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Thermodynamic properties of the interacting homogeneous electron gas are calculated using a finite-
temperature cumulant Green’s function approach over a broad range of densities and temperatures up
to the warm dense matter regime T ∼ TF , where TF is the Fermi degeneracy temperature. These properties can
be separated into independent particle and exchange-correlation contributions, and our focus here is on the latter.
Our approach is based on the Galitskii-Migdal-Koltun and electron number sum rules from the finite temperature
many-body Green’s function formalism, together with an extension of the cumulant Green’s function to finite
temperature. Previously this approach yielded exchange-correlation energies and potentials in good agreement
with quantum Monte-Carlo calculations. Here the method is extended for various thermodynamic quantities
including the chemical potential, total energy, Helmholtz free-energy, electronic equation of state, specific heat,
and isothermal compressibility, which optionally include spin dependence. We find that the exchange-correlation
contributions are weakly varying at low temperature but exhibit significant temperature dependence in the WDM
regime, as well as a crossover from exchange- to correlation-dominated behavior. In contrast to the T = 0+

limit, we also find that renormalization effects are largely but not completely suppressed at finite temperature.
Comparisons with other approaches at various levels of approximation are also discussed.
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I. INTRODUCTION

Finite temperature (FT) effects in electronic systems are
of both fundamental and practical importance. Physical prop-
erties depend strongly on whether the temperature T is
large or small compared to the Fermi temperature TF ≈
1.84/r2

s , which is typically a few eV/kB at normal elec-
tron densities n = N/V . Here kB is Boltzmann’s constant
and rs = (4πn/3)−1/3 is the Wigner-Seitz density parameter.
[Throughout this work we use Hartree atomic units me =
e = h̄ = (4πε0)−1 = kB = 1, i.e., energies and temperatures
in Hartrees and distances in Bohr, unless otherwise specified.
We also suppress arguments of temperature and density un-
less needed for clarity.] At very low temperatures T � TF ,
electrons are nearly degenerate and Fermi liquid behavior is
applicable. Recently, however, there has been considerable in-
terest in the warm-dense-matter (WDM) regime where T is of
order TF . This regime is typically encountered in applications
ranging from XFEL sources to laser-shocked systems, inertial
confinement fusion and planetary interiors [1–3]. In WDM,
condensed matter becomes partly ionized and exchange ef-
fects are significantly reduced. Matