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ZrSiS, an intriguing candidate of topological nodal line semimetals, was discovered to have exotic surface
floating two-dimensional (2D) electrons [Phys. Rev. X 7, 041073 (2017)], which are likely to interact with
surface phonons. Here, we reveal a prominent Kohn anomaly in a surface phonon branch by mapping out
the surface phonon dispersions of ZrSiS using high-resolution electron energy loss spectroscopy. Theoretical
analysis via an electron-phonon coupling (EPC) model attributes the strong renormalization of the surface
phonon branch to the interactions with the surface floating 2D electrons. With the random phase approximation,
we calculate the phonon self-energy and evaluate the mode-specific EPC constant by fitting the experimental
data. The EPC picture provided here may be important for potential applications of topological nodal line
semimetals.
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I. INTRODUCTION

Lattice and charge are definitely the two most essential
degrees of freedom in condensed matter. The interplay be-
tween them, i.e., the electron-phonon coupling (EPC), as
a prototypical many-body problem, has received intensive
theoretical and experimental investigations [1–4]. EPC is ex-
ceptionally important not only because it is closely bound up
with macroscopic physical properties such as charge carrier
dynamics, thermal conductivity, heat capacity, and so on, but
also due to its crucial roles in the microscopic mechanisms of
many notable phenomena such as polarons, superconductivity,
charge density waves, etc.

EPC changes the dispersion and lifetime of both the in-
volving electrons and phonons. The effect of the EPC on
the dispersion and lifetime of an electronic or phonon state
is determined by the complex electron’s or phonon’s self-
energy, respectively. The real part of the self-energy renor-
malizes the dispersion, while the imaginary part accounts
for the finite lifetime arising from the interactions. One can
analyze the renormalized dispersion of an electronic band,
and then extract the electron’s self-energy and evaluate the
lifetime of relevant electrons [5,6], to determine the possible
EPC. Strong EPC generally leads to kinks or quasiparticle
peaks in the electronic band near the Fermi energy (EF ), as
reported by previous angular-resolved photoemission spec-
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troscopy (ARPES) surveys [7–12]. Yet, the impacts on elec-
tronic properties from EPC usually average the contributions
from all involving phonon modes. Consequently, it is rather
indirect to assess the contribution from an individual phonon
mode from the electron’s perspective only.

EPC also manifests itself from the perspective of phonons,
through linewidth broadening [13,14], or the dispersion
anomaly which is usually identified as the so-called Kohn
anomaly. A Kohn anomaly is a drastic energy softening of
a specific phonon branch when its momentum is located at
2kF (kF the Fermi wave number), resulting from the coupling
of the specific phonon mode with electrons near the Fermi
surface [15,16]. So Kohn anomaly can vail the quantification
of EPC for an individual phonon mode. Kohn anomalies have
been observed from phonon dispersion measurements in lots
of materials, such as the typical one-dimensional systems with
Peierls transitions [17–20], two-dimensional (2D) systems
with strong EPC [21–23], and three-dimensional (3D) bulk
systems [24–27].

Similar to the 2D case, the EPC on surfaces, often viewed
as quasi-2D, can lead to surface phonon anomalies. For exam-
ple, the kinks in the phonon dispersions on the (111) surfaces
of noble metals [28–32], are believed to arise from the cou-
pling of surface electronic states to the ion displacement. And
the sharp surface phonon anomalies in the hydrogen saturated
(110) surfaces of molybdenum and tungsten [33–37] have
the origin due to the interactions with the surface electronic
states from the chemical bonding [38]. More intriguingly,
strong Kohn anomalies due to the interactions between surface
phonons and the topologically protected surface electrons (or
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Dirac fermions) have recently been observed in topological
insulators [39–41] and topological crystalline insulators [42].
In brief, Kohn anomalies should widely exist on a specific sur-
face phonon branch, as long as there exist surface electronic
states regardless of their origination.

Recently, a new kind of surface states due to the reduction
of bulk nonsymmorphic symmetry was discovered in ZrSiS
[43], which is a candidate of topological nodal line semimetal
featured by its nontrivial bulk bands [44–49]. ZrSiS is con-
sidered to be one of the most promising topological materials
with potential applications in electronics and spintronics, due
to its very large energy range of linear band dispersion [44],
extremely large nonsaturating magnetoresistance, and high
mobility of charge carriers [46,50–54]. However, despite the
topological nature in its bulk band, it turns out the surface
states of ZrSiS are not derived from the bulk topology. Instead,
they are highly 2D, floating on top of the bulk, merely due to a
reduced symmetry at the surface [43]. Consequently, it is natu-
ral to expect the unique surface states would also interact with
phonons and show anomalies in surface phonon dispersions.
The coupling between the surface floating 2D electrons and
phonons, which could be signified in low dimensional devices,
is of exceptional importance for any potential applications, but
remains elusive.

