PHYSICAL REVIEW B 100, 195417 (2019)

Removing all periodic boundary conditions: Efficient nonequilibrium Green’s function calculations
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We describe a method and its implementation for calculating electronic structure and electron transport
without approximating the structure using periodic supercells. This effectively removes spurious periodic
images and interference effects. Our method is based on already established methods readily available in the
nonequilibrium Green’s function formalism and allows for nonequilibrium transport. We present examples of
a nitrogen defect in graphene, finite voltage bias transport in a point contact to graphene, and a graphene-
nanoribbon junction. This method is less costly, in terms of CPU hours, than the supercell approximation.
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I. INTRODUCTION

Widely used, efficient computational methods have been
developed for calculations of the electronic structure of sys-
tems presenting perfect periodic repetition of a unit cell along
one, two, or three dimensions surrounded by vacuum. These
are typically based on Kohn-Sham density functional theory
(DFT) [1,2]. The infinite system is replaced by a finite unit
cell with periodic boundary conditions (PBCs) using Bloch’s
theorem and a discrete sampling of Bloch phases or k points.
Due to the efficient implementations this method is also ap-
plied to systems which lack periodicity. For example, surfaces
are modeled by a slab, isolated defects are modeled by period-
ically repeated defects surrounded by “large” regions of bulk,
and isolated adsorbates on surfaces are modeled by a mix.
Such models results in compromises due to computational
feasibility with respect to slab size and interdefect distances,
which may lead to unwanted effects related to interferences or
standing-wave patterns not present in the ideal, large system.
Beyond-PBC methods have been around for a long time.
These include matching of the wave functions in different
regions, e.g., surface and bulk [3], and Green’s function or
embedding methods [4-9] have, e.g., been used to treat the
isolated defect or adsorbate on a surface or electronic transport
between two electrodes [10]. These methods are based on a
screening assumption in which the potential has converged to
its bulk value outside the computational “active” region.

In particular, for transport calculations the treatment of
systems as “open” with semi-infinite electrodes along the
transport directions is essential. A number of computational
implementations have been developed for more than a decade
for this problem based on the nonequilibrium Green’s function
(NEGF) method[11-16]. These typically represent electrodes
by a unit cell repeated as periodic layers along the semi-
infinite electrode or transport direction and use PBCs and
corresponding k points in the directions transverse to this. A
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self-energy is then used to treat the semi-infinite direction in a
numerically exact way based on a very efficient method [17]
which recursively removes the infinite number of degrees of
freedom in the semi-infinite direction. This approach may also
be used in the “single-electrode mode” treating the surface
of the semi-infinite bulk with a computational load compa-
rable to slab calculation of, e.g., chemical reactions at the
surface [14,18,19]. Indeed, this avoids the periodic images and
finite-size effects of the slabs in the surface-normal direction
but leaves the periodicity in the surface direction.

In this paper we present a simple, efficient, and precise
method based on Green’s function theory which can be used
for isolated defects as well as extended NEGF calculations
using multiple probes and electrodes. Our method solves this
problem by calculating the real-space self-energy, which can
be outlined as (details are explained in Sec. II)

SR =sRz—HR - [GR] ™. (1)
Equation (1) is computationally demanding since real-space
quantities require a dense integration grid in reciprocal space.
We emphasize that our method focuses on the efficient algo-
rithmic implementation which has prohibited the community
from extending its broader use. Second, our method allows
nonequilibrium calculations by the regular assumption of
“equilibrium” electrodes [11-16]. This paper is organized as
follows. First, we describe the theoretical and computational
details of our method. Then we show DFT + NEGF re-
sults using the real-space self-energies for three illustrative
cases: (i) the electronic structure of a nitrogen defect in a
large graphene lattice, (i) nonequilibrium transport in a gold
scanning tunneling microscope (STM) tip in contact with
a graphene flake, and (iii) a graphene/graphene nanoribbon
junction.

