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Nonlocal magnetolectric effects in diffusive conductors
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We present a theoretical study of nonlocal magnetoelectric effects in diffusive hybrid structures with an
intrinsic linear-in-momentum spin-orbit coupling (SOC) which is assumed to be spatially inhomogeneous. Our
analysis is based on the SU(2)-covariant drift-diffusion equations from which we derive boundary conditions at
hybrid interfaces for SOC of any kind. Within this formulation, the spin current is covariantly conserved when the
spin relaxation is only due to the intrinsic SOC. This conservation leads to the absence of spin Hall (SH) currents
in homogeneous systems. If, however, extrinsic sources of spin relaxation (ESR), such as magnetic impurities
and/or a random SOC at nonmagnetic impurities, are present the spin is no longer covariantly conserved, and
SH currents appear. We apply our model to describe nonlocal transport in a two-dimensional system with an
interface separating two regions: one normal region without intrinsic SOC and one with a Rashba SOC. We first
explore the inverse spin-galvanic effect, i.e., a spin polarization induced by an electric field. We demonstrate how
the spatial behavior of such spin density depends on both the direction of the electric field and the strength of the
ESR rate. We also study the spin-to-charge conversion, and compute the charge current and the distribution of
electrochemical potential in the whole system when a spin current is injected into the normal region. In systems
with an inhomogeneous SOC varying in one spatial direction, we find an interesting nonlocal reciprocity between
the spin density induced by a charge current at a given point in space, and the spatially integrated current induced
by a spin density injected at the same point.

DOI: 10.1103/PhysRevB.100.195406

I. INTRODUCTION

Spin-orbit coupling (SOC) in metals and semiconductors
couples the charge and spin degrees of freedom of the elec-
trons and leads to a variety of magnetoelectric effects. For that
reason, conductors with sizable SOC are used for the creation
and control of spin currents and spin densities by applying
electric fields. Reciprocally, magnetoelectric effects allow for
detecting spin by measuring electric signals [1,2].

It is customary to distinguish between two kinds of mag-
netoelectric effects mediated by SOC: those relating spin and
charge currents (spin Hall effect and its inverse), and those
relating spin polarization and charge current (spin-galvanic
effect and its inverse). The spin Hall effect (SHE) is the
generation of a spin current, transverse to the applied charge
current [2–5]. The inverse effect, commonly known as the in-
verse SHE [2], corresponds to the spin-to-charge counterpart
and consists of a charge current, or a Hall voltage, induced
by a given spin current. Both direct and inverse SHE have
been measured in several experiments and different materials
[6–11].

*cristina_sanz001@ehu.eus
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Here, we focus on the charge-to-spin conversion due to the
spin-galvanic effect (SGE), which refers to the generation of a
charge current by creating a nonequilibrium spin polarization
in the material. It takes place, for example, in materials with
a linear-in-momentum intrinsic SOC, such as the Rashba or
linear Dresselhaus SOC [12–14]. Conversely, the inverse SGE
corresponds to the spin polarization induced by applying an
electric field/current [15–22], which in the particular case of
Rashba SOC, is also known as the Edelstein effect [23,24].
In contrast to the SHE, the induced spin is homogeneous in
space and, in principle, in the stationary case, no spin currents
are generated [25–29]. Observation of the SGE and its inverse
has been reported in Refs. [7,30–34].

From the experimental point of view, hybrid structures
combining different materials play an important role in the
detection of magnetoelectric effects. This requires, on the one
hand, materials with large SOC for an efficient charge-to-spin
conversion and, on the other hand, large enough spin diffusion
lengths in order to transport the spin information across the
device. At first glance, it seems difficult to find systems satis-
fying these two conditions because a strong SOC in a diffusive
system will inevitably lead to a strong spin relaxation [15].
This problem can be overcome by using hybrid structures
combining, for example, two different materials, one with a
strong SOC, in which the charge-to-spin conversion occurs,
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FIG. 1. Schematical view of different setups considered in this
work. (a) Heterostructure with a localized SOC at the interface (blue
region) between two different materials, in this case a normal con-
ductor (gray bottom region) and an insulator (transparent top region).
(b) Hybrid lateral structure for nonlocal transport measurements. The
gray region is a normal conductor without SOC connected to two
electrodes. At the contact with the blue electrode it is assumed a
sizable SOC, whereas the orange electrode is a ferromagnet which
may serve as a spin injector or detector. (c) The system under
consideration to study the nonlocal inverse SGE. An electric field is
applied parallel or perpendicular to the interface, between a normal
conductor without SOC (gray region) and a conductor with intrinsic
SOC (blue region). A spin density is induced in the latter. We are
interested in the spin density at a distance L away from the interface
in the normal conductor. (d) Same setup as panel (c) but now a spin is
injected into the normal conductor at a distance L from the interface.
We are interested in the charge current induced in the blue region as
a consequence of the SGE.

adjacent to a second material with a weak SOC where the
spin information can be transported over long distances. This
conversion can also take place at the interface between a metal
and an insulator with a sizable SOC [Fig. 1(a)] [35].

An efficient way of injecting and detecting the spin accu-
mulation is by using nonlocal spin valves, as the one sketeched
in Fig. 1(b) [34,36–43]. In this setup, the source signal, either
a spin or a charge current, is injected from one of the elec-
trodes (orange/blue), whereas the response signal, a charge or
spin voltage, is measured nonlocally at the detector electrode
(blue/orange). Similar valves combining ferromagnetic elec-
trodes and metallic wires have also been used to measure the
SHE [8], as well as to study the reciprocity between the SHE
and the inverse SHE [44].

In this work, we present a theoretical study of nonlocal
electronic transport in hybrid diffusive systems with linear-
in-momentum intrinsic SOC of any type. We focus on the
reciprocity between the nonlocal SGE and its inverse. Our
analysis is based on the drift-diffusion equations [4] for-
mulated in the language of SU(2) gauge fields, where the
intrinsic SOC and the Zeeman field enter as the space and time
components of an effective SU(2) 4-potential [45–47]. Within
this formalism, the spin obeys a covariant continuity equation
which explains the absence of spin Hall (SH) currents in a
homogeneous system with intrinsic SOC. This covariant con-
servation of the spin is broken in the presence of any extrinsic
source of spin relaxation (ESR), as for example magnetic
impurities or a random SOC originated from scattering of

electrons at nonmagnetic impurities. Such symmetry breaking
leads to a finite spin current that may flow into a material
without SOC.

In order to describe the transport in such hybrid systems,
we derive effective boundary conditions (BC) valid for sys-
tems of any dimension. These BC describe the transport
between diffusive conductors with different (not only in the
strength) linear-in-momentum SOC and mean-free path, and
they are valid for any direction of the applied field.1 They
generalize the BC obtained in Refs. [28,48–51], for a specific
case of two-dimensional (2D) Rashba systems.

We apply the diffusion equation and BC to study nonlocal
measurement of the SGE and its inverse in a two-dimensional
hybrid system consisting of a diffusive conductor without
intrinsic SOC, labeled as normal conductor, adjacent to a
Rashba conductor, i.e., a conductor with an intrinsic Rashba
SOC [see Figs. 1(c) and 1(d)] [39–43]. First, we address the
nonlocal inverse SGE [Fig. 1(c)], and calculate the value of
the spin density induced at the normal conductor at a finite
distance from the interface with the Rashba region, when an
electric field is applied. If the field is parallel to the interface,
and due to its covariant conservation, the spin generated at
the Rashba conductor cannot diffuse into the normal region,
leading to a zero signal [28,48–50]. However, inclusion of
ESR breaks the covariant conservation of the spin, and a finite
SH current is generated. This leads to a diffusion of the spin
into the normal region. We emphasize that this, previously
unnoticed, mechanism of the spin injection is different from
the one appearing at the boundary between materials with dif-
ferent intrinsic SOC and different elastic mean-free paths [50].
If the electric field is applied perpendicular to the interface,
the situation is rather different. In this case, the BC impose
the conservation of both the spin density and spin (diffusive)
currents at the interface. This leads to a diffusion of the spin
density induced via the inverse SGE into the normal conductor
even in the absence of ESR mechanisms. For the specific
case of a Rashba SOC, this result coincides with the one of
Ref. [50].

Second, we address the inverse effect, i.e., the nonlocal
SGE [see Fig. 1(d)]. In this case, a spin density is injected into
the normal conductor at a certain distance from the interface.
This spin diffuses over the normal region, and the corre-
sponding spin diffusion current reaches the Rashba conductor,
where it is transformed into a charge current. We demonstrate
that depending on the polarization of the injected spin density,
charge currents parallel or perpendicular to the interface can
be generated. In the absence of ESR, the spatially integrated
current parallel to the interface vanishes, leading to zero
global SGE, whereas a finite ESR leads to a finite total charge
current. These two situations are the reciprocal to the nonlocal
inverse SGE described above. Indeed, we find a hitherto
unknown general nonlocal reciprocity relation between the

1Our analysis is done within the diffusive limit and hence it is
assumed that the spatial variation of the SOC occurs over a length
scale larger than the momentum relaxation length. In this regard,
we do not take into account so-called, interfacial SOC, i.e., SOC
that only exists over atomic lengths right at the interface (see, for
example, Refs. [61,63,64]).
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global charge current induced by the spin injected locally at
some point x0, and the spin at the same point x0 induced by
applying a uniform electric field.

Finally, we consider the nonlocal SGE when the lateral
dimensions are finite. In this case, no current flows at the
lateral boundaries. We solve this boundary problem and find
a redistribution of the electrochemical potential and the local
charge currents flowing in the whole structure.

The paper is organized as follows. In Sec. II we review the
SU(2)-covariant drift-diffusion equations for the charge and
the spin densities, and derive the general BC. In Sec. III we
first review the inverse SGE in bulk homogeneous systems
with linear-in-momentum SOC. In Sec. III B we explore the
nonlocal inverse SGE in the normal/Rashba conductor struc-
ture shown in Fig. 1(c). In Sec. IV we analyze at a general
level the reciprocity between this effect and the nonlocal
SGE, and show that the spin density at x0, induced via the
nonlocal inverse SGE, is proportional to the integrated charge
current, generated via the nonlocal SGE, by injection of a
spin current density at x0. In Sec. V we study the nonlocal
SGE shown in Fig. 1(d) and compute the spatial dependence
of the charge current density. In Sec. VI we analyze the
SGE in the same structure but with finite lateral dimensions,
and determine the redistribution of charge currents and the
electrochemical potential induced by the SGE. Finally, we
present our conclusions in Sec. VII.

II. THEORETICAL DESCRIPTION OF DIFFUSIVE
HYBRID STRUCTURES

In this section we review the diffusion equations for the
charge and spin densities in homogeneous systems in the
SU(2)-covariant formalism. We derive BC for these equations
at hybrid interfaces. These conditions describe interfaces be-
tween materials with different kinds and strengths of linear-
in-momentum SOC.

We focus on materials with linear-in-momentum SOC. The
latter can be described with the help of a SU(2) vector po-
tential ˆAk = 1

2A a
k σ a. Specifically, we consider the following

Hamiltonian [47,52]:

H = (pk − ˆAk )2

2m
− ˆA0 + Vimp. (1)

A particular case of SOC is the widely studied two-
dimensional Rashba SOC, for which A x

y = −A y
x = 2mα =

λ−1
α , being α the Rashba parameter. The second term in

Eq. (1), ˆA0 = 1
2A a

0 σ a, describes a Zeeman or ferromagnetic
exchange field. The last term is the potential of randomly
distributed impurities. We consider both nonmagnetic and
magnetic impurities, such that Vimp = Vnm + Vm, where Vnm

contains the SOC generated by the random potential of the
impurities [1]. In our notation, lower indices correspond to
spatial coordinates and upper indices to spin components, and
throughout the paper the summation over repeated indices is
implied.

The advantage of introducing the SOC as a SU(2) gauge
field is that one can derive a SU(2)-covariant continuity equa-
tion for the spin [46]. In other words, within this formalism
the spin is covariantly conserved when only intrinsic linear-in-
momentum SOC is considered, and it satisfies the following

continuity equation:

∂̃t Ŝ + ∂̃k ĵk = 0, (2)

where Ŝ = Sa(σ a/2) is the spin density and ĵk = ja
k (σ a/2)

is the spin current density flowing in the k direction, de-
fined as the average of the spin current operator ja

k =
(1/2){∂H/∂ pk, σ

a/2}. The spin continuity equation has the
same form as the charge continuity equation, but with the
derivatives substituted by the covariant ones ∂̃t = ∂t − i[ ˆA0, ·]
and ∂̃k = ∂k − i[ ˆAk, ·], respectively.

In the presence of any kind of ESR, as for example
magnetic impurities, or SOC due to the impurity scattering
[24,52,53], Eq. (2) acquires an additional term:

∂̃t Ŝ + ∂̃k ĵk = − 1

τext
Ŝ. (3)

Here, we assume that the spin relaxation is isotropic in space
and neglect the interference term between extrinsic and intrin-
sic SOC [22]. Clearly, the ESR breaks the SU(2) symmetry
and hence the spin is no longer covariantly conserved.

We now consider a hybrid interface between two materials
with different mean-free path and SOC. In real systems, all
potentials appearing in the Hamiltonian of Eq. (1) must be
finite and, therefore, both the spin currents and spin densities
must also be finite at any point in space. Therefore, one
can integrate Eq. (3) over an infinitesimal interval across the
interface and obtain the conservation of the spin current:

nk ja
k |0+ = nk ja

k |0− , (4)

where n̂ = (nx, ny, nz ) is a unit vector perpendicular to the
interface. This is the first BC.

In order to describe the spatial distribution of the spin and
charge densities, we focus here on diffusive systems in which
the elastic scattering rate at nonmagnetic impurities dominates
over all other rates. Specifically, the inverse of the momentum
relaxation time τ−1 is assumed to be larger than all other
energies, such as SOC, Zeeman field, or the inverse of any
ESR time τ−1

ext . In this limiting case, the spin current is given
by [47,54,55]

ĵk = −D∂̃kŜ − γ F̂ki ji. (5)

The first term corresponds to the SU(2)-covariant diffusion
current, where D = v2

Fτ/d is the diffusion coefficient, and d
the dimension of the system. The second term, proportional
to the charge current density ji, describes the charge-to-spin
conversion, where γ = τ/(2m). It is, therefore, the term re-
sponsible for the SHE. The proportionality factor contains
the field strength tensor defined in terms of the SU(2) vector
potential as

F a
i j = ∂iA

a
j − ∂ jA

a
i + A b

i A c
j εabc. (6)

In analogy to the ordinary Hall effect, where electrons are
deflected by an external magnetic field, the second term in
the right-hand side of Eq. (5) describes the spin-dependent
deflection in the presence of an effective SU(2) magnetic field,
Eq. (6), generated by SOC.

The charge current density in the diffusive limit is given by
[47,54]

jk = −D∂kn − σDEk − γ F̂ki ĵi, (7)
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where n is the out-of-equilibrium electron density, σD the
Drude conductivity, and Ek the kth component of the electric
field. The third term is the reciprocal to the second term in
Eq. (5). It describes the spin-to-charge conversion under the
action of the SU(2) field and, therefore, is related to the inverse
SHE.

The spin and charge diffusion equations are obtained by
substituting expressions Eqs. (5) and (7) into Eq. (3) and
the charge continuity equation, respectively. Specifically, the
SU(2)-covariant spin diffusion equation in a stationary case
and in the absence of a Zeeman field has the following
compact form:

∂̃kD∂̃kŜ + γ ∂̃kF̂ki ji = 1

τext
Ŝ. (8)

The covariant Laplace operator in the first term can be written
explicitly by expanding the covariant derivatives [56]:

(∂̃kD∂̃k )ab = ∂kD∂kδ
ab + 2Pab

k ∂k + ∂kPab
k − 
ab, (9)

where we define the following operators [56]:

Pab
k = −iD[ ˆAk, ·] = DA c

k εcba, (10)


ab = D[ ˆAk, [ ˆAk, ·]] = −D−1Pac
k Pcb

k . (11)

Here, 
ab is the general Dyakonov-Perel relaxation tensor that
describes spin relaxation due to the randomization of the spin
precession caused by the scattering at nonmagnetic impurities,
whereas Pab

k describes the precession of an inhomogeneous
spin density [25,56].

The spin diffusion equation (8) is solved in the next
sections for different geometries and situations. To describe
hybrid interfaces between different materials, one needs an
additional BC to Eq. (4), which can be obtained by integrating
Eq. (5) over a small interval around the interface. In the
absence of charge current sources, this integration leads to
the continuity of the spin density across the interface. If a
finite charge current density is induced by an electric field
ji = −σDEi, we divide Eq. (5) by D and integrate it over a
small interval across the junctions and obtain

Sa
∣∣0+

0− = 1
2

(
γ σD

D

∣∣
0+ + γ σD

D

∣∣
0−
)
(δi j − nin j )

(
A a

j |0+ − A a
j |0−

)
Ei.

(12)
In this equation we allow for different values of the momen-
tum scattering time τ and SOC at both sides of the junction,
and different directions of the electric field with respect to the
interface. Equation (12) generalizes the result for 2D Rashba
systems [28,48–51], for any kind of linear-in-momentum SOC
and any dimension [see Figs. 1(a) and 1(b)].

In the next sections we study nonlocal transport in the
diffusive hybrid structure sketched in Figs. 1(c) and 1(d). It
consists of a normal conductor without intrinsic SOC (gray
area) adjacent to a conductor with Rashba SOC (blue area),
from here on referred to as a Rashba conductor. As mentioned
above, the Rashba SOC is described by the SU(2) vector po-
tential with nonzero components A x

y = −A y
x = 2mα = λ−1

α .
In what follows, we assume that the momentum scattering
time τ is constant in the whole system, and focus on the effect
of ESR. Furthermore, we assume that the system is invariant
in the y direction, such that the spin density only depends
on x.

In the normal conductor region the spin current has only a
diffusion contribution [first term of Eq. (5)], and the spin dif-
fusion equation (8) has the same form for all spin components:

∂2
x Sa = Sa

λ2
s

, (13)

where λs is the spin diffusion length in the normal conductor.
In the Rahsba conductor, the three components of the spin

current ĵx are obtained from Eq. (5):

jx
x = −D∂xSx + λ−1

α Sz, (14)

jz
x = −D∂xSz − λ−1

α Sx + γ σDλ−2
α Ey, (15)

jy
x = −D∂xSy. (16)

The components of the spin density are determined by the
following set of coupled diffusion equations:

∂2
x Sx = 2λ−1

α ∂xSz + (
λ−2

α + λ−2
ext

)
Sx − γ σD

D
λ−3

α Ey, (17)

∂2
x Sz = −2λ−1

α ∂xSx + (
2λ−2

α + λ−2
ext

)
Sz, (18)

∂2
x Sy = (

λ−2
α + λ−2

ext

)
Sy + γ σD

D
λ−3

α Ex. (19)

Notice that for generality we assume different ESR lengths
in the Rashba and in the normal conductor, λext and λs,
respectively.

We solve Eqs. (13) and (17)–(19) in two different situa-
tions. We first consider the inverse SGE [Fig. 1(c)]: a finite
spin density is induced in the Rashba conductor due to the
applied electric field. We explore whether such spin density
can diffuse into the normal region. We then focus on the
reciprocal situation [Fig. 1(d)] in which we assume that a
spin density is created (e.g., by injection) at some point at the
normal conductor and determine the charge current induced at
the Rashba conductor via the SGE.

III. CHARGE-TO-SPIN CONVERSION: THE INVERSE
SPIN-GALVANIC EFFECT

In this section we explore the charge-to-spin conversion in
homogeneous and hybrid systems with intrinsic SOC. This
conversion leads to the inverse SGE, which in the particular
case of Rashba SOC is also called the Edelstein effect [23].

We start our discussion by analyzing this effect in a bulk
material with intrinsic SOC. Even though this example has
been widely studied in the literature [25,26,57], its discussion
here will serve as good starting point to introduce the main
physical parameters used in the subsequent analysis of a more
complicated hybrid setup.

A. Homogeneous material with intrinsic SOC

The question under which conditions a charge current
through a conductor with intrinsic linear-in-momentum SOC
can create a transverse SH current was addressed in several
works (see, e.g., Refs. [25,26,57]). Here, we show how the
answer to this question can be found straightforwardly from
the SU(2)-covariant spin diffusion equation.
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In a bulk homogeneous system the spin density has no spa-
tial dependence and, therefore, the diffusion equation reduces
to an algebraic equation after setting the spatial derivatives in
Eq. (8) to zero. In the presence of an external electric field,
this equation reduces to

−
abSb = γ σDA b
k F c

kiε
abcEi + 1

τext
Sa. (20)

We first assume that τ−1
ext = 0, and obtain

Sa
int = γ σD

D
A a

i Ei. (21)

The SH current, i.e., the spin current transverse to the applied
electric field, is obtained from Eq. (5) and reads as

ja
k = −DA c

k εcba
(
Sb − Sb

int

)
. (22)

In the absence of ESR, Ŝ = Ŝint , and hence no transverse
current is generated. The spin current induced by the SU(2)
magnetic field is fully compensated by the spin diffusive
current. This also means that in a homogeneous finite system
with intrinsic SOC, no spin accumulation at the boundary is
expected. This can be seen as a direct consequence of the
SU(2)-covariant conservation of the current, Eq. (2), which
has to be zero at the sample boundaries.

The situation is quite different in the presence of a finite
ESR. For the Rashba SOC the solution of Eq. (20) can be
explicitly written:

Sa = Sa
EE

1 + r2
ext

, (23)

where the parameter rext = λα/λext, with λext = √
τextD, char-

acterizes the relative strength of ESR, and

Sa
EE = γ σD

Dλα

εzaiEi (24)

is the well-known Edelstein result [16,23] for the current-
induced spin in a Rashba conductor.2

Substitution of Eq. (24) into Eq. (22) leads to a finite SH
current [52,58,59]:

jz
k = D

λα

r2
ext

1 + r2
ext

Sk
EE. (25)

The above results are used in the next sections to contrast them
with those obtained for hybrid systems.

B. Hybrid structure with inhomogeneous SOC

We now focus on the hybrid diffusive structure sketched in
Fig. 1(c). The structure can be viewed as a building block of
a lateral spin valve [Fig. 1(b)], commonly used for nonlocal
detection of magnetoelectric effects [8,60]. The charge-to-
spin conversion can be detected by passing a charge current at
the Rashba conductor [blue region in Fig. 1(b)]. This current
generates a spin accumulation which can diffuse into the

2Notice that we distinguish between Sint and SEE to emphasize
that the latter is valid specifically for Rashba SOC. In contrast,
Sint denotes the spin density induced by the electric field for any
linear-in-momentum SOC.

normal conductor (gray region) and can be detected as a
spin voltage measured by a ferromagnetic electrode (orange
region) [36].

In our model of Fig. 1(c), the normal conductor occupies
the half-plane x < 0 and the Rashba conductor is at x > 0.
We solve the diffusion equations in both regions [Eqs. (13)
and (17)–(19)] together with the BC at x = 0 [Eqs. (4) and
(12)].

In the normal conductor region x < 0, the solution of
Eq. (13) is an exponential function decaying away from the
interface over the spin diffusion length λs. Whereas, the
solution at the Rashba conductor depends on the direction
of the applied electric field. We distinguish between two
different situations: when the electric field is applied parallel
or perpendicular to the interface.

1. Electric field parallel to the interface: E = Eyêy

If the electric field is applied parallel to the interface
between the normal and Rashba conductors then, according
to Eq. (24), the induced spin density in the bulk of the Rashba
conductor is polarized perpendicular to E, which in our case
corresponds to the direction Sx. From Eqs. (17) and (18) we
see that the diffusion of this component is coupled to Sz,
whereas the spin polarization in the y direction is not induced.
Thus, one needs to solve two coupled linear second-order
differential equations with BC at the interface between the
normal and the Rashba conductors obtained from Eqs. (4) and
(12):

ja
x |0+ = ja

x |0− , Sa|0+ − Sa|0− = Sx
EEδax. (26)

The explicit form of the spatial dependence of Sx and Sz is
given in Eq. (A1) of Appendix A and it is shown in Figs. 2(a)
and 2(b), respectively, for λext = λs. The obtained behavior
can be easily understood from the bulk solution. When the
ESR is negligibly small, rext → 0, the SH current is zero
and the Edelstein spin density cannot diffuse into the normal
conductor [solid blue line in Fig. 2(a)]. This is a consequence
of the SU(2)-covariant conservation of the spin. Such conser-
vation does not hold for a finite rext. Indeed, ESR leads to
a finite spin current in the Rashba conductor [Eq. (25)] and,
consequently, the continuity of the spin current at the interface
leads to a diffusive spin current in the normal conductor. This
mechanism of spin injection into the normal conductor is
different from the one discussed in Ref. [50], in which the spin
injection takes place due to different momentum relaxation
time at both sides of the interface.

As mentioned above, the precession terms in Eqs. (17) and
(18) couple the Sx and Sz components and, therefore, both are
induced in the whole system, as shown in Fig. 2(b). Far away
from the interface inside the Rashba conductor, x/λα � 1, the
spin density reaches its bulk value given by Eq. (23).

One can obtain simple expressions for the spatial depen-
dence of the spin density in limiting cases. For example, if the
ESR is very small, rext � 1, we obtain from Eq. (A1)

Sx(x)

Sx
EE

≈ �(x) − �(−x)r2
exte

x
λs ,

Sz(x)

Sx
EE

≈ −r2
ext

(
�(x) Im

{
κ∗2

0

2
√

2
e− κ0x

λα

}
+ �(−x)e

x
λs

)
, (27)

195406-5



CRISTINA SANZ-FERNÁNDEZ et al. PHYSICAL REVIEW B 100, 195406 (2019)

FIG. 2. Spatial dependence of the spin density induced by ap-
plying an electric field [see Fig. 1(c)] for different values of rext .
We distinguish two possible directions of the electric field: (a),
(b) parallel, and (c) perpendicular to the interface. In all figures it is
assumed that λs = λext , and the calculated spin density is normalized
by the corresponding bulk value Sa

EE of Eq. (24).

where κ2
0 = (−1 + i

√
7)/2, and corresponds to the definition

of κ in Eq. (A2) with rext = 0. This means that, to leading
order in rext, the Edelstein spin given by Eq. (23) is induced
homogeneously in the Rashba conductor, whereas the ampli-
tude of the spin density that diffuses into the normal region
is proportional to r2

ext [cf. Figs. 2(a) and 2(b)]. When rext = 0,
we recover the results obtained in Refs. [28,48].