Here, employing the technique of high-resolution elec-
tron energy loss spectroscopy (HREELS), we systematically
mapped out the surface phonon dispersions of ZrSiS. The
results reveal a prominent signature of the surface EPC, mani-
festing as a strong Kohn anomaly of an optical surface phonon
branch with a V-shaped minimum at approximately 2kF .
Theoretical analysis attributes this strong renormalization of
the surface phonon to the interactions with the surface floating
2D electrons of ZrSiS. Then an average branch-specific EPC
constant of 0.15 is obtained from the fitting to the experimen-
tal dispersion data.

II. METHOD

The ZrSiS crystals investigated were grown from the chem-
ical vapor transport method with iodine as the agent. High-
purity elemental zirconium (99.99%), silicon (99.999%), and
sulfur (99.99%) were first mixed together and sintered at
1000 ◦C for 5 days to attain polycrystalline powders. Then the
polycrystalline powders and iodine were sealed in silica tubes
under vacuum in a mass ratio of 1 : 0.07. The silica tubes
were put in a gradient tube furnace with the source powders
at 1050 ◦C and the cold end at around 950 ◦C for 7 days, to
acquire rectangular planelike ZrSiS crystals at the cold end.

Single crystalline ZrSiS was cleaved in situ in ultrahigh
vacuum (better than 5 × 10−10 Torr) with the surface quality
and the crystallographic orientation examined by low energy
electron diffraction (LEED). The HREELS measurements
were performed in a state-of-the-art spectrometer with the
capability of 2D energy-momentum mapping [55]. Due to
the special design of our facility, it is able to obtain a
phonon spectrum for a certain direction through the Brillouin
zone (BZ) in a single measurement without rotating sample,
monochromator, or analyzer. All the measurements were done
using an incident electron beam with energy of 110 eV and
incident angle of 60◦ unless otherwise specified. The energy

and momentum resolutions were �E ∼ 3 meV and �k ∼
0.01 Å

−1
in this study. The low temperature was reached by

continuous liquid helium flow through the manipulator and
measured by a silicon diode on the stage behind the sample.

First-principle lattice dynamical calculations were per-
formed to obtain the phonon band structures and the cor-
responding surface local density of states (LDOS). Here,
force constants were calculated by a (3 × 3 × 3) supercell
using Vienna ab initio simulation package (VASP) [56], based
on density functional perturbation theory (DFPT) [57]. The
generalized gradient approximation (GGA) of Perdew-Burke-
Ernzerhof (PBE) [58,59] type was used for the exchange-
correlation functions. A plane wave cutoff energy of 420 eV
with a (6 × 6 × 3) Monkhorst-Pack k mesh was employed
for the integrations over the BZ. The phonon spectrum was
obtained by an open-source package [60], and the LDOS
on the (001) surface was calculated by surface Green’s
function [61].

III. RESULTS AND DISCUSSIONS

A. Experimental results

ZrSiS has a tetragonal structure with space group P4/nmm
(No. 129) and point group D4h [62,63], formed by stack of
S − Zr − Si − Zr − S quintuple layers, with lattice constants
a = b = 3.546(2) Å and c = 8.055(4) Å [64]. Two adjacent
Zr − S layers, with each S atom surrounded by four nearest
Zr atoms, are sandwiched by two Si layers extending in the ab
plane, as shown in Fig. 1(a). Two kinds of nonsymmorphic
symmetry can be recognized: A glide mirror in the plane
formed by the square nets of the Si atoms and two screw
axes C2x(C2y) along the a(b) directions in the Si layer. The
nonsymmorphic symmetry with glide mirror is crucial for the
formation of the robust Dirac cone below EF [47], as well
as the surface floating 2D bands [43]. The weak bonding
energy between the two adjacent Zr − S layers [65] allows
easy cleavage along the ab planes to obtain the (001) surface.
The breaking of the translational symmetry after cleavage
reduces the space group into P4mm, corresponding to a four-
fold rotational symmetry along the c axis. The bulk Brillouin
zone (BZ) is reduced to a square surface Brillouin zone
(SBZ), as shown in Fig. 1(b). Figures 1(c) and 1(d) show
the optical image and the LEED pattern of a freshly cleaved
(001) surface, respectively. Most of the cleaved samples show
bright sharp spots with dark background in the LEED patterns,
indicating high-quality surfaces obtained for the HREELS
measurements. All the LEED patterns show (1 × 1) square
lattices with no signal of surface reconstructions. In Fig. 1(e),
the calculated Fermi surface on the SBZ illustrates the surface
floating 2D bands. Such surface states show as ellipses around
X̄ at the Fermi energy and shrink nearly linearly to a vertex
at around 350 meV below the Fermi level [43,45,48], as
demonstrated in Fig. 1(f). So we approximate the surface
floating 2D states as conelike band with linear dispersions.

The Fermi wave numbers of such cones are ka ≈ 0.15 Å
−1

along the major axis, and kb ≈ 0.11 Å
−1

along the minor axis,
of the ellipses.

Figures 2(a) and 2(b) show the energy and momentum
mappings of the surface phonons for ZrSiS obtained from
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FIG. 1. Sample characteristic and the surface floating 2D states.
(a) Crystal structure of ZrSiS. (b) Illustration of the bulk BZ and the
SBZ. (c) The optical image of a sheeny surface of cleaved ZrSiS
crystal pasted on a Mo sample holder. (d) Room temperature LEED
pattern of a freshly cleaved (001) surface with an incident electron
energy of 120 eV. The white triangle shows the least irreducible SBZ.
(e) The Fermi surfaces from the surface electronic band calculations.
The light blue lines are the projection from the bulk bands, while
the dark blue ellipses denote the surface floating 2D states. (f) The
conelike surface floating 2D band around X̄ point. The orange arch is
the elliptical Fermi surface with major axis 2ka and minor axis 2kb.

the HREELS measurement at room temperature (RT) along
�̄X̄ and �̄M̄, respectively. At least three phonon branches can
be discerned in the energy range of 0–45 meV. The accurate
energy and linewidth information of the phonon modes can be
obtained by extracting energy distributed curves (EDCs) from

the mapping. For example, two EDCs at q = 0.1 Å
−1

and q =
0.3 Å

−1
along �̄X̄ [red dashed lines in Fig. 2(a)] are demon-

strated in Figs. 2(c) and 2(d), respectively. After subtracting
the background from elastic scattering, the phonon modes can
be distinguished by fitting the energy loss peaks with Gaussian

functions. At q = 0.3 Å
−1

, one acoustic phonon (AP) mode
and three optical phonon (OP) modes are clearly discerned.

At q = 0.1 Å
−1

, only the OP modes are clear, since the AP
mode is so close to the elastic peak that its intensity is merged
in the strong elastic scattering background.

FIG. 2. HREELS measurement results. (a), (b) 2D momentum-
energy mappings at RT along �̄X̄ and �̄M̄, respectively. The negative
energy range corresponds to anti-Stokes peaks (phonon annihila-
tion), while the positive range corresponds to Stokes peaks (phonon
creation). The white dashed lines denote the SBZ boundaries. The
brightness, representing the signal intensity, is plotted in logarith-
mical scale. (c), (d) Energy distributed curves along the red dash

lines at q = 0.3 Å
−1

and q = 0.1 Å
−1

in (a), respectively. The
orange background is the elastic peak. Phonon peaks are fitted by
Gaussian functions and labeled by AP (acoustic phonon) or OP
(optical phonon) according to their dispersions.

B. Reveal of the Kohn anomaly

To analyze the measured phonon dispersions of ZrSiS in
detail, we carried out first-principle bulk and surface lat-
tice dynamical calculations. Figure 3(a) shows the calculated
bulk phonon dispersions. The green dots superimposed on
the energy axis denote the locations of the Raman active
modes [64,66], indicating good agreement with our calcu-
lations. Figure 3(b) shows the dynamical calculation results
with the phonon local density of states (LDOS) projected
onto the (001) surface using the method of surface Green’s
function. The surface phonon modes contribute the highest
LDOS manifest as sharp red lines, superimposed on the bulk-
projected yellow bands. An elaborate comparison between the
calculated and the measured surface phonon dispersions can
be carried out by extracting the surface phonon modes from
Fig. 3(b) and superimposing them on the second differential
images of our experimental spectra. The results are demon-
strated in Figs. 3(c) and 3(d) with experimental data collected
at RT and 35 K, respectively. Although the overall intensity
at low temperature is weaker than that at RT, the measured
phonon dispersions do not show significant temperature de-
pendence within the energy resolution, implying the phonon-
phonon interactions are negligible. Due to the restriction of
selection rules [67,68], not all the calculated phonon branches
can be measured by HREELS. For those branches that are
measured, most of them fit well with the calculations.

The most noticeable feature from the comparison is the
optical mode encircled by the white rectangle (OP1 mode) in
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FIG. 3. Calculated and experimental phonon dispersions. (a) Calculated bulk phonon dispersions along high symmetry directions of the
bulk BZ. The green dots correspond to the Raman-active modes [64,66]. (b) Calculated LDOS for phonons of the (001) surface along X̄ −
�̄ − M̄ − X̄ , with the intensity plotted in logarithmical scale. The yellow shades are the projection of bulk phonon dispersions onto the surface
and red sharp lines represent surface phonons with the LDOS larger than 2.5. The dash-dot lines denote the Rayleigh modes splitting from the
bulk acoustic branch. (c) The second derivative image along M̄ − �̄ − X̄ of the SBZ at RT obtained from the 2D HREELS mapping shown in
Fig. 2. The superimposed red lines are the calculated surface phonon dispersions extracted from (b). The white dashed block designates the
zone where the anomalous phonon softening occurs. The experimentally observed OP1 mode is compared with the theoretical α mode (white
line). (d) The same comparison as (c) with the experimental data obtained at 35 K.

Figs. 3(c) and 3(d), which is dramatically discrepant from the
calculated surface modes. This peculiar mode OP1 sets out
from 25 meV at �̄ point and softens sharply to near 16 meV

at q ≈ 0.3 Å
−1

along �̄X̄ , while at q ≈ 0.25 Å
−1

along �̄M̄.
Then it inclines with increasing q afterward. Although there
are several calculated surface modes intersecting with the
softened mode OP1 within the white rectangle, most of them
are ruled out by the HREELS selection rules [67,68]. Only
the calculated optical surface mode labeled α in Fig. 3(c),
coinciding with OP1 in energy at �̄ point, is allowed to be
detected by the selection rules. Thus the observed OP1 mode
is designated to the α mode but with energy softened with
increasing q. At low temperature, the softening of this mode
remains to the same extent despite the overall decreased in-
tensity of the entire spectrum. This indicates that the softening
originates from EPC rather than phonon-phonon interactions
since the latter should be strongly temperature dependent.

C. Electron-phonon coupling model

Similar softening of surface optical phonon modes, in-
terpreted as strong Kohn anomalies, have been observed in

quite a few topological materials [39–42]. Such strong Kohn
anomalies descend from an abrupt change in the electron
screening of atomic vibrations induced by surface electrons,
indicating strong surface electron-phonon interactions. For
ZrSiS, the surface floating 2D bands around X̄ [Fig. 1(e)] are
the only surface electronic states [43–48]. Here, we set up a
model in which the surface optical phonon interacts with the
conelike surface floating 2D electrons, to explain the observed
Kohn anomaly and describe the detailed EPC picture.

The impact of EPC on phonons can be taken into account
using the Dyson equation that describes the relation between
perturbed and bare phonons,

Ds(q, iωn) = D(0)
s (q, iωn)

1 − D(0)
s (q, iωn)�(q, ωn)

. (1)

Here, D(0)
s (q, iωn) and Ds(q, iωn) are the bare phonon

and perturbed phonon Matsubara Green functions, respec-
tively, and ωn is the Matsubara frequency for phonons. Under
random phase approximation (RPA) the phonon self-energy
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FIG. 4. Illustrations of the electron-phonon scattering process.
(a) The allowed (�, Q) space for phonons defined by the constraint
conditions (Cst. 1), (Cst. 2), and (Cst. 3). Regions (3), (2), and (1)
correspond to (b), (c), and (d), respectively. Panels (b), (c), and (d):
Schematic drawings of the initial and final Fermi ellipses before and
after interacting with phonons in three cases of different momentum
and energy transfer. The light blue zones denote the allowed area
of initial states for electron-phonon interactions, while the dark blue
zones are the banned area. The royal blue hyperbolas are the lines
that satisfy the conservation of energy.

�(q, ωn) can be substituted by

�(q, ωn) = |gq,s|2 P (q, iωn)

ε(q, iωn)
, (2)

where |gq,s| is the electron-phonon interaction matrix,
P (q, iωn) is the electron polarization function, and
ε(q, iωn) = 1 − vc(q)P (q, iωn) is the RPA dielectric
function. For surface electrons, vc(q) is chosen to be
the 2D Fourier transformation of the Coulomb potential,
vc(q) = 2πe2

κ|q| . The electron polarization function can be
calculated from the bare electron Matsubara function
G (0)(k, ikn) by

P (q, ωn) = 1

A
2

β

∑
k

∑
ikn

G (0)(k, ikn)G (0)(k + q, ikn + iωn),

(3)
which describes an electron of momentum k and energy kn

scattered to a state of momentum k + q and energy kn + ωn

by a phonon of wave vector q and energy ωn.
The following analysis focuses on the phonon dispersion

along �̄X̄ , which involves two orthogonal axes of the Fermi
ellipse at two inequivalent X̄ [Fig. 1(e)]. Taking phonons with
wave vectors along the major axis of the Fermi ellipse, for
example, due to the constraints of energy and momentum
conservation, there are three cases of the electron-phonon
scattering processes with different energy and momentum
ranges [Figs. 4(b), 4(c), and 4(d)]. The allowed initial states
of electrons reside on the royal blue hyperbola within the light
blue area. Careful analysis with details for these cases can be
found in the Appendix. This analysis yields three constraint