II. METHOD

We remark that Eq. (1) is a well-known equation in the
transport community and that our contribution here lies in the
implementation. In the following we will describe the method

©2019 American Physical Society
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FIG. 1. Defected structures using various PBC simulations;
neighboring images are shown with transparency. (a) shows a typical
DFT calculation with a single defect (marked region) and PBCs
in all directions. (b) Using the current state-of-the-art NEGF, one
can remove images in two directions, reducing the PBCs to one
direction. Finally, in (c) our method allows removing all PBCs using
an enclosing self-energy.

for a pristine bulk system which is the basis for defected
systems.

The starting point of the efficient real-space self-energy
method is any system with PBCs in two or three directions
where one wishes to replace a predefined direction with a
semi-infinite description [see Fig. 1(a)]. This may be effi-
ciently described using two semi-infinite directions and one
PBC direction [see Fig. 1(b)]; last, our presented method
replaces any number of PBCs and/or semi-infinite directions
with a single self-energy [see Fig. 1(c)].

The Hamiltonian of an infinitely large system may be
written in a block-tridiagonal “shell” fashion:

Hoo Hop 0
® Hy,, H;; Hjp
H =0 H; Hy, : @

Here index 0 in Hyy is referred to as the primary unit cell
with only nearest-neighbor couplings, Hy; is the coupling
between the primary unit cell and the first set of neighbor
cells (two dimensions: 8, three dimensions: 26), and H; ;4|
is the coupling between the ith and (i 4+ 1)th shells. We use
the superscript R to indicate the real-space representation of
matrices.

We want to calculate the Green’s function for the in-
finite matrix comprising the Hamiltonian H® in a sub-
space HZ)?__LO__J. = {Hyo, . . ., H;;} up to some shell size i. The
straightforward Dyson equation is sufficient for systems with
short screening lengths such as metals for which the conver-
gence requires only a few shells [20]. For weak screening the
increasing matrix sizes with i in the Dyson equation become
problematic, and one may replace the real-space iterations in
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FIG. 2. Green’s function matrix elements of the graphene tight-
binding model (t = —2.7eV) forz = (0.5 + i107*)eV (Gl:1 =1Iz—
Hy — Xf — =F) for transverse k points. Several § peaks are seen,
which makes an integral extremely difficult.

shells with an integral over k points to calculate the real-space
Green’s function (here shown for only the primary unit cell),

Gf() = /dk Gx(2) 3
= [$%z = H*]y)' = [Sooz — Hoo — 2(7)%]71, “4)

where Gy (z) is the Green’s function for a given k point, S*
is the overlap matrix, and the energy plus imaginary part is
z = E + in. We define the subspace of interest by 0, and the
coupling of this to the surrounding bulk system is described
by the real-space self-energy ):(7)%. We remark that Gf = G_g
using time-reversal symmetry. This converts the inversion of
infinite matrices in real space to a problem of inverting finite-
sized matrices by introducing a k integral employing Bloch’s
theorem. This method was employed in Ref. [9].

Two new problems arise. A sufficient accuracy in the
integral is difficult because the elements of the Green’s func-
tion have Lorentzian peaks and step functions (in k space)
for each eigenvalue (pole). In Fig. 2 we show the Green’s
function matrix elements (left: Diagonal, right: Off-diagonal)
for fixed z = (0.5 +i10~*) eV using the standard orthogonal
tight-binding model for graphene with hopping r = —2.7eV.
We employ the recursion along one direction in graphene to
obtain the Green’s function as a function of k for the direction
transverse to this. In effect, this means that we sample an
extremely dense k grid along one direction and a sparser k
grid transverse to it. We see that the matrix elements comprise
both step functions and convolutions of Lorentzian and step
functions. Such functions require dense integration grids to
resolve. Note that using Fourier transforms results in the same
deficiencies to resolve the peaks.

A second problem is the matrix dimensions of Gy. Our
interest is to calculate the real-space Green’s function in
some multiples of the primary unit cell such that the final
matrix has dimensions n[[n, with n being the number of
orbitals in the primary unit cell and n,, being the number of
repetitions along the ith lattice vector. For large n,, the matrix
dimensions rapidly increase, making a fine integral in Eq. (3)
unfeasible [21].