In the opposite limit, i.e., when rext � 1, we obtain from
Eq. (A1)

Sx(x)

Sx
EE

≈ λs

λs + λext

(
�(x)

λext

λs
e− x

λext − �(−x)e
x
λs

)
,

Sz(x)

Sx
EE

≈ −1

rext

1 + λext
λs

λ2
ext
λ2

s
+ 2 λext

λs
+ 1

(
�(x)e− x

λext + �(−x)e
x
λs
)
. (28)

In this case, the induced Sx is localized at the interface and
decays exponentially into both conductors [cf. Fig. 2(a)]. The
sign of the spin at both sides of the interface is opposite.

FIG. 3. (a) Spin density induced at x = −L by an electric field
[see Fig. 1(c)] as a function of rext . We distinguish between an electric
field applied parallel and perpendicular to the interface. (b) Integrated
charge current induced by a spin density injection at x = −L [see
Fig. 1(d)] as a function of rext . The charge current flows in different
directions depending on the polarization of the injected spin density.
All curves are calculated in units of γ /(Dλα ), for L/λs = 0.01, λs =
λext , and normalized according to Eq. (43).

If λext = λs, as in Fig. 2, the value of the spin at each side
of the interface is ±Sx

EE/2. Due to the Rashba coupling, a
small contribution polarized in z also appears as shown in
Fig. 2(b). If λext �= λs, we distinguish two cases: If λs � λext,
then the spin relaxes strongly in the normal conductor next
to the interface. On the Rashba side, Sz practically disappears
whereas there is an x-polarized spin accumulation at the edge
of the order of Sx

EE, which decays toward the bulk.
In the opposite limit λs � λext, the spin density in

the Rashba conductor is strongly suppressed by the ESR.
Whereas, at the interface in the normal conductor side a
spin density Sx

EE appears and decays over λs into the normal
conductor.

The spin density induced in the normal conductor can be
measured by detecting a spin voltage with a local ferromag-
netic probe. We assume that such a contact is located at a
distance L from the interface [see Figs. 1(b) and 1(c)]. In
Fig. 3(a), we show the dependence on rext of both spin com-
ponents (solid blue and dashed-dotted orange lines) induced
in the normal conductor [Eq. (A1)] at the detector. We chose
λs = λext and L � λs. As explained above, in the absence of
ESR, rext = 0, the spin density induced by the charge current
in the Rashba conductor does not diffuse into the normal part
and hence both components are zero. For finite ESR, both
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Sx and Sz become finite at x = −L, but their dependence
on rext is quite different. The absolute value of Sx increases
monotonically with rext and asymptotically approaches Sx

EE/2,
while Sz reaches a maximum at rext ≈ 1 and decays toward
zero by further increase of rext.

It is worth noticing that the situation of a parallel electric
field explored in this section also corresponds to the exper-
imental situation of Ref. [35]: a normal metal film Cu is in
contact with an insulator Bi2O3 forming what the authors of
that work called a Rashba interface. This setup is sketched
in Fig. 1(a). If one assumes that the SOC is confined to
the blue layer, and the electric field is applied along the
films, then, in the absence of ESR, no spin current may flow
from the interface into the Cu layer. Therefore, the observed
magnetoresistance associated to a finite spin current cannot
be only due to the Edelstein effect at the interface, but can
be attributed to other extrinsic spin relaxation sources, as
predicted from our previous analysis.

2. Electric field perpendicular to the interface: E = Exêx

Now, we focus on the situation in which the electric field is
applied perpendicular to the interface. According to Eq. (24),
the induced spin density is polarized in the direction of ˆAx,
which for Rashba SOC corresponds to Sy. This component
is decoupled from the other two [see Eqs. (17)–(19)] and
therefore in this case Sx,z = 0.

For the perpendicular orientation of the electric field, the
BC correspond to the continuity of both the spin current and
the spin density [Eqs. (4) and (12)]:

jy
x |0+ = jy

x |0− , Sy|0+ = Sy|0− . (29)

This means that the spin generated at the Rashba conductor
via the Edelstein effect diffuses into the normal conductor,
even in the absence of any ESR mechanism. From Eqs. (13),
(19), and (29), one can determine explicitly the spatial depen-
dence of Sy. In the normal conductor it reads as (x < 0)

Sy(x) = Sy
EE√

1 + r2
ext

λs

λα + λs

√
1 + r2

ext

e
x
λs , (30)

and in the Rashba region (x > 0)

Sy(x) = Sy
EE

1 + r2
ext

(
1 − λα

λα + λs

√
1 + r2

ext

e− x
λα

√
1+r2

ext

)
. (31)

This result has to be contrasted to the one obtained when the
field is applied parallel to the interface. Namely, in the latter
case when rext = 0 no spin diffuses into the normal conductor.
Here, however, even if rext = 0, the diffusion occurs as a con-
sequence of the broken translation symmetry in the direction
of the electric field.

In Fig. 2(c) we show the spatial dependence of Sy, assum-
ing that the ESR in the normal and Rashba conductors are
equal, λs = λext. As in Figs. 2(a) and 2(b), deep in the Rashba
conductor x

λα
� 1, one obtains the bulk value for the spin

density, determined by Eq. (23). Because of the continuity
of the spin density, the increase of ESR leads to an overall
homogeneous decrease of the spin density.

We compute the measurable spin density at a distance
L from the interface [see Figs. 1(b) and 1(c)]. It is shown

in Fig. 3(a) (dashed green line) for the particular case of
λs = λext and L � λs. Due to the latter condition, for rext = 0
the spin density at x = −L is approximately equal to Sy

EE.
When the ESR is switched on, the current-induced spin in the
bulk Rashba conductor decreases monotonically according to
Eq. (23), and so does the spin density value at x = −L.

The spin generated in the normal conductor is associated
to a diffusive spin current jy

x , parallel to the electric field as a
consequence of the spatial variation of Sy [Eqs. (30) and (31)].
But, more interesting is the appearance of a SH current jz

y , in
the Rashba conductor as a consequence of both the covariant
diffusion and the SU(2) magnetic field. This is a transverse to
the electric field current and it can be calculated from Eq. (5):

jz
y (x) = − D

λα

(
Sy(x) − Sy

EE

)
, (32)

which after substitution of Sy(x) from Eq. (31) gives

jz
y (x) = DSy

EE

⎛
⎝ r2

ext

λα

(
1 + r2

ext

) + e− x
λα

√
1+r2

ext

λα + λs

√
1 + r2

ext

⎞
⎠. (33)

The first term is the bulk solution of Eq. (25), whereas the
second term is a correction due to the broken translation
symmetry in the direction of the field. Interestingly, even in
the absence of ESR, rext = 0, there is a finite contribution to
the SH current which is maximized at the interface and decays
exponentially into the bulk. Such a localized SH current
resembles the one obtained in Ref. [25] in a different geometry
and for rext = 0.

IV. RECIPROCITY BETWEEN THE NONLOCAL
SPIN-GALVANIC EFFECT AND ITS INVERSE

In the previous section we discuss the nonlocal inverse
SGE: a finite spin density, detectable in the normal conductor
at a distance L from the interface [Figs. 1(b) and 1(c)] is
induced as a response to an electric field applied both parallel
and perpendicular to the interface. In the next section, we
explore the reciprocal nonlocal effect, i.e., the charge current
induced by a spin injection into the normal conductor [gray
region in Figs. 1(b) and 1(d)]. Before analyzing this effect
for this specific geometry, we examine the diffusion equation
and identify a general nonlocal reciprocity between the spin
induced by a charge current and the spatially integrated charge
current induced by spin injection. We interpret this reciprocity
as the nonlocal version of the reciprocity between the SGE
and its inverse.

Our starting point is the general spin diffusion equation (8)
that we rewrite as follows:(

D∂̃k ∂̃k − τ−1
ext

)
Ŝ = γ σD∂̃iF̂ikEk . (34)

We assume, as before, that the SOC is inhomogeneous with a
spatial variation over lengths larger than the mean-free path.
As shown in Sec. II, the BC for hybrid interfaces can be
obtained by integration of this equation. Here, instead, we
keep the spatial dependence in the SU(2) fields and work
with the general Eq. (34). We assume that the fields only
vary in one direction, which we define as x. This is our only
assumption. Thus, the diffusion equation reduces to a 1D
linear differential equation. The solution can be written as
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follows:

Ŝ(x) = γ σDEk

∫ ∞

−∞
Ĝ(x, x′)∂̃iF̂ik (x′) dx′, (35)

where the Green’s function Ĝ satisfies(
D∂̃k ∂̃k − τ−1

ext

)
Ĝ(x, x′) = δ(x − x′). (36)

Equation (35) describes the nonlocal inverse SGE, i.e., the
spin density created at x by a homogeneous electric field in
the k direction.

We now consider the spin-to-charge conversion described
by Eq. (7), which can be rewritten as

jk = −σD∂kμ + j1k, (37)

where μ is the electrochemical potential defined by

σD∂kμ = D∂kn + σDEk, (38)

and

j1k = −γ F̂ik ĵi (39)

is the charge current density generated via the SOC. Here, ja
i

is the spin current originated from the covariant diffusion of
Sa in the i direction and described by the first term in Eq. (5).
We now integrate Eq. (39) over x and obtain

J1k = γ D
∫ ∞

−∞
F̂ki∂̃iŜ dx = γ D

∫ ∞

−∞
Ŝ∂̃iF̂ik dx, (40)

where the last equality follows from integration by parts.
Equation (40) describes the charge current density generated
by a spin density Ŝ and integrated over the direction of the
spatial inhomogeneity. The spin density has to be calculated
from the diffusion equation. Here, we assume that no electric
field is applied, but instead a spin current ĵ0 is injected locally
at x = x0. The diffusion equation (34) corresponding to this
situation reads as(

D∂̃k ∂̃k − τ−1
ext

)
Ŝ = ĵ0δ(x − x0). (41)

The solution to this equation can be written again in terms of
the Green’s function (36) as follows:

Ŝ(x) = ĵ0Ĝ(x0, x). (42)

Substituting this result into Eq. (40), and comparing it with
Eq. (35), leads to the following relation between the k compo-
nent of the induced charge current and the a component of the
induced spin density

J1k

D ja
0

= Sa(x0)

σDEk
. (43)

That is a remarkable result that connects the integrated charge
current induced by a spin current injected at x = x0, with the
spin density at x0 induced by an applied electric field. This
nonlocal reciprocity is a general property for any diffusive
system with a 1D spatial inhomogeneity. It explains the iden-
tical curves shown in both panels of Fig. 3. Specifically, the
result of Fig. 3(b) is discussed in the next section.

V. SPIN-TO-CHARGE CONVERSION:
THE SPIN-GALVANIC EFFECT

We now verify the reciprocity demonstrated in the previous
section by computing explicitly the nonlocal SGE in the setup
sketched in Fig. 1(d). We assume that a spin current ĵ0 is
injected into the normal conductor at x = −L. Experimentally
this can be done, for example, by injecting a current from a
ferromagnetic lead [36,37]. We first solve the spin diffusion
equations (13) and (17)–(19) together with the BC of Eqs. (4)
and (12). Since E = 0, the latter imply the conservation of the
spin current and the spin density at the interface located at
x = 0:

ja
x |0+ = ja

x |0− , Sa|0+ = Sa|0− . (44)

This continuity leads to the spin diffusion into the Rashba con-
ductor for any polarization of the injected spin and strength of
the ESR. At the injection point x = −L, the continuity of the
spin density is assumed and, from Eq. (41),

ja
x |−L+ − ja

x |−L− = ja
0 , (45)

where ja
0 is the injected spin current. Again, in Eqs. (17)–(19)

we see that the components Sx and Sz are coupled through
the SOC whereas the Sy component is not. Therefore, in the
next two subsections we distinguish between the injected spin
current polarized in the x and z directions, and the injected
current polarized in the y direction. As shown in Sec. IV, these
two cases should be reciprocal to the results of Sec. III when
the electric field was applied parallel or perpendicular to the
interface, respectively.

A. Spin current polarized in the x or z direction

Let us assume that the spin current injected at x = −L
is polarized in the x or z direction and compute the charge
current density induced in the Rashba conductor (39). Since
the Rashba SOC is only finite at x > 0, this current flows in
the y direction and consists of two contributions:

j1y(x) = jint
y + jbulk

y = γ

λα

(
δ(x) jx

x (x) + �(x)λ−1
α jz

x (x)
)
,

(46)
with

jx
x (x) = −D

(
∂xSx − Sz

λα

)
and jz

x (x) = −D

(
∂xSz + Sx

λα

)
(47)

from Eqs. (14) and (15). The explicit spatial dependence of
Sx and Sz is given in Eq. (B1) of Appendix B. One of the
contributions, jint

y , is localized at the interface, whereas the
other one, jbulk

y , is finite at the Rashba conductor. In Fig. 4(a)
we show the spatial dependence of the latter in the absence
of ESR, rext = 0. In view of the result of Sec. III B 1, at
a first glance it might seem strange that, even though rext =
0, a finite charge current density is induced in the system.
However, as we have understood in the previous section
with Eq. (43), the reciprocity involves the integrated current.
Indeed, by substituting Eq. (B1) into (46), and performing
the integration, one can demonstrate indeed that J1y = 0 if
rext = 0.
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FIG. 4. (a) Spatial dependence of the charge current density
j1y induced by the Rashba SOC when the spin density injected at
x = −L is x polarized. The interfacial and bulk contributions can
be distinguished. (b) Redistribution of the electrochemical poten-
tial μ due to the insulating boundaries placed at y = ±W/2. The
vector field lines correspond to the total charge current densities
j = −σD∇μ + j1yêy. Both plots are shown for pure Rashba SOC,
rext = 0, with λα/λs = 0.1, and L/λs = 0.1.

