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Magnon crystals and magnetic phases in a kagome-stripe antiferromagnet
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In this paper we analyze the magnetization properties of an antiferromagnetic kagome-stripe lattice, motivated
by the recent synthesis of materials exhibiting this structure. By employing a variety of techniques that include
numerical methods such as density-matrix renormalization-group and Monte Carlo simulations, as well as
analytical techniques such as perturbative low-energy effective models and exact solutions, we characterize the
magnetization process and magnetic phase diagram of a kagome-stripe lattice. The model captures a variety of
behaviors present in the two-dimensional kagome lattice, which are described here by analytical models and
numerically corroborated. In addition to the characterization of semiclassical intermediate plateaus, it is worth
noting the determination of an exact magnon crystal phase which breaks the underlying symmetry of the lattice.
This magnon crystal phase generalizes previous findings.
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I. INTRODUCTION AND MODEL

The interplay between geometric frustration and quantum
fluctuations enhanced by low dimensionality results in a rich
behavior and variety of exotic phases such as spin liquids,
the experimental identification of which, despite theoretical
description [1–4], presents great challenges [5].

A paradigmatic case is the spin-1/2 kagome lat-
tice antiferromagnet, which finds experimental realiza-
tion in several compounds, such as the Herbertsmithite
ZnCu3(OH)6Cl2 [6], α-vesignieite BaCu3V2O8(OH)2 [7],
and [NH4]2 [C7H14N][V7O6F18]5 [8]. The spin-1/2 kagome
lattice antiferromagnet has been proposed to exhibit a spin-
liquid ground state, although this aspect has not been fully
clarified yet [9–13].

Another source of exotic phases is the Bose-Einstein con-
densate (BEC), where a macroscopic number of bosons con-
figure a single-particle quantum state [14]. In antiferromag-
netic insulators, the magnetic excitations are usually bosonic
magnons, the interaction of which with the underlying crys-
talline lattice can lead to a rich phenomenology, including
BECs [15,16].

The presence of an external magnetic field incorporates an
extra degree of freedom that favors the emergence of a variety
of behaviors and phases. The simple image of a magnetization
curve that grows gradually with the magnetic field until it
reaches saturation, in frustrated quantum systems, can became
considerably more complex.

On the one hand, flat regions, called plateaus, can emerge
where magnetization remains constant at a certain fraction
of saturation, in a range of applied magnetic fields [17].
Plateaus can have a classical origin, in the sense that they
can be described in terms of relative orientations of classical
spins [18]. However, there are plateaus that only admit a
quantum description, in terms of elemental magnon or spinon
excitations [19].

Another ingredient is the appearance of jumps in the
magnetization curve, due to different mechanisms, such as
first-order transitions between classical [20] or quantum states
or BECs of a purely quantum nature [21].

Interacting magnons in a BEC can be localized on certain
places of the lattice due to frustration and crystallize through
a superfluid-insulator transition, giving rise to a “magnon
crystal” phase [21,22].

Magnon crystal phases are present in a variety of frustrated
magnets. In particular, the spin-1/2 kagome lattice antiferro-
magnet magnon crystal phases have been predicted below sat-
uration [23,24] and found experimentally in the synthetic Cd-
kapellasite at very high magnetic fields where the magnons
localize on the hexagon of the kagome lattice [25].

The generality and richness of behaviors described before
is also expected in a reduced geometry. This aspect is further
enhanced by the recent synthesis of two tellurite sulfates
A2 Cu5(TeO3)(SO4)3(OH)4 with A = Na or K [26]. In these
compounds, the topological structure of Cu+2 ions exhibits a
one-dimensional kagome-stripe lattice. The experimental de-
termination of the crystalline structure shows that the kagome
stripe is distorted, showing five different Cu-Cu distances, as
indicated in Fig. 2(c) of Ref. [26]. In addition, the study of
these compounds suggests an antiferromagnetic behavior and
indicates the existence of antiferromagnetic order and some
field induced magnetic transitions.