FIG. 5. Renormalized dispersion and fitting results from the EPC
model. (a) The dispersions of the OP1 mode. The black line is
the calculated bare surface phonon dispersion from first principle
calculation, while the blue dots with error bars (using the instrument
resolution here) are the extracted experimental data. The yellow line
is the renormalized dispersion from the EPC model. (b) Calculated
real (light blue) and imaginary (green) parts of the phonon self-
energy and the EPC constant (magenta) for the OP1 mode.

conditions for phonons involved in the EPC,⎧⎪⎨
⎪⎩

� < Q (Cst.1),

� > Q − 2 (Cst.2),

� < 2 − Q (Cst.3),

where � = ω
EF

and Q = q
kF

are the normalized frequency and
normalized wave vector of phonons. These constraints require
the phonons to fall into the regions (3), (2), and (1) in Fig. 4(a),
corresponding to Figs. 4(b), 4(c), and 4(d), respectively. After
an analytical continuation iωn → ωq,s + iδ in Eq. (3), its
imaginary part can be obtained by performing the integration
within the allowed areas of Fig. 4(a), and its real part is
achieved by conducting a Kramers-Kronig transformation. A
similar process can be applied when the phonon wave vector
is along the minor axis of Fermi ellipse. The total polarization
is just the sum of the two individual polarizations along the
two axes.

The renormalized phonon dispersion is given by the real
part of the singularity of the Dyson equation in Eq. (1),

(h̄ωq,s)2 = (
h̄ω

(0)
(q,s)

)2 + 2
(
h̄ω(0)

q,s

)|gq,s|2Re

[P (q, ωq,s)

ε(q, ωq,s)

]
, (4)

where ωq,s and ω(0)
q,s correspond to the real and bare fre-

quency for a specific phonon branch s at wave vector q with
or without EPC, respectively. For the surface phonons, we
take the assumption |gq,s| =

√
Nh̄

2Mω
(0)
q,s

(γ⊥ + |q|
2kF

γ||) [40] in the

momentum range q < 2kF , where M is the unit cell mass
and N is the number of unit cells. γ⊥ and γ|| are treated as
out-of-plane and in-plane interaction parameters to fit Eq. (4)
self-consistently. Details of the parameter fitting are described
in the Appendix. Here ω(0)

q,s is obtained from the calculated
results of α in Fig. 3(c), and ωq,s obtained from the model
can be directly compared with the experimentally measured
dispersion of the OP1 branch. The renormalized dispersion is
depicted in Fig. 5(a).
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D. Mode-specific EPC constant

From the perspective of phonons, one may assess the
branch-specific coupling constant λs(q) as a function of mo-
mentum q for specific phonon branch s by [13,39]

λs(q) = − Im[�(q, ωq,s)]

πN (EF )(h̄ωq,s)2
, (5)

where N (EF ) is the electron density of states at the Fermi
energy.

Shown in Fig. 5(b) are the real part and the imaginary part
of the phonon self-energy, as well as the mode-specific EPC
constant λs(q) for the branch OP1 as a function of phonon
momentum. The two conspicuous peaks in the imaginary part
of the phonon self-energy and λOP1(q) correspond to the two
orthogonal axes of the Fermi ellipse. This is different from
the conventional 2D Kohn anomaly model [15,16], where an
isotropic Fermi circle generates identical 2kF along all the
momentum directions. Here, even along one specific direction
in the SBZ, 2kF has two maxima at 2ka and 2kb. Yet, the
physical essence of the EPC is the same, i.e., the EPC constant
λOP1(q) declines quickly when q > 2ka or q > 2kb due to the
Fermi ellipse, analogous to the case of the Fermi circle with
λ(q) declining when q > 2kF . The peak at q ∼ 2ka is higher
than the peak at q ∼ 2kb, implying a more significant contri-
bution from electrons with momentum along the major axis
of the Fermi ellipse. λOP1(q) declines to zero immediately
when q > 2ka and the phonon dispersion inclines afterwards.

The averaged EPC constant over q for the branch OP1 is
evaluated to be λ̄ ≈ 0.15. This implies the renormalized mass
of involved electrons is m∗ = (1 + λ̄)me ≈ 1.15me, where me

is the bare electron mass. The quantum oscillation experi-
ment has confirmed an unconventional mass enhancement in
ZrSiS in the range of 1–1.5me of electrons within the bulk
“dog-bone-like” Fermi pockets under magnetic field [54].
The enhancement arises presumably from small-momentum
density-wave correlations, which require strongly enhanced
Coulomb interactions between electrons [69,70]. However,
our findings here suggest a mass enhancement of electrons of
the surface floating band, due to the interaction with surface
optical phonons, which cannot be probed by the conductivity
quantum oscillations. Different from the bulk electron mass
enhancement that was observed only under the magnetic field,
the surface EPC discovered here should always exist and will
potentially affect any low-dimensional electronic transport-
ing properties. Recently, quasiparticle interference between
different faces of surface states around X̄ point has been
confirmed using a scanning tunneling microscope [71–73],
which also supports our proposition that electrons of surface
states around X̄ interact with optical phonons.

IV. SUMMARY

In conclusion, we measured the surface phonon dispersions
of ZrSiS, a candidate of topological nodal line semimetal,
along the high symmetry directions in the SBZ. Comparing
with DFT calculations, we verified an obvious softening of a
surface optical mode due to EPC. Detailed theoretical analy-
ses, via an EPC model within RPA, revealed that the strong
renormalization of the surface phonon originates from the

interactions with the surface floating 2D electrons of ZrSiS.
Under this model, we calculated the polarization function,
evaluated the phonon self-energy, and obtained the mode-
specific and q-dependent EPC constant. The average EPC
constant for the softened surface optical phonon branch is λ̄ ≈
0.15, indicating the effective mass of renormalized electrons
due to surface EPC is m∗ ≈ 1.15me. Similar renormalizations
of phonons and EPC behaviors are also expected to be ob-
served in isologs like ZrSiSe, ZrSiTe, and HfSiSe, for the
similarity of structure and consequent surface floating states.
The findings and the detailed studies of EPC in this work
will be important for potential applications of these semimetal
materials.
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APPENDIX: ELECTRON-PHONON
SCATTERING PROCESS

In this work the interaction between electrons and phonons
is analyzed by a standard Green function technology. We
now focus on the estimation of Eq. (3). Using the Matsubara
frequency summation relation

1

β

∑
ipn

G (0)(p, ipn)G (0)(k, ipn + iωn) = nF (ξp) − nF (ξk)

iωn + ξp − ξk
,

one can rewrite the polarization function as

P (q, ωn) = 2

A
∑

k

nF (ξk) − nF (ξk+q)

iωn + ξk − ξk+q
,

where nF (ξk) is the Fermi distribution of electrons. This
formula can be expressed into two parts

P (q, ωn) = 1

A
∑

k

nF (ξk) − nF (ξk+q)

iωn + ξk − ξk+q

+ 1

A
∑

k

nF (ξk) − nF (ξk+q)

iωn + ξk − ξk+q
. (A1)

Make the substitutions k → −k − q and k + q → −k in the
second term and notice that the energy ξk is an even func-
tion of k; thus we have ξk → ξk+q, ξk+q → ξk, nF (ξk) →
nF (ξk+q), and nF (ξk+q) → nF (ξk). Then the formula turns
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into

P (q, ωn) = 2

A
∑

k

nF (ξk)[1 − nF (ξk+q)]

×
(

1

ξk − ξk+q + iωn
− 1

ξk+q − ξk + iωn

)
.

(A2)

Here we choose the Fermi distribution at zero temperature,
nF (ξk) = θ (EF − ξk). Using the relation 1 − θ (EF − ξk+q) =
θ (ξk+q − EF ), and the analytical continuation iωn → ω + iδ,
the polarization function turns into

P (q, ω) = 2

A
∑

k

θ (EF − ξk)θ
(
ξk+q − EF

)

×
(

1

ω + ξk − ξk+q + iδ
− 1

ω + ξk+q − ξk + iδ

)
.

(A3)

With the relation lim
δ→0

1
x+iδ = P( 1

x ) − iπδ(x) [here P() means

Cauchy principle value], we arrive at the imaginary part of the
polarization function

Im[P (q, ω)] = − 2π

A
∑

k

θ (EF − ξk)θ (ξk+q − EF )

× {δ[ω − (ξk+q − ξk)] − δ[ω + (ξk+q − ξk)]}

= − 1

2π

∫
dk θ (EF − ξk)θ (ξk+q − EF )

× {δ[ω − (ξk+q − ξk)] − δ[ω + (ξk+q − ξk)]}.
(A4)

Now, it is most important to obtain the explicit expression
of ξk in order to get the value of the integral in Eq. (A4).
For simplicity, we will take the case with phonon momentum
along �̄X̄ as an example.

Fermi surface from the surface floating 2D states can be
well approximated by ellipses with the expression kF (θ ) =

kakb√
k2

a sin2 θ+k2
b cos2 θ

, where ka = 0.15 Å
−1

and kb = 0.11 Å
−1

are half of the major and half of the minor axes of the
ellipse, corresponding to the Fermi wave number along �̄X̄
and X̄ M̄, respectively. And θ is the angle between the electron
momentum and �̄X̄ . We choose the vertex of the cone to be
energy zero, and thus EF = 350 meV. For a given k along the
direction with angle θ [Fig. 1(f)], we get the expression of the
electron dispersion

ξk = EF

kF (θ )
|k| = EF

kakb

√
k2

a sin2 θ + k2
b cos2 θ |k|. (A5)

After interacting with a phonon mode with momentum q
along �̄X̄ , the electrons transfer from k (initial states) into
k + q (final states) with angle θ ′ (Fig. 6). A simple geometry
derivation yields

ξk+q = EF

kF (θ ′)
|k+q|= EF

kakb

√
k2

a (k sin θ )2+k2
b (k cos θ + q)2.