In contrast, in the case of a finite rext one obtains a finite
total current (see Appendix C)

J1y = γ λ−1
α

∫ ∞

0

Sx

τext
dx. (48)

This result is in accordance with the reciprocity relation (43)
and the results of Sec. III B 1. In Fig. 3(b) we show the
behavior of J1y (solid blue and dashed-dotted orange lines)
as a function of rext. With the proper normalization imposed
by Eq. (43), these curves are identical to those in Fig. 3(a).

B. Spin current polarized in the y direction

If the spin current injected at x = −L is y polarized, only
the Sy component is induced. This implies that only the
longitudinal charge current density with k = x in Eq. (39) is
nonzero:

j1x = −�(x)γ λ−2
α jz

y = �(x)Dγ λ−3
α Sy, (49)

where we have used Eq. (5) for the spin current density. In the
present geometry, only the commutator part of the covariant
derivative contributes, such that the current jz

y is proportional
to Sy. The analytic expression for Sy(x) is given in Eq. (B2) of
Appendix B. In the region x > 0 it reads as

Sy(x) = λα jy
0

D

e
−
(√

1+r2
ext

x
λα

+ L
λs

)

rs +
√

1 + r2
ext

. (50)

According to Eq. (37), the charge current density is given by
the contribution j1x and the diffusive term

jx = −σD∂xμ(x) + j1x(x). (51)

Because of the charge conservation, ∂x jx = 0 and the total
charge current should be constant in space, jx = const. The
value of this constant is determined by the BC imposed on
the outer boundaries of the system. For example, in a large,
but finite, sample with floating edges, jx = 0. This condition,
together with Eq. (51), determines the distribution of the
electrochemical potential μ(x) in the system:

∂xμ(x) = 1

σD
j1x(x), (52)

and eventually relates the voltage drop �μ across the sample
to the space-integrated induced current:

�μ = 1

σD

∫
j1xdx ≡ 1

σD
J1x. (53)

Notice that the integrated current J1x is exactly the object
entering the reciprocity relation of Eq. (43). In the present
case, by using Eq. (49), and performing the integration, we
find (see Appendix C)

J1x = − γ jy
0e− L

λs

λα

√
1 + r2

ext (rs +
√

1 + r2
ext )

. (54)

As in the charge-to-spin conversion case, Sec. III B 2, even
if τ−1

ext → 0, the magnetoelectric effect does not vanish. In
Fig. 3(b) we show J1x (dashed green line) as a function of
rext. In agreement with Eq. (43), this curve coincides with the
corresponding curve in Fig. 3(a).

VI. LOCAL CHARGE CURRENTS DUE TO THE
SPIN-GALVANIC EFFECT IN A FINITE LATERAL

GEOMETRY

In Sec. V A we have shown that the nonlocal spin injection
in a system without ESR, rext = 0, generates a distribution of
local transverse charge currents which integrate to zero [see
Fig. 4(a)]. Since the system was infinite in the y direction, such
local currents flow in the y direction but do not depend on y.
In contrast, if the system is finite in the lateral y direction, then
the component jy of the charge current density has to vanish at
the lateral edges, and one expects a more complicated current
pattern.

Here, we compute the local distribution of the charge
current density and the electrochemical potential in a system
of finite width W . We assume that the system has sharp
boundaries at y = ±W/2, and consider a particular case in
which the injected spin current is polarized in the x direction,
ja
0 = δax jx

0 in Eq. (45).
In order to find the redistribution of the electrochemical

potential, we need to solve the charge continuity equation
∂k jk = 0, with jk of Eq. (37). This reduces to solving the
Laplace equation for μ(r) with the BC of zero jy at the
boundaries y = ±W/2. The corresponding boundary problem
takes the following form:

∂2
x μ(x, y) + ∂2

y μ(x, y) = 0,

σD∂yμ(x, y)|y=± W
2

= j1y(x), (55)

where the second equation corresponds to zero charge current
at the boundary, with j1y(x) from Eq. (46) and plotted in

195406-9



CRISTINA SANZ-FERNÁNDEZ et al. PHYSICAL REVIEW B 100, 195406 (2019)

Fig. 4(a). Notice that the latter has two different contributions:
the interfacial jint

y and the bulk one jbulk
y .

The boundary problem of Eq. (55) can be solved following
the same procedure used in Ref. [61]. Here, we present the
result in Fig. 4(b). The color plot shows the electrochemical
potential, whereas the streamlines are the corresponding local
charge current densities of Eq. (37). Interestingly, near the
interface, where the term jint

y of Eq. (46) is finite, the currents
on both sides of the barrier tend to cancel it. In the Rashba
conductor, the spatial distribution is more complicated and
follows the jbulk

y spatial behavior.
We explore here only the case rext = 0. However, in the

case of finite rext one expects a qualitatively similar behavior
of the current patterns. The only difference is that, in that case,
the integrated charge current would be finite in accordance
with Eq. (48).

VII. CONCLUSIONS

In summary, we present an exhaustive analysis of nonlocal
magnetoelectric effects in a system with an inhomogeneous
linear-in-momentum SOC. Our study is based on the SU(2)-
covariant drift-diffusion equations with an additional term
describing the spin relaxation due to extrinsic processes. From
the spin diffusion equation we obtain BC describing diffusive
systems of any dimension with interfaces between conductors
with different SOC and mean-free paths. One of these BC
imposes the conservation of the spin current at the interface,
whereas the second BC describes the jump of the spin density
when an electric field is applied in the direction parallel to the
interface. In contrast, for fields perpendicular to the interface,
the second BC imposes the continuity of the spin density.

With the help of these BC we explore the nonlocal SGE and
its inverse in a two-dimensional hybrid structure consisting of
a conductor without SOC adjacent to Rashba conductor. First,
we analyze the inverse SGE, i.e., the conversion of a charge
current into a spin density. When the field is applied parallel to
the interface between the two conductors and in the absence
of ESR, the spin induced in the Rashba conductor does not
diffuse into the normal conductor. However, for a finite rext, a
finite SH current appears and leads to a spin density diffusing
into the normal conductor. In the case in which the field is

applied perpendicular to the interface, the situation is rather
different. In this case, the spin generated via the local inverse
SGE always diffuses into the normal conductor.