Our method solves this dimension problem by perform-
ing the costly inversions only on matrices of dimension n,
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regardless of all n,. This is achieved using three well-
established methods and performing them in the following
order: (i) a surface self-energy removes the k integral along
a single semi-infinite direction, (ii) a recursive Green’s func-
tion calculation [block-tridiagonal inversion (BTD)] expands
along the semi-infinite direction, and (iii) Bloch’s theorem
efficiently expands the Green’s function into the remaining
one or two dimensions. Note that the surface self-energy
calculation is a particular efficient solution of the BTD algo-
rithm for a bulk system. Hence, the difference between the
two methods is subtle, yet significant, in their application for
our method. The three steps above work for both surfaces
and bulk systems, with minor variations. Note that for three-
dimensional (3D) systems, leaving a k direction out of the
integral, Eq. (3), one finds the real-space Green’s function for
a cylinder with the directions normal to the cylinder surface
integrated out, retaining the k point along the cylinder. Such
a particular use case will not be covered in this study, but we
remark that our code allows such calculations, which may be
useful for, e.g., line defects in solids.

In the following all matrices not denoted by R are implic-
itly k dependent.

A. Surface self-energies

The recursive surface self-energy method calculates the left
and right self-energies for a given transverse k point [22].
This procedure presents a 2! convergence series such that
for iteration i one has effectively decimated 2’ layers. The
algorithm is given here for the sake of completeness:

TE=38=0, (5a)
Lo = Hjo — Sioz, (5b)
Ro = Hp; — So1z; (5¢)

then perform the following iterative scheme until Z[Lf If ~

ZI;/R.

1

1

= [Sooz —Hy — X, — 25_1]7 L, (5d)
* =[Sz —Hp — -, =8 ] 'Rit, (o)
=3+ L% (56)
R=3F 4R, 7 (52)
L, =L, 7, (5h)
R, = R~ (51)

The surface self-energy removes the k integral along the
semi-infinite direction and immediately reduces the integral
in Eq. (3) by one dimension.

B. Block-tridiagonal inversion

This method may be generalized to calculate the layer off
diagonals for the inverse of matrices when they can be written
in block form, Eq. (2) [14]. The pristine bulk system may
be written in the following BTD form along the semi-infinite

direction:
Hyp Ho 0
H=|Ho Ho Hoy ) (6)
0 H ] 0 )

Calculating the Green’s function for an arbitrary number of
blocks along the semi-infinite direction follows,

Y =[Sz — Hoo — T117'Soiz — Hot),  (7a)
X = [Sooz — Hoo — ZX]7'(S10z — Hyp),  (7b)
G, = [So0z — Hoo — ZF — EF7 (70)
Gon = —XGp1n, m > n, (7d)
G, = —?Gm+1n, m < n. (7e)

A key point is that the real-space Green’s function for a
bulk system is a Toeplitz matrix, e.g., G, = G,y for m —
n =m' — n'. Consequently, for a bulk system of M blocks one
can calculate the full Green’s function matrix by calculating
only G,y and Gy, for all n (omitting Gy since it equals
Goo). Thus, only 2M — 2 matrix multiplications are required
in order to calculate the full Green’s function once Gy, X,
and Y are obtained. We note that if the system is not bulk
(e.g., surfaces), this algorithm only needs to be replaced by
the full BTD algorithm [14], which is still much faster than
full matrix inversion algorithms.

C. Bloch’s theorem

We want to obtain the self-energy for the pristine system
consisting of a unit cell repeated N times in the transverse di-
rection, large enough to include the defect [see Fig. 1(c)]. Due
to the screening approximation we assume that the potential
is unperturbed at the boundary and outside this cell, and thus,
the self-energy can be calculated from the pristine periodic
system. To this end we can apply Bloch’s theorem and express
the N times bigger system transverse to the semi-infinite
direction via the primary matrix for a given k. In our case
we are interested in the Green’s function for a given k. The
equations for expanding the Green’s function (or any Bloch
matrix) along a single direction for a given K (defined in the
large N system) is

1 co o lI=NK
Nl ki ce PN
Gy = ¥ , ® Gy,
— o
ij= £t | @M=Dk 1

®)

Here G}(j is the primary cell Green’s function matrix at the
primitive cell k£ point k; which is to be unfolded into the
matrix GY, and ® is the tensor product. The above equation
is expressed in terms of expansion along only one direction;
however, it is easily generalized for more than one direction.
The above three steps conclude the calculation of the real-
space Green’s function for arbitrarily large pristine, periodic
systems, N x M. In short the algorithm is as follows: The
self-energies remove the integral along one k direction, the
BTD algorithm expands the Green’s function to arbitrary
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Bulk + defect

FIG. 3. The left system is completely bulk and coupled to an
internal, also bulk, region (hatched) via V. The right system is
a single defect highlighted in color coupled to an infinite bulk
region via the same V. Calculation of the real-space self-energy in
the colored region can be performed by calculating the real-space
Green’s function in the left bulk system, inverting, and subtracting
the real-space matrices H and S to retrieve the self-energy describing
the external bulk part. The resulting £* may be used in any defected
system as long as V and the potential in the surrounding region is not
changed.

length M along the semi-infinite direction employing just
matrix multiplications, and finally, Bloch’s theorem expands
the Green’s function to an arbitrary width (and also depth for
three dimensions) V.

D. Self-energy

While the real-space Green’s function calculates spectral
quantities in a pristine system, it is rarely competitive with
regular diagonalization methods in the 00 subspace and using
Bloch’s theorem. Our key mission in calculating the real-
space Green’s function is that it holds the real-space self-
energy X%, which in turn allows truly single defects (bulk)
and contacts (transport) using the Green’s function formal-
ism [12,14].

In Fig. 3 a schematic calculation shows how the real-space
Green’s function may be used to calculate the real-space self-
energy in a region predefined by M and N multiples of the
00 region as specified in Secs. II B and II C (hatched region).
The real-space self-energy may be conveniently written in two
ways:

i = Voo RG*Vr o0, ©
R =S”z—H* - [G}] ", (10)

where G®/% is the real-space Green’s function for the entire
bulk system, excluding the inner region 00. From Eq. (9) it
is clear that £ is nonzero only on sites that connect it to the
outside through V 9. Equation (10) shows how it is obtained
using the real-space Green’s function.

III. RESULTS

In the following we show results on spectral and transport
properties of truly single defects and junctions using the
real-space self-energy. Our self-consistent DFT 4 NEGF is
implemented in SIESTA, TRANSIESTA, and TBTRANS [14,23],
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FIG. 4. Projected DOS on a single carbon atom in the pristine
graphene lattice. Three methods are compared (see the inset geom-
etry), with the atom highlighted: SIESTA projected density of states
(PDOS), two-terminal (bottom/top) TRANSIESTA, and, finally, >R,
All methods yield exactly the same DOS.

while the algorithms described in Sec. II are implemented in
SISL [24].

Three systems will be shown using graphene as the real-
space electrode. The different systems highlight three par-
ticular cases where the real-space self-energy is applicable.
We omit the use case of cylindrical self-energies since its
use is limited to 3D bulk systems with periodicity along one
direction (line defect). The atomic structure of the systems is
shown as insets with colored atoms indicating the support of
the real-space self-energy and electrode (in blue) and other
electrodes (in red). A last set of atoms is highlighted (in light
green) which is used as the projection region for local density
of states (DOS) analysis.

All calculations are performed using a mesh cutoff of
300 eV, a single-¢ polarized basis set, the Perdew-Burke-
Ernzerhof generalized gradient approximation exchange cor-
relation [25], and otherwise default parameters. Although
localized basis orbitals calculations for graphene using simple
basis sizes (double-¢ polarized) miss the lowest unoccupied
states [26], we do not add basis orbitals to describe these.
Thus, our presented analysis is limited to energies below the
missing unoccupied bands (E' — ftgraphene < 3.35€V).