(A6)

kx

yk

k

q

k+q

θθ’

FIG. 6. Schematics of the scattering momentum. A simple illus-
tration of the relation between momentums of electrons before (k)
and after (k + q) interacting with phonons q.

In orthogonal coordinates, they are expressed as

ξk = EF

√(
kx

ka

)2

+
(

ky

kb

)2

,

ξk+q = EF

√(
kx + q

ka

)2

+
(

ky

kb

)2

. (A7)

Let’s return to Eq. (A4). For ξk having a linear dispersion,
the step functions θ (EF − ξk) and θ (ξk+q − EF ) require |k| <

kF and |k + q| > kF . There are two situations as follows.
(i) |q| > 2kF ; all electrons inside the Fermi ellipse can be

the initial states satisfying the requirements [Fig. 4(b)].
(ii) |q| < 2kF ; only electrons outside the banned region

of the Fermi ellipse can be the initial states satisfying the
requirements [light blue region of Figs. 4(c) and 4(d)]. The
banned region is the intersection area of initial and final
ellipses, shifted by −q.

There are two δ functions in Eq. (A4): δ[ω − (ξk+q − ξk)]
and δ[ω + (ξk+q − ξk)]. Only one of these two functions can
be nonzero with a given ω, and it is reasonable to choose the
former one since it supports positive phonon energy. In fact,
the δ function is the conservation of energy between the initial
and final states. Only those electrons with k that satisfy

ω − (ξk+q − ξk) = 0 (A8)

contribute to the integral in Eq. (A4), which defines a hyper-
bolic curve in the momentum plane kxky [royal blue curves in
Figs. 4(b), 4(c), and 4(d)].

Considering the mirror symmetry with respect to kx, the
integral in Eq. (A4) can be rewritten as

Im[P (q, ω)]

= − 1

π

∫
kx,ky∈R

dkxdkyδ

{
ω − EF

[√(
x + q

ka

)2

+
(

y

kb

)2

−
√(

x

ka

)2

+
(

y

kb

)2]}
, (A9)

where the zone R is the allowed scattering zone in the momen-
tum space above kx axis [light blue part above kx in Figs. 4(b),
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4(c) and 4(d)]. A simple projection with⎧⎪⎪⎨
⎪⎪⎩

m = kx

ka
, n = ky

kb
,

� = ω

EF
, Q = q

ka

yields

Im
[
P (q, ω)

] = − kakb

πEF

∫∫
m,n∈R′

dm dn

× δ{� − [
√

(m + Q)2 + n2 −
√

m2 + n2]},
(A10)

where R′ is the mapping area of R. And the hyperbolic curve
function (A8) turns to

� − [
√

(m + Q)2 + n2 −
√

m2 + n2] = 0. (A11)

The Fermi surface turns to a circle

m2 + n2 = 1. (A12)

Now, we are going to derive the constraint condition for �

and Q. The hyperbola described by Eq. (A11) intersects with
the horizontal axis at m0 = �−Q

2 , with the Fermi circle at m1 =
2�+�2

2Q − Q
2 and with the banned region at m2 = 2�−�2

2Q − Q
2

[in Figs. 4(b), 4(c), and 4(d), x0 = m0ka, x1 = m1ka, and x2 =
m2ka are the horizontal values of the intersection points]. If
the frequency of phonons (ω or �) is too low or too high,
the hyperbola will not intersect with the Fermi circle or just
does not exist. To make sure the hyperbola exists, its real axis
length should be shorter than the focus length � < Q (Cst.1).

This is the first constraint condition for � and Q. To make
sure the hyperbola intersects with the Fermi circle, we have
m0 > −1, i.e., � > Q − 2 (Cst.2).

Because the hyperbola is right-oriented, we must have
m1 > m0 or m2 > m0 [Fig. 4(d)]. These two conditions also
yield the constraint condition (Cst.2). For the case where
q < 2ka (Q < 2), this condition is always satisfied because
� is positive. But for the case where q > 2ka (Q > 2), the
situation is different. This means phonon modes with small
energy will not participate in the electron-phonon interaction
with momentum transfer bigger than 2ka.

For q < 2ka (Q < 2), the hyperbola may enter the banned
zone [Fig. 4(d)]. In this case we have m0 < 1 − Q, i.e.,
� < 2 − Q (Cst.3). Constraint conditions (Cst.1), (Cst.2), and
(Cst.3) help to define the allowed zone for phonon energy and
momentum transfer. The permitted value area of � and Q is
illustrated in Fig. 4(a). The regions (3), (2), and (1) correspond
to Figs. 4(b), 4(c), and 4(d), respectively.