We also study the reciprocal effect, ti.e., the SGE which
is based on the spin-to-charge conversion. For a system
with a 1D spatial inhomogeneity, we obtain from the spin
diffusion equation a direct proportionality between the local
spin induced by the inverse SGE and the spatially integrated
charge current induced by the direct SGE [Eq. (43)]. This
relation leads to a complete reciprocity between these two
observables, and we use it to study the nonlocal SGE in
the same setup. Finally, we compute the local currents and
redistribution of the electrochemical potential, induced by the
SGE in a system of finite lateral dimensions without ESR.

Our results are relevant for experiments on nonlocal mag-
netoelectric effects in hybrid structures which combine re-
gions with different strengths of SOC, such as semiconducting
[21], metal-insulator [35], and van der Waals heterostructures
[62]. In the latter case, it is possible to build stacks of 2D
materials, as for example graphene, such that the regions
adjacent to a different material, for instance transition metal
dichalcogenides, may exhibit sizable SOC [39–43]. In such
structures, the SOC field is inhomogeneous in space and the
electronic transport is governed by the effects discussed in this
work.
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APPENDIX A: INVERSE SPIN-GALVANIC EFFECT:
SPATIAL DEPENDENCE OF THE SPIN DENSITY

Here, we present the explicit form of the solution of the
boundary problem solved in Sec. III. For an electric field
applied parallel to the interface (Sec. III B 1), one needs to
solve Eq. (13) in the normal conductor and Eqs. (17) and (18)
in the Rashba region together with the BC (26). The solution
for the spin densities is

Sx(x)

Sx
EE

= �(x)

1 + r2
ext

− r2
ext

1 + r2
ext

�(x) Im
{[

κ∗ + a∗(1 + r2
s + κ∗rs

)]
e− κx

λα

} + �(−x) Im{rsκ
∗a + a|κ|2 + κ|a|2}e x

λs

Im {[a(κ + rs) − 1](a∗ + κ∗ + rs)} ,

Sz(x)

Sx
EE

= r2
ext

1 + r2
ext

Im
{(

rsκ|a|2 + κa∗)(�(x)e− κx
λα + �(−x)e

x
λs
)}

Im {[a(κ + rs) − 1](a∗ + κ∗ + rs)} , (A1)

with rs = λα/λs, and

a = 2κ

κ2−(2+r2
ext )

, κ2 = −(
1
2 − r2

ext

) + i
2

√
7 + 16r2

ext. (A2)

In the main text, for Eq. (27) we use the value of κ0 which
equals to the κ defined above when rext = 0.

APPENDIX B: SPIN-GALVANIC EFFECT: SPATIAL
DEPENDENCE OF THE SPIN DENSITY

Here, we present the explicit form of the solution of the
boundary problem solved in Sec. V. Specifically, one needs to
solve Eqs. (13) in the normal conductor and Eqs. (17)–(19) in
the Rashba region when E = 0. At the boundary between the
two regions, x = 0, we impose the continuity of the spin
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currents and spin densities, and at x = −L the condition (45). When the injected current ja
0 is polarized in a = x or z directions,

Sec. V A, the solution reads as

Sx(x) = λα

D

{
Im

{[(
jx
0a − jz

0

)
(rs + κ ) − (

jx
0 + jz

0a
)]

e−( κ∗x
λα

+ L
λs

)}
Im {[a(κ + rs) − 1](a∗ + κ∗ + rs)} �(x)

+
[

Im
{

jx
0a(rs + κ ) − jz

0(κ + a)
}

Im {[a(κ + rs) − 1](a∗ + κ∗ + rs)}e
x−L
λs + jx

0

2rs

(
e− |x+L|

λs − e
x−L
λs
)]

�(−x)

}
,

Sz(x) = λα

D

{
Im

{[(
jx
0 |a|2 − jz

0a∗)(rs + κ ) − (
jx
0a∗ + jz

0|a|2)]e−( κ∗x
λα

+ L
λs

)}
Im {[a(κ + rs) − 1](a∗ + κ∗ + rs)} �(x)

+
[
Im

{
a
[

jz
0

(
rs + κ∗) − jx

0 (κ∗a∗ − 1)
]}

Im {[a(κ + rs) − 1](a∗ + κ∗ + rs)} e
x−L
λs + jz

0

2rs

(
e− |x+L|

λs − e
x−L
λs
)]

�(−x)

}
, (B1)

with rs = λα/λs, and a, κ from Eq. (A2). On the other hand, when the injected spin current is polarized in the y direction
(Sec. V A), one obtains

Sy(x) = jy
0λα

D

⎡
⎣e−

(√
1+r2

ext
x

λα
+ L

λs

)
rs +

√
1 + r2

ext

�(x) +
(

rs −
√

1 + r2
ext

2rs
(
rs +

√
1 + r2

ext

)e
x−L
λs + 1

2rs
e− |x+L|

λs

)
�(−x)

⎤
⎦. (B2)

APPENDIX C: INTEGRATED CHARGE
CURRENT DENSITY

Here, we derive the expressions for the spatially integrated
charge current density used in Sec. V [Eqs. (48) and (54)],
but for linear-in-momentum SOC of any kind. The spatial
variation of the SOC is a steplike function, and therefore
the SU(2) field of Eq. (6) has a component localized right
at the interface, x = 0, and another one homogeneous inside
the Rashba conductor. Correspondingly, the charge current
density j1k in Eq. (37) has also an interfacial and a bulk
contribution:

j1k = −γ
[
δ(x)

(
A a

i δkx − A a
k δix

) + �(x)A c
k A b

i εcba
]

ja
i .

(C1)

Integrating this equation over x gives

J1k = −γ

[(
A a

i δkx − A a
k δix

)
ja
i |0 +

∫ ∞

0
A c

k A b
i εcba ja

i dx

]
.

(C2)

On the other hand, we can also integrate the continuity equa-
tion (3) over the semi-infinite Rashba conductor

∫ ∞

0
∂x ja

x dx +
∫ ∞

0
A c

k jb
k ε

cbadx = −
∫ ∞

0

Sa

τext
dx,

↓

ja
x |∞0 +

∫ ∞

0
A c

k jb
k ε

cbadx = −
∫ ∞

0

Sa

τext
dx, (C3)

where in the second line we have used the fact that ja
x |∞ = 0.

Substitution of Eq. (C3) into (C2) gives

J1k = −γ

(
A a

i δkx ja
i |0 − A a

k

∫ ∞

0

Sa

τext
dx

)
. (C4)

This expression is a general result for the integrated current
in any hybrid structure composed of a normal and a linear-in-
momentum SOC conductor with an interface at x = 0.
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