A. Validation: Graphene

To ensure a functioning method we have constructed a
pristine graphene calculation (inset of Fig. 4) and calculated
the projected DOS on a single carbon atom (marked). The
SIESTA method calculates the DOS on a 31 x 51 Monkhorst-
Pack grid [27] (with energy broadening o+/2 = 0.1¢V), and
both the Green’s function methods are based on 300 k points
and an imaginary part of = 0.1 meV.

The three different methods all yield the same projected
DOS, and there is a negligible difference between the meth-
ods. Any small difference from the diagonalization method vs
the Green’s function methods lies in the insufficient k-point
sampling and the large smearing value. The two Green’s
function methods are almost numerically the same since the
system is bulk and no mixing of k points takes place.
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FIG. 5. Projected DOS on a single nitrogen defect in the
graphene lattice. Three methods are compared (see inset geometry),
with the nitrogen atom highlighted: SIESTA PDOS, two-terminal
(bottom and top) TRANSIESTA, and, finally, £®. The unoccupied
states have very different characters in the three cases.

B. Nitrogen defect

Single nitrogen defects in graphene intrinsically have a
substantial interaction range, and thus, calculating defect
properties at the DFT level proves difficult [28]. In this exam-
ple we use the real-space self-energy and compare with tra-
ditional two-dimensional (2D) periodic and one-dimensional
periodic calculations. In all three examples we use the same
unit cell consisting of a square graphene lattice cell repli-
cated 8 x 9 times, totaling 288 atoms. In Fig. 5 we show
the projected DOS on the nitrogen atom for the three cases:
(i) A SIESTA calculation using a 31 x 51 Monkhorst-Pack
grid in agreement with other work [29], (ii) a two-terminal
TRANSIESTA with 300 transverse k points, and (iii) finally,
the real-space self-energy calculated from 300 k points. We
remark that 300 k points correspond to 2400 k in the minimal
square graphene unit cell [see, e.g., Fig. 2].

The DOS shows distinct differences, particularly for en-
ergies above the graphene Fermi level. The SIESTA and two-
probe calculations reveal a fine structure with multiple peaks
dispersed over ~1 eV. A large smearing parameter (o+/2 =
0.1eV) for the SIESTA calculation was required due to the
relatively crude Monkhorst-Pack grid, which still took more
than 5 h on 20 cores. The two-probe calculation shows some
even more localized features which could be the same as
those in the SIESTA calculation. Both look similar to prior
calculations [29] where the projected DOS on the p, of the
nitrogen defect in a similar periodic simulation was dispersed
across two bands with a dispersion ~0.5 eV. We find the real-
space method broadens the peaks to a single peak, just above
the chemical potential. This result is in perfect agreement
with results from a tight-binding description of the isolated
nitrogen fitted to DFT [28]. Although not shown, the same
localized features found for the nitrogen atom are seen for
the three neighboring carbon atoms. These carbon atoms are
particularly important for STM images [30].

C. STM tip on graphene

STM [31] is a key experimental technique for analyzing the
local electronic structure of surfaces and defects or adsorbates
on surfaces. The STM technique is a single tip junction

—3p +%R
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FIG. 6. Nonequilibrium transport calculation of tip-graphene
contact (tip at +0.5 V). Top: Spectral DOS from the tip on the first
carbon atom in the graphene layer. Bottom: Transmission from the
tip into graphene comparing three-terminal (left and right graphene
and tip) and two-terminal (graphene and tip) setups. A large differ-
ence in the unoccupied energy range is seen both in the spectral DOS
and in the transmission.

probing the spatial local DOS and yields considerable insight
into surface electronic topographies. However, DFT-NEGF
calculations of STM on almost isolated defects are problem-
atic due to periodic repetition of the surface unit cell, includ-
ing the repetition of the STM probe tips. Here a calculation of
the transmission from an “STM”-like tip to graphene [32-36]
is calculated via two methods, namely, a three-terminal (left
and right graphene and tip) invoking transverse periodicity
and a two-terminal (graphene and tip) calculation, both at an
applied bias of [tgraphene — Mip = —0.5€eV.

Figure 6 (top panel) shows the spectral DOS of scattering
states originating from the tip electrode projected on the
carbon atom in contact with tip. In the bottom panel we show
the transmission from the tip into graphene.

For the occupied states there is little to no difference,
while we find a large difference for the unoccupied states.
The spectral DOS decreases on the contact atom while the
transmission increases. In both graphs we find a discontinuity
at 0.45eV for the three-electrode simulation (nonexistent in
the real-space method) which we attribute to periodic image
interaction. This fact is supported by other work [37], and it
matches the bias on the tip.

Such STM calculations may be very influential when
calculating inelastic contributions [38,39] since they use the
energies in the unoccupied range [40].

D. Graphene contacted to a zigzag graphene nanoribbon

A typical experiment comprises large electrodes contacted
through a single junction, and rarely, arrays of contacts
present with few exceptions, such as self-assembled mono-
layers [41,42]. A key issue in DFT + NEGF simulations of
such devices is that, until now, the simulation had a periodic
array of junctions. Such an array of junctions will have
interference effects and requires extra care in convergence of
the width [13] and k points. Using the real-space self-energy,
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FIG. 7. Nonequilibrium transport calculation of the graphene-
ribbon junction (ribbon at +0.5V). Top: Spectral DOS from
graphene for the four atoms starting in the ZGNR ribbon. Bottom:
Transmission between graphene and ZGNR. A noticeable shift ap-
pears in the localized peaks above the graphene chemical potential,
and there are some differences in the transmissions. The small
differences between the real-space method and the standard way
are because the system is already relatively wide and thus the
interference effects are already minor.

we eliminate the periodic junctions and effectively retain a
single junction where interference is removed.

The example shown here is a graphene flake contacted
to a zigzag graphene nanoribbon (ZGNR) [43]. Our cal-
culations are performed using [tgraphene — HzGNR = —0.5€V.
We remark that any molecular junction (for instance, Au-
benzenedithiol-Au [44,45]) could be replaced in this example
since the electrodes are handled as “surfaces.” In Fig. 7 we
plot the projected DOS on the first four atoms in the ZGNR
(top) and the transmission (bottom). In this example there
are relatively few differences since the unit cell is already
relatively wide and thus the interference is limited. There are,
however, differences such as a larger spread on the localized
states just above the graphene chemical potential. These cor-
respond to states in the ZGNR which depend on the electrode
coupling and thus are sensitive to periodicities [46,47].

E. Electrostatics

For all results shown, the electrostatics have been solved
using the Fourier transform. Such a method forces the Pois-
son solution to be periodic. This is in contrast to our real-
space Green’s function method which inherently has open
boundaries. TRANSIESTA allows an external input to ensure
the correct boundary conditions for the electrodes. We have
ensured that adding such boundary conditions does not change
the results noticeably; for further information see Sec. 3.5
of [14].

F. Disk space

Currently, our method relies on storing the self-energies
on disk since the algorithm still needs to be implemented
in TRANSIESTA. Each surface self-energy file has a mem-
ory footprint which can be summarized by three integers, n

TABLE I. Maximum disk space requirements for the three test
examples. TS: TRANSIESTA; TBT: TBTRANS. For k-resolved TBT
self-energy calculations one need not store the self-energies since
they can be calculated when needed. For 300 k points they would
use ~500 GB.

Graphene-nitrogen TS TBT

n, ng ng =51 ng = 600
648, 6 1.99GB

27: 2052, 1 3.33GB 37.8GB

Graphene-STM TS TBT

n, ng ng = 178 ng = 600
720, 6 8.34GB

»®: 2160, 1 12.5GB 41.9GB

Graphene-ZGNR TS TBT

n, ng ng = 178 ng = 600
648, 6 6.76 GB

»®: 1060, 1 3.01GB 10.1GB

(matrix dimension), nx (number of k points), and ng (number
of energy points):

Mg (n, ng, ng) = 16mn*(2 + ng)/1024°,  (11)

where 2 + ng stems from the Hamiltonian and overlap per k
and the self-energies are per E. In Table I the dimensions and
maximum disk usage are shown for the largest bias used.

We find a required disk space of ~50 GB, which is
large but in no way limits its application on common
high-performance computing systems. One generally requires
many more energy points in the TBTRANS calculation; how-
ever, since one can define the chemical potential for the real-
space electrode as constant for all applied bias uf =0 and
the other electrode(s) as being at i, = V, one can reuse the
file for all applied bias at a much reduced computational cost
and with a single file.

G. Performance

We have now shown that using the real-space self-energy,
one can avoid using the supercell approximation for nonpe-
riodic structures such as isolated defects and single-junction
conductors. In order for our method to be competitive with
standard methods, it also needs to be competitive in terms of
performance and throughput. We will here show that it is, in
fact, less demanding to do a real-space self-energy calculation
when taking into account the full sequence of calculations.

An important factor in using our method is the real-space
self-energy calculation. The X* method is slower compared
to X /Xr given that the self-energy is costlier to calculate
because of larger k-point sampling and a more complex
algorithm. On the other hand, the self-consistent-field cycles
and transport and DOS calculations are much faster since no
k-point sampling is required. In Table II we show the timings
of the presented calculations divided into three segments;
(i) TRANSIESTA, (ii) TBTRANS, and (iii) T®. All timings are
based on the same 20-core machine.

As can be seen, the timings for TRANSIESTA are more
or less constant, while the TBTRANS calculations are much
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TABLE II. Timings of the various steps in the presented calcu-
lations; the timings are seconds per core in a 20-core setup. TS:
TRANSIESTA; TBT: TBTRANS; X®: Calculating the real-space self-
energies for both TS and TBT. All calculations are done on the same
machine.

Graphene-nitrogen Timing (s) Total (s)
SIESTA + PDOS 19187 19187
TS + TBT 1885 4 5484 7369
TS + TBT + X% 1364 + 324 + 1410 3099
Graphene-STM Timing (s) Total (s)
TS + TBT 5372 + 31043 36415
TS + TBT + % 5465 + 248 + 3608 9322
Graphene-ZGNR Timing (s) Total (s)
TS + TBT 10180 + 8206 18386
TS + TBT + X% 2836 + 157 + 7409 10401

faster. Note, however, that for the graphene-ZGNR system
the convergence for the real-space method is faster, leading
to decreased timings in TRANSIESTA. Otherwise, the clear
bottleneck is the X calculation, which can easily be em-
barrassingly parallelized. We remark that, as noted in Fig. 3,
the self-energy is generic for any defect that does not alter
the coupling out to the infinite exterior. This means that a
single calculation of the self-energy allows using it for more
than one system. Since these are one-shot calculations, there
is no reason not to do an extremely fine k integration when
sampling the real-space self-energy. For the systems shown
here it takes less than 100 s per energy point for 300 k points.
It should be stressed that the current implementation is done
in PYTHON/CYTHON, and thus, additional performance gains
would be to port it to FORTRAN/C code.

All in all, we find that the proposed method is comparable
to, or faster than, the existing method for equivalent k-point
sampling.

IV. CONCLUSION

We have presented a simple, effective, and fast algorithm
for constructing real-space self-energies generalized for sur-
faces and full 2D and 3D bulk systems. The algorithm relies
on already well established methods used in the community
and can thus be directly integrated into existing codes without
problems. The current algorithms are implemented in the
TRANSIESTA, TBTRANS, and SISL toolboxes which are all open
source under GPL variant licenses.

We have applied the method in three graphene cases
which are readily found in current experimental litera-
ture [30,32,38,44,45]. A recurring difference between the
analyzed DOS and transmission profiles is that the occupied
energy range is largely comparable to standard DFT + NEGF
methods, while the unoccupied energy range shows substan-
tial deviations. Such differences are attributed to removed
interference effects.

We have shown how the use of real-space self-energies will
remove the periodic images of defects in DFT calculations.
The results shown provide insights into the far-field accuracy
of DFT 4 NEGF calculations for single defects which has
been missing in the electronic structure community.
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