(2π )2

∫
d�k

∫ 2π

0
dαvx(α)

∂ f

∂kx
(�k, α)

= e2

4π h̄
vF kF τ 0. (C5)

Therefore, from Eq. (6) we can determine the expression of
�S for characterizing the USE as

�S = −ζ
AεF �T

lT

∫
d�k

∫
dα

∫
dθVmag(θ + φ, α + φ,�k)

×
(

h̄vF

kBT

)2

�k
P cos3 α

(P + 1)2

(
1 + 1 − P

P + 1

h̄vF �k

kBT

)
, (C6)

where ζ = 4kB j2
ex(τ 0)2

/(eh̄3vF ). Let x = h̄vF �k/(kBT ) in
Eq. (C6), and taking the formula of P = eh̄vF �k/(kBT ) into it,
we have obtained the expression of �S in Eq. (19) in the main
text. In the following, we consider a situation in which we
neglect magnon dispersion and use gμBB as magnon energy,
namely, h̄ω = gμBB. Thus, V +(−)

mag (θ, α,�k) in Eq. (B11) will
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FIG. 4. α dependence of 1/τmag for different φ is shown in
(a) and �k dependence of 1/τmag for different polar angle α is
shown in (b) with magnetization along y direction, namely φ = 0.
The magnetic field is B = 1 T and the temperature is T=10K. α is
polar angle measured from kx axis and �k is the radius measured
from Fermi momentum kF . The azimuth angle φ is used to indicate
the magnetization orientation measured from the y axis.

be independent of θ and α, and thus we rewrite them as
V +(−)

mag (�k). Therefore the integration of the angle-dependent
part in Eq. (C6) is found to be

� =
∫ 2π

0
dα

∫ 2π

0
dθVmag(θ + φ, α + φ,�k) cos3 α

=
∫ 2π

0
dα

∫ 2π

0
dθ cos3 α

[
cos2 φ + α

2
sin2

(
φ + θ

2

)

×V +
mag(�k) + sin2 φ + α

2
cos2

(
φ + θ

2

)
V −

mag(�k)

]

= 3π2

8
[V +

mag(�k) − V −
mag(�k)] cos φ. (C7)

Thus

�S

�T
= −ζ

3π2AlεF �T

8T
cos φ

∫
d�k[V +

mag(�k) − V −
mag(�k)]

×
(

h̄vF

kBT

)2

�k
P cos3 α

(P + 1)2

(
1 + 1 − P

P + 1

h̄vF �k

kBT

)

= ζ
3π2Alτm

F εF �T

8T
cos φ

∫
dx

(
1

τ+ − 1

τ−

)

× xex

(1 + ex )2

(
1 + 1 − ex

ex + 1
x

)
. (C8)

To obtain the third line, we have make use of x =
h̄vF �k/(kBT ) and 1/τ+(−) = V +(−)

mag /τm
F given in Eqs. (21)

and (22).

APPENDIX D: THE ANALYSIS OF SYMMETRIES (OR
PARTIES) OF 1/τmag AND THE cos φ DEPENDENCE OF

MAGNETIZATION OF USE

In this Appendix, the symmetries (or parties) of 1/τmag and
the cos φ dependence of �S/�T in Eq. (20) will be analyzed.
Before a detailed analysis, we would like to introduce two
concepts: (1) It is noted that the symmetry/antisymmetry
of a function f (kx, ky) corresponds to even/odd parties with

respect to kx, respectively, namely, f (kx, ky ) = f (−kx, ky)/
f (kx, ky) = − f (−kx, ky). This is a consequence of mirror
symmetry with respect to the ky-kz plane in momentum space.
(2) In polar coordinate (α,�k), where α is the polar angle
measured from the kx axis and �k is the radius measured from
the Fermi momentum kF , cos α (sin α) dependence of function
f represents that f is odd (even) function with respect to kx,
respectively.

To understand how the cos φ dependence of �S/�T in
Eq. (20) appears physically, we can investigate the symmetry
of magnon scattering time with respect to kx. As mentioned
above Eq. (C7), when neglecting magnon dispersion and using
guBB as magnon energy, V +(−)

mag (θ, α,�k) in Eq. (B11) will be
independent of θ and α and is rewritten as V +(−)

mag (�k). Hence,
the magnon scattering time τmag in Eq. (B9) is found to be

1

τmag(α,�k)
=

∫ 2π

0

dθ

τm
F

Vmag(θ + φ, α + φ,�k)

=
∫ 2π

0

dθ

τm
F

[
cos2 φ + α

2
sin2

(
φ + θ

2

)
V +

mag(�k)

+ sin2 φ + α

2
cos2

(
φ + θ

2

)
V −

mag(�k)

]

= 1

τ S
mag

+ 1

τA
mag

, (D1)

with

1

τ S
mag

= π

2τm
F

[(V +
mag(�k) + V −

mag(�k))

− (V +
mag(�k) − V −

mag(�k)) sin φ sin α],

1

τA
mag

= π

2τm
F

(V +
mag(�k) − V −

mag(�k)) cos φ cos α, (D2)

where the superscripts “A” (“S”) in τA
mag (τ S

mag) refer to an-
tisymmetry (symmetry), respectively. 1/τ S

mag(1/τA
mag) gives

the symmetry (antisymmetry) part of 1/τmag when reversing
kx, respectively, namely, 1/τ S

mag(kx, ky) = 1/τ S
mag(−kx, ky) and

1/τA
mag(kx, ky) = −1/τA

mag(−kx, ky). Exploiting the parity of
Table I, one can find that the term in brackets in Eq. (9) is an
odd function of kx(∝ cos φ). Therefore, only the antisymmet-
ric part of 1/τmag gives finite value to a(2)

xx,mag, namely, USE
induced by the asymmetry magnon scattering arising from
1/τA

mag.
The cos φ dependence of 1/τA

mag [Eq. (D2)] gives rise
to cosine dependence on magnetization angle, namely,
only the my(∝ cos φ) part of magnetization has a contribution
to the unidirectional Seebeck effect. The mx(∝ sin φ) part of
the magnetization induces the symmetric magnon scattering
[1/τ S

mag], which cannot lead to the antisymmetric contribu-
tion in the Seebeck effect when reversing the temperature
gradient.

Figure 4(a) shows the variation of 1/τmag with α for differ-
ent magnetization orientation (i.e., φ). One can identify that
1/τmag would be expressed as the function of (sin α, cos α)
[given in Eqs. (D1) and (D2)]. When increasing φ, the whole
curve will shift towards lower α. The parities of 1/τmag are
strongly influenced by the magnetization orientation. The
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absence of even properties in magnon relaxation time guar-
antees the existence of a unidirectional Seebeck effect. From
Fig. 4(a), one can observe that only when the magnetization
is aligned to the x direction [i.e., φ = π/2 or φ = 3π/2

(not shown) is 1/τmag symmetric with respect to the mirror
plane of ky − kz (α = 90◦, 180◦), namely, the presence of even
properties about kx. Thus, when magnetic field is not aligned
in the x direction, the proposed effect would be observed.
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