After some algebra with n integrated out in (A10), we get

Im[P (q, ω)] = − kakb

πEF

∫
m∈R′

dm
1

�2

× Q2
(
m + Q

2

)2 − �4

4√
Q2 − �2

√(
m + Q

2

)2 − �2

4

. (A13)

With substitution t = m + Q/2, we arrive at

Im[P (q, ω)] = F (q, ω, tul ) − F (q, ω, tll ), (A14)

where

F (q, ω, t ) = − kakb

πEF

[
Q2

2�2
√

Q2 − �2
t

√
t2 − �2

4

+ Q2 − 2�2

8
√

Q2 − �2
ln

(
t +

√
t2 − �2

4

)]
(A15)

and tul and tll are the respective upper and lower integral
limits.

We notice that in different regions of Fig. 4(a) the integral
variables of Eq. (A10) run across different range. The upper
limit of all three regions is t1 = m1 + Q

2 = 2�+�2

2Q . The lower

limit for regions (2) and (3) is t0 = m0 + Q
2 = �

2 , while for

region (1) is t2 = m2 + Q
2 = 2�−�2

2Q . Considering the con-
straint conditions, the integral in the three regions can be
expressed as

I1(q, ω) = θ (Q − �)θ (2 − Q)θ [2 − (� + Q)]

× [F (q, ω, t1) − F (q, ω, t2)],

I2(q, ω) = θ (Q − �)θ (2 − Q)θ [(� + Q) − 2]
(A16)

× [F (q, ω, t1) − F (q, ω, t0)],

I3(q, ω) = θ (Q − �)θ (Q − 2)θ [2 − (Q − �)]

× [F (q, ω, t1) − F (q, ω, t0)],

respectively. And the total imaginary part of P (q, ω)
is Im[P (q, ω)] = I1(q, ω) + I2(q, ω) + I3(q, ω). The
experimentally corresponding polarization function is
Im[P (q, ωq,s)] = I1(q, ωq,s) + I2(q, ωq,s) + I3(q, ωq,s), where
h̄ωq,s is the experimental phonon energy.

With the help of Kramers-Kronig transformation, the real
part of the polarization function at h̄ωq,s can be calculated:

Re[P (q, ωq,s)] = 2

π

∫ ∞

0

ω Im[P (q, ω)]

ω2 − ωq,s
2

dω. (A17)

Then we can calculate both the imaginary and real parts of the
RPA dielectric function by ε(q, iωn) = 1 − 2πe2

κ|q| P (q, iωn).
In the small phonon momentum range (q < 2kF ), we can

assume the following expression of electron-phonon interac-
tion matrix |gq,s| for an optical phonon mode [40]:

|gq,s| =
√

Nh̄

2Mω
(0)
q,s

(
γ⊥ + |q|

2kF
γ||

)
,

where M is the unit cell mass, N is the number of unit cells in
a sample, γ|| is the interaction constant within ab plane, and
γ⊥ is the constant out of plane. Thus Eq. (4) turns to

(h̄ωq,s)2 = (
h̄ω(0)

q,s

)2 + Nh̄2

M
(γ⊥)2

(
1 + |q|

2kF

γ||
γ⊥

)2

× Re

[
P

(
q, ωq,s

)
ε
(
q, ωq,s

)
]
, (A18)

where we leave Nh̄2

M (γ⊥)2 and γ||
γ⊥

as fitting parameters.
The best fitting parameters with the experimental data are

Nh̄2

M
(γ⊥)2 = 1.51 × 108 (meV)3 Å

2
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and
γ||
γ⊥

= 0.025.

The fitted renormalized dispersion is illustrated as a yellow line in Fig. 5(a).
With the fitting parameters, we can evaluate the real and imaginary parts of the phonon self-energy by

Re[�(q, ωq,s)] = |gq,s|2Re

[P (q, ωq,s)

ε(q, ωq,s)

]
= Nh̄

2Mω
(0)
q,s

γ 2
⊥

(
1 + |q|

2kF

γ||
γ⊥

)2

Re

[P (q, ωq,s)

ε(q, ωq,s)

]
,

Im[�(q, ωq,s)] = Nh̄

2Mω
(0)
q,s

γ 2
⊥

(
1 + |q|

2kF

γ||
γ⊥

)2

Im

[P (q, ωq,s)

ε(q, ωq,s)

]
. (A19)

Finally, the EPC constant can be obtained from Eq. (5), where we take N (EF ) = 0.1171 per eV for ZrSiS from the DFT
calculations. The results are plotted in Fig. 5(b).
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