Motivated by the mentioned compounds and phenomenol-
ogy we study the Heisenberg model on the kagome-stripe
lattice presented in Fig. 1, in the presence of an external
magnetic field:

H =
∑
〈i, j〉

Ji, j �Si · �S j − h
∑

i

�Sz
i . (1)

We start with a five-spin unit cell in the lattice and four dif-
ferent magnetic couplings Ji, j as schematized in Fig. 1. Note
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FIG. 1. Geometry of the kagome-stripe lattice considered in this
paper. The four antiferromagnetic couplings Ji, i = 1, . . . , 4 can be
different to model the lattice distortion. The unit cell is framed with
blue lines and presents geometrical frustration. The white integers
1, . . . , 5 are used to index the sites within the unit cell.

that, although the material involves five different couplings, in
this paper we consider a space of four couplings. In this way
an extra reflection symmetry is maintained, which simplifies
the analysis, without losing the complexity of the unit cell of
the material. This is also justified because it is not intended to
describe properly the material.

Throughout this paper we will concentrate on different
variants and limiting cases of the model to analyze the pos-
sible semiclassical and quantum phases that may be present
in this system, and that are of potential interest for the
description of the actual materials. In this context we would
like to highlight the study by Morita et al. [27], who analyze
the structure of magnetization curves in the subspace J1 = J3

(Fig. 1) of our model.
A central aspect of this paper is the analysis of the structure

of the magnetization curves of the model. In this context the

Oshikawa-Yamanaka-Affleck (OYA) theorem [28] provides
the necessary condition for the presence of magnetization
plateaus as

NS(1 − m) = integer, (2)

where N is the number of spins in the ground-state unit cell
presenting spatial periodicity and m = M

Msat
is the normalized

magnetization per site. According to (2), if the translational
symmetry of the lattice is preserved in the ground state (N =
5), the magnetization curve may have plateaus at m = 1/5 and
3/5. On the other hand, the emergence of plateaus at different
magnetization values is an indication of a spontaneous break-
ing of the translation symmetry in the ground state.

In this paper we will explore both variants of phases that
respect or break the underlying symmetry of the lattice, as
well as their semiclassical or quantum character. To this end
we will use a variety of analytical techniques that will allow
us to describe the different emerging plateaus in semiclassical
terms or by means of low-energy effective models, com-
plemented with numerical methods. The result is a single
model with a rich structure of phases, exhibiting semiclassical
signatures, as well as truly quantum aspects, as a generalized
crystal magnon phase.

The paper is organized as follows. In Sec. II we study
the presence of semiclassical (Ising-like) plateaus in the
magnetization curve, and we present the phase diagram in
a representative subset of the parameter space. For this we
employ density-matrix renormalization-group (DMRG) cal-
culations. The main part of this section concerns the analysis
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FIG. 2. Phase diagram of the model in a representative sector of the J3-J1 plane at J2 = 1 and J4 = 0.8, evaluated by means of DMRG
for a stripe with 180 spins (top left panel). The magnetic phases A, B, and C are defined by the presence of magnetization plateaus with
m = 1/5, 3/5, and both 1/5 and 3/5, respectively. Magnetization curves representative of each phase are depicted in bottom panels. We
selected (J3, J1) = ( 7

15 , 2
3 ), ( 11

5 , 2), and (1, 2
3 ) for A, B, and C phases, respectively. The plateaus widths, in units of h, corresponding to

m = 1/5 (m = 3/5) are shown in top middle (right) panels.
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of the origin of the semiclassical plateaus. This is rooted to
the classical kagome-stripe lattice model and finally to the
underlying Ising order of the unit cell. To this end, we study
this limiting case explicitly in several subsections, via Monte
Carlo simulations and low-energy effective models starting
from the strong plaquette (unit-cell) limit. The low-energy
model shows that semiclassical plateaus (in particular m =
3/5) are perturbatively connected with this limit, completing
the analysis of nonbreaking lattice symmetry phases of this
section.

In Sec. III we study phases with spontaneously broken
translational symmetry, in which a periodic structure of lo-
calized magnons emerges, and in particular at m = 4/5. For
a range of values within the parameter space we find exact
ground states of magnon crystal phases [21]. All these results
are complemented with numerical DMRG determination of
magnetization curves.

II. SEMICLASSICAL PLATEAUS

In this section we analyze the phases of semiclassical
plateaus at m = 1/5 and 3/5. These phases preserve the
lattice translational symmetry, according to the OYA theorem
given by (2). To determine the extension of the phases we
have evaluated the magnetization as a function of the applied
magnetic field for several values of the couplings, by means of
DMRG calculations for large stripes (200 spins). The DMRG
computations were performed with the open source code ALPS

[29]. For the calculations, we kept up to 500 states throughout
the paper, which proved to be enough to achieve the required
precision.

Due to the size of the parameter space, here we illustrate
our results in a sector of the J3-J1 plane at J2 = 1 and J4 =
0.8. This subspace captures regions where the plateaus exist
separately or coexist.

The results are presented in the phase diagram of Fig. 2 (top
left), where the A, B, and C phases correspond to the presence
of a magnetic plateau at m = 1/5, 3/5, and both 1/5 and 3/5,
respectively. At the bottom of Fig. 2 we show a magnetization
curve representative of each phase. Additionally, to evaluate
the evolution of the plateaus along the phase diagram, we
determined the plateau widths for each pair (J3, J1). The m =
1/5 (m = 3/5) plateau widths correspond to the top middle
(right) diagram in Fig. 2.

A. Correlation functions

To study the magnetic order associated with the semiclas-
sical plateaus of Fig. 2, we computed the 〈Sz

1Sz
n〉 correlation

function, at T = 0, using DMRG.
In Fig. 3 we present the results obtained for the correlation

function vs n (according to the numbering indicated in Fig. 1).
From the top, the first (second) panel corresponds to the
magnetic plateau of Fig. 2 bottom left (middle). The third and
fourth panels of Fig. 3 correspond to the m = 1/5 and 3/5
magnetic plateaus of Fig. 2 bottom right, respectively.

The most important aspect to recall is that the correlation
structure for all four plateaus analyzed here is in corre-
spondence with those obtained in the Ising limit, although

FIG. 3. 〈Sz
1Sz

n〉 correlation function on the magnetization plateaus
representative from each phase shown in Fig. 2 (bottom), calculated
by DMRG at T = 0, with J2 = 1. The index n follows the indexation
from the inset in the first panel of this figure, and m denotes the
plateau magnetization. Note that quantum fluctuations reduce the
correlation amplitudes. However, the signature in all four plateaus
is in complete agreement with the classical Ising limit, as we show
in Secs. II C and II D.
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FIG. 4. Top left (right): Plaquette Ising ground state for J2 >

J1 > J3 (J2 < {J1, J3}) with magnetization m = 1/5 (m = 3/5). Mid-
dle (bottom): Extension of local structures depicted above for finite
J4 > 0 in the kagome stripe with magnetization m = 1/5 (m = 3/5).

renormalized by quantum fluctuations. In the following sub-
sections (Secs. II C and II D) we explore this connection in
detail from the perspective of a classical Ising model on the
kagome stripe and from the isolated plaquettes, respectively.

B. Ising limit of the kagome stripe

In order to describe from a classical perspective the mag-
netic phases analyzed before, let us first consider the Ising
limit of the isolated plaquette, i.e., �S j = (0, 0, Sz

j ) and J4 = 0
in (1). The Hamiltonian for the plaquette in this case reads

Hj = J2
(
Sz

j,1Sz
j,2 + Sz

j,4Sz
j,5

) + J1Sz
j,3

(
Sz

j,1 + Sz
j,5

)
+ J3Sz

j,3

(
Sz

j,2 + Sz
j,4

)
. (3)

It is possible to identify collinear ground states corresponding
to Hamiltonian (3). Let us consider two different cases (both
are two-degenerate due to spin inversion symmetry), depend-
ing of the coupling’s ratio.

(1) Case I, J2 > J3 > J1 (J2 > J1 > J3): In this case
J1(J3) is frustrated and the magnetization of the plaquette is
m = 1/5. The last case is represented in Fig. 4 (top left).

(2) Case II, J2 < {J1, J3}: In this case J2 is frustrated
(independently of the relative values of J1 and J3) and the
magnetization of the plaquette is m = 3/5, as represented in
Fig. 4 (top right).

These local magnetic structures can be extended to the
complete kagome-stripe lattice, where the individual plaque-
ttes are coupled by J4 > 0. For case I, the result of this
interaction is a product state of N individual plaquettes in
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FIG. 5. Classical correlation function 〈Sz
1Sz

n〉 on the m = 1/5
magnetization plateau (h = 1.0) calculated using a Monte Carlo
simulation in the Ising limit of the model for temperatures T1 = 0.5
(red), T2 = 1.1 (blue), and T3 = 1.7 (yellow), for J1 = 2

3 , J2 = 1, and
J3 = 1 (same coupling constants as the third panel from the top of
Fig. 3). For T = T1 no thermal excitations are found in the system,
indicating that the spins are parallel or antiparallel with each other.
For T = T3 the temperature is high enough for the correlations to
rapidly fall off with n. For T = T2 the correlations 〈SzSz〉 obtained
by the classical Monte Carlo simulation are very similar to those
calculated by DMRG using the Heisenberg model at T = 0.

exactly the same state, and the (normalized) magnetization is
still m = 1/5, as shown in Fig. 4 (middle).

In case II at h = 0, J4 > 0 couples the plaquettes and the
stripe has m = 0. However, at high h, again we can construct
a state with N individual plaquettes in the same state, with
m = 3/5, as we depict in Fig. 4 (bottom).

The above shows that it is possible to construct classical
states for the kagome stripe (Fig. 4) with the same magnetic
structure of plateaus at m = 1/5 and 3/5, obtained via a fully
quantum treatment of the model by means of DMRG (Fig. 2),
which are consistent with Fig. 2 of Morita et al. [27]. In
addition, the correlations calculated by DMRG (3) also show
the same structure as the Ising case as it is further investigated
in the following subsection.

C. Quantum vs thermal fluctuations

To compare the role of thermal fluctuations at classical
level with zero-temperature quantum effects, we analyzed
the finite temperature classical limit of the model. For this
we carried out Monte Carlo simulations of the Ising model,
i.e., �Si = (0, 0, Sz

i ), in (1), with the Metropolis algorithm
[30], employing 500 sites and 1500 independent systems. To
prevent the system from stopping in a local-energy minimum
at low T , we performed an annealing process, starting with
a high-temperature state (the system is in the paramagnetic
phase) and then lowering the temperature progressively until
no thermal fluctuations are found.

In Fig. 5 we present the results of the calculated correla-
tions 〈Sz

1Sz
n〉 for T1 = 0.5, T2 = 1.1, and T3 = 1.7, with T in

units of energy. Note that for T = T1 no thermal excitations
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FIG. 6. Energies as functions of magnetic field for the isolated
plaquette, for J1 = J2 = J3 = 1. Ground states with magnetizations
m = 1/5, 3/5, and 1 are indicated with blue, red, and orange lines,
respectively. Critical magnetic fields h(1)

0 = 0.5 and h(2)
0 = 2.5 are

highlighted by dashed vertical lines, where the ground state becomes
three- and twofold degenerate, respectively.

are found in the system, indicating that the spins are parallel
or antiparallel with each other. On the other hand, for T =
T3 the temperature is high enough for the correlations to
rapidly fall off with n. Finally, for the intermediate T = T2 we
highlight that the correlations 〈Sz

1Sz
n〉 obtained by the classical

Monte Carlo simulation are very similar to those calculated by
DMRG using the Heisenberg model at T = 0. This indicates
that the effect of quantum and thermal fluctuations gives an
analogous result in this correlation function.

D. Effective model on semiclassical plateaus

Here we present an analytical approach for the treatment
of semiclassical plateaus, which complements the numeri-
cal methods considered before. The method consists in the
construction of an effective Hamiltonian, based in quantum
degenerate perturbation theory [31–36]. In the last part of the
paper we apply the effective model technique for the case of
quantum plateaus that break the translational invariance of the
lattice.

For the present case, we start by considering a system
of isolated plaquettes, i.e., J4 = 0 (see Fig. 1), the Hilbert
space of which has dimension d = 25. For fixed values of the
couplings J1, J2, and J3, it is possible to diagonalize numeri-
cally the plaquette Hamiltonian and obtain all the energies as
functions of the magnetic field h. This is illustrated in Fig. 6
for the homogeneous plaquette case (J1 = J2 = J3 = 1).

Note that for h > 0 the plaquette has three different ground
states corresponding to magnetizations m = 1/5 (blue), m =
3/5 (red), and m = 1 (orange), depending on the magnetic
field value. At the critical fields h(1)

0 and h(2)
0 (corresponding

to the dashed vertical lines in the figure), the ground state
becomes degenerate. In particular, at h(1)

0 the ground state is
threefold degenerate, although this is a particularity of the
homogeneous case where all the couplings are equal.

The next step is to consider a weak coupling between the
plaquettes, in particular, at the level crossing.

For J4 finite, we separate the complete Hamiltonian in two
terms:

H = H0 + Hint, (4)

where

H0 =
∑

n

[
J1(�Sn,1 · �Sn,3 + �Sn,3 · �Sn,5)

+ J2(�Sn,1 · �Sn,2 + �Sn,4 · �Sn,5)

+ J3(�Sn,2 · �Sn,3 + �Sn,3 · �Sn,4) − h0

5∑
m=1

Sz
n,m

]
(5)

corresponds to the Hamiltonian of a single plaquette, where
h0 is the magnetic field at the energy-level crossing, and

Hint =
∑

n

[
J4(�Sn,2 · �Sn+1,1 + �Sn,5 · �Sn+1,4)

− (h − h0)
5∑

m=1

Sz
n,m

]
(6)

is the plaquettes-interaction term.
Considering 0 < J4, h − h0 � Ji, i = 1, 2, 3, at first order

of perturbation theory we have

H (1) =
∑

i j

|pi〉 〈pi|Hint|p j〉 〈p j | , (7)

where |pi〉 are the 2Nc degenerated ground states, Nc being the
number of unit-cell plaquettes. Computing (7) and expanding
the result locally in the {σ 0, σ i

2 } basis, where σ 0 is the 2 × 2
identity matrix and σ i are the Pauli matrices, one arrives (up
to a constant term) at a low-energy effective Hamiltonian
corresponding to a spin-1/2 anisotropic Heisenberg chain
with only nearest-neighbor interactions:

Heff =
∑

n

Jxy
(
Sx

nSx
n + Sy

nSy
n

) + JzzS
z
nSz

n − h̃Sz
n, (8)

in which the effective couplings Jxy and Jzz and the effective
magnetic field h̃ depend on the original couplings Ji and
magnetic field h. Note that this model is valid for twofold de-
generate local ground states, which translates into an effective
spin-1/2 per site.

For large enough h̃, the ground state of (8) is the magnon
vacuum |0〉 ≡ |↑↑↑↑ . . .〉 (or |↓↓↓↓ . . .〉).

We now compute the one-magnon dispersion relation:

ε±(k) = Jxy cos(k) − Jzz ± h̃. (9)

From (9) we calculate the edges of the plateaus around the
critical field where the first-order expansion is made. We
impose the condition of gap closure, which determines the
edge of the plateaus in terms of the magnetic couplings of
the effective model:

h̃ = ±(Jxy + Jzz ). (10)

In Fig. 7 we depict four sectors of magnetization curves
showing the transition between m = 3/5 and 1 plateaus. The
green dashed lines mark the plateau edges as calculated by the
low-energy effective Hamiltonian technique, using (10), for
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FIG. 7. Magnetization curves near saturation for Ji = 1, i =
1, 2, 3 and J4 = 0.05, 0.1, 0.15, 0.2 from top to bottom, respectively.
Green dashed lines correspond to the edge of the plateaus predicted
by the closure of the gap in the magnon dispersion (9).

J4 = 0.05, 0.1, 0.15, 0.2 and Ji = 1, i = 1, 2, 3. We found
a very good agreement in the perturbative regime between
analytical and numerical results.
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FIG. 8. Kagome-stripe scheme where the bold hexagon denotes
the region L, and the ellipse represents a localized magnon. With
numbers we index the sites of L, and with letters a, b, c, and d we
index the sites in interaction with the region L. Here we show only
two couplings, J ′ and J , both subject to (13).

The treatment for the case m = 1/5 is conceptually similar
to m = 3/5 and it has also been studied numerically in other
works [27]; we will not elaborate more on the subject here.

This concludes our identification of classical plateaus. In
Sec. III B the presence of quantum plateaus is studied. These
plateaus will not have a classical counterpart correspondence
but a purely quantum-mechanical origin which breaks the
lattice symmetry.

III. QUANTUM PLATEAUS OF LOCALIZED MAGNONS

In this section we study phases with spontaneous breaking
of the lattice translational symmetry, in which frustration
induces a periodic structure of localized magnons associated
to intermediate (or fractional) plateaus. Noteworthy, we find
an exact magnon crystal ground state with m = 4/5 of the
anisotropic Heisenberg model, which is a generalization of the
state reported by Schulenburg et al. [21].

A. Magnon crystal phase in the anisotropic kagome stripe

Let us first consider the anisotropic version of the Heisen-
berg model on the kagome stripe (1) in a magnetic field, the
Hamiltonian of which reads

H =
∑
〈i, j〉

Ji j

[
�Sz

i Sz
j + 1

2
(S+

i S−
j + S−

i S+
j )

]
− hSz. (11)

At high magnetic field the ground state is the fully polarized
ferromagnetic state |0〉 ≡ |↑↑↑↑ . . .〉 and the lowest-energy
excitations can be written in terms of a linear combination of
one-magnon states as

|1〉 =
∑

l

alS
−
l |0〉 . (12)

Taking a particular set of coupling values, the magnon dis-
persion relation may be independent of the momentum k,
giving rise to a flat band spectrum. This implies that magnon
excitations can be localized in a finite region of the stripe.

It is possible to construct the exact eigenstate of (11), with
localized magnons in the region L represented by the bold
hexagon in Fig. 8.

The necessary and sufficient condition for decoupling of
the local state from the rest of the system is∑

l ε L

alJlα = 0, (13)
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where Jlα couples the spins �Sl and �Sα , with l ε L and α =
a, b, c, d (see Fig. 8). It is possible to satisfy (13) by taking

al = (−1)l

√
6

, l ε L, (14)

with the indexation of Fig. 8, and the coupling condition

J ′ = J
2� + 1

� + 1
, (15)

where J ′ couples contiguous two-triangle-cells (the unit cell
framed in Fig. 1) and J couples spins inside this unit cell as
shown in Fig. 8. This is the exact state reported by Schulen-
burg et al. [21].

The exact ground state of (11) previous to saturation is
the state with N/2 localized noninteracting magnons (with
N the number of unit cells) and presents magnetization m =
4/5. The presence of this exact solution can be observed in
the magnetization curve as a jump of δm = 1/5 just below
saturation [21]. Moreover, a fully exactly factorized ground
state has necessary short-range entanglement entropy. Recip-
rocally, the property of gapped systems to present short-range
entanglement entropy [37] gives further indications that, at
this point, the system is fully gapped, implying, in particular,
the presence of a magnetization plateau. For example, imagine
that one wishes to describe the low-energy behavior of the
system in this point with a field theory description. Among
the degrees of freedom of the low-energy description, the
magnetic sector is the one related to the presence of a plateau
in the magnetization curve: a gap in this sector implies a
plateau. On the other hand, in order to obtain a short-range
entanglement, this field theory should contain only short-
ranged or gapped degrees of freedom. This then implies a
gap also in the magnetic sector and thus the presence of a
magnetization plateau.

We have constructed the magnetization curve of model (11)
satisfying the coupling condition (15) for several values of
anisotropy �, by means of DMRG. The results are shown in
Fig. 9, where a macroscopic magnetization jump to satura-
tion can be observed. In addition, a magnetization plateau is
present at m = 4/5. This plateau is consistent with the OYA
theorem 2 provided that the ground state unit cell contains ten
spins. Therefore, the system breaks spontaneously the original
lattice translation symmetry, doubling the size of the unit cell
as is expected for the noninteracting localized magnon state.

B. Effective model on quantum plateaus of localized magnons

Here we further study the nature of plateaus with spon-
taneous breaking of the translational symmetry, in particular
m = 4/5 and the connection with localized magnons. To this
end we constructed a low-energy effective Hamiltonian via
degenerate perturbation theory. First note that, according to
(15), J ′(� = 1) = 3/2J . This suggests the use of a more con-
venient unit cell including the strongest coupling J ′ as shown
in Fig. 10. The unit cells (which we call “pencil cells”) contain
two different couplings J and K and are interconnected via J2

and K2.
To illustrate the method we fixed (J, K ) = (1.5, 1), so that

for (J2, K2) = (1, 1) the model satisfies (15) and the system is

FIG. 9. Macroscopic magnetization jump (δm = 1/5) to satura-
tion calculated by DMRG for a strip with 150 spins, on the coupling
condition (15) for three different anisotropies, which shows numeri-
cally the result of the presence of N/2 noninteracting magnons in the
stripe as a first excited state. Additionally, there is a m = 4/5 plateau.

in an exact magnon crystal state, which we call from now on
“point I.”

Our effective model starts from decoupled pencil cells,
i.e., (J2, K2) = (0, 0), rendering point I difficult to access
perturbatively. However, we will see that the model captures
properly the phases with m = 4/5, associated with localized
magnons.

To construct the effective model we start by separating the
Hamiltonian into H = H0 + Hint, where

H0 =
∑

n

[
J (�Sn,1 · �Sn,2 + �Sn,5 · �Sn,4)

+ K (�Sn,2 · �Sn,3 + �Sn,3 · �Sn,4) − h0

5∑
m=1

Sz
n,m

]
, (16)

in which h0 is, as in Sec. II D, the magnetic field where the
isolated pencil-plaquette ground state becomes degenerated
due to the level crossing, and

Hint =
∑

n

[
J2(�Sn,2 · �Sn+1,1 + �Sn,4 · �Sn+1,5)

+ K2(�Sn,3 · �Sn+1,1 + �Sn,3 · �Sn+1,5) − (h − h0)
5∑

m=1

Sz
n,m

]
.

(17)

J
K

J2

K2
1 2

3
45

6 7
8

910

FIG. 10. Kagome-stripe scheme using the “pencil unit cell”
(framed with blue lines). This unit cell is not frustrated and composed
by five sites, with two couplings, J and K , fixed here to 1.5 and
1, respectively. The cells are coupled by J2 and K2. The numbers
indicate the site indexation.
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1.2

1.4

K2

J
2

FIG. 11. Blue lines: The limits of the region where the effective
Hamiltonian predicts the presence of a fractional m = 4/5 plateau
using the Bethe ansatz. Red lines: The corresponding result using the
spinon dispersion relation approach on the effective model. The solid
circles indicate the points selected to evaluate, by means of DMRG,
the magnetization curves (Fig. 12) and magnon localization (Fig. 13).
In particular, pink circles denote the presence of an exact solution, the
crystal magnon phase, of localized magnons.

By performing first-order perturbation theory as before, we
get a low-energy effective Hamiltonian that predicts a region
in couplings space where a fractional plateau at m = 4/5
emerges. We proceeded in two ways, as shown in Fig. 11. In
blue we plot the solutions for � = 1 in the effective model
which, according to the Bethe ansatz [38], indicates that the
effective chain does not pass through the Néel phase [36],
and consequently the kagome stripe does not have a fractional
plateau.

In red, we plot the solutions for a gapless spinon dispersion
relation over the Néel state where both critical magnetic fields

FIG. 12. Partial magnetization curves computed by means of
DMRG for J = 3/2, K = 1 and J2 = K2 ≡ J̃ = 0.1, 0.2, . . . , 1 us-
ing 24 pencil unit cells. Although there is a large slope transition
in all the cases, for J̃ = 0.5 there is a clean jump from m = 4/5
to saturation, as in the J̃ = 1 case (point I). This is a signature
of a second exact solution of localized magnons which we named
“point II.”

FIG. 13. Transition between hexagon and pencil cell localized
magnons. Linewidths indicate the 〈S+

i S−
j 〉 correlation, for � = 1,

J = 3/2, K = 1 and K2 = J2 ≡ J̃ = 0.1, 0.2, . . . , 1, computed by
DMRG. Blue (red) lines correspond to negative (positive) correla-
tions. The fluctuations are located on hexagons or pencil cells for J̃
near the unity or zero, respectively.

(plateau edges) are equal. Both regions contain the exact
solution (J2, K2) = (1, 1) (point I), represented by a pink
circle in Fig. 11, although the model is truly valid only in the
J2, K2 � J, K limit.

To analyze the evolution of the fractional m = 4/5 plateau
from the perturbative regime until reaching point I, we eval-
uated numerically the magnetization curves by DMRG in the
line J2 = K2 ≡ J̃ , for J̃ = 0.1, 0.2, . . . , 1 (points represented
by circles in Fig. 11), with � = 1.

The results are presented in Fig. 12. As it can be observed
in all cases there is a transition to saturation with a large slope,
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−0.4
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a l
(

)

FIG. 14. Amplitudes a1 = a5 (pink), a2 = a4 (yellow), a3

(green), and a6 (violet) as functions of the anisotropy �, for the
generalization of the magnon crystal phase of point II. Dashed
horizontal lines show the solution (14) (exact ground state in point
I). Both states are equal at � = 2.

together with an increase in the m = 4/5 plateau width. In
particular, for J̃ = 0.5 there is an abrupt jump of δm = 1/5,
identical to the magnetization jump observed for point I (J̃ =
1). Motivated by this result, we proposed a state of the form
(12) and found a second exact solution of localized magnons,
that we named “point II,” represented by a pink circle at J2 =
K2 = 0.5 in Fig. 11.

To analyze the transition between hexagon and pencil cell
localized magnons, we numerically evaluated the 〈S+

i S−
j 〉

correlation functions, by means of DMRG. The results are
presented in Fig. 13, where we show 〈S+

i S−
j 〉 for J2 = K2 ≡

J̃ = 0.1, 0.2, . . . , 1 (corresponding to the ten dots in Fig. 11).
As it can observed, in the homogeneous case where J̃ = 1 the
fluctuations are localized on the hexagons as predicted. Note
that this particular case is also depicted in Fig. 5(a) of Morita
et al. [27]. On the other hand, as J̃ decreases, the fluctuations
localize on pencil cells progressively.

C. Generalized magnon crystal phase

To generalize the solution in point II to the anisotropic
case (� �= 1) we proposed a coupling set {J = 2�+1

�+1 K, K =
1, J2(�) = K2(�)} (following the notation from Fig. 10) and
we found the solution

K2(�)

K
=

√
12�3(� + 1) + 1 − (2� + 1)

2�(� + 1)
, (18)

together with a set of couplings al (�), l ε L, plotted in Fig. 14.
We highlight that for � = 2 the coefficients al are exactly

as in (14), as shown in Fig. 14; while the couplings are
{J = 5/3, K = 1, J2 = K2 = 1}. In addition, K2(� = 2) and

K have the same value as in the point-I case, while J is
different. Finally let us note that, for �ε (0, 1/

√
3), (18) is

negative, indicating ferromagnetic couplings.

IV. CONCLUSIONS

In the present paper we studied the magnetization prop-
erties of an antiferromagnetic kagome-stripe lattice. We con-
structed a magnetic phase diagram which shows three mag-
netic phases with the presence of m = 1/5 or 3/5 magnetic
plateaus, or both simultaneously. These plateaus are classical
in the sense that they can be understood in terms of the Ising
limit, by studying the magnetization curves and the 〈Sz

i Sz
j〉

correlation function as well as comparing quantum DMRG
calculations with classical Monte Carlo simulations in the
Ising ground state for different coupling configurations.

We calculated the plateau edges by means of the low-
energy effective Hamiltonian technique in the strong plaque-
ttes limit. The same technique proved to be remarkably useful
in predicting the presence of a fractional m = 4/5 quantum
plateau, a plateau that cannot be explained in the Ising Limit.
This plateau is bounded to the presence of a localized magnon
phase, as can be seen by computing the 〈S+

i S−
j 〉 correlation

function with DMRG. Furthermore, we found an exact ground
state with m = 4/5 (just before saturation, due to a magneti-
zation jump) of the anisotropic Heisenberg Hamiltonian, that
provides a generalization of the state found by Schulenburg
et al. [21]. This gives another example of an exactly factorized
magnon crystal ground state which finds its origin in the
strong frustrating nature of the Hamiltonian [39,40].

From a more general point of view, magnon crystals are
known to be present in a wide variety of one- and two-
dimensional frustrated systems [21]. The hallmark of these
system is a magnon flat band producing an exactly factorized
ground state of localized magnons which is purely quantum
mechanical. The magnetic phase diagram of the model studied
here has the richness of having both this kind of factorized
quantum state as well as magnetization classical (Ising like)
plateaus. In particular, this phenomenology is also present
in the fully two-dimensional kagome model, indicating that
some essential aspects of the system transcend dimensionality.
This has been an additional motivation to study the kagome-
stripe model, which also provides a more accessible numerical
treatment.

Finally, the richness of this system makes it an ideal
laboratory for studying the behavior of such different gapped
states in the presence of perturbations like transverse field or
Dzyaloshinskii-Moriya interactions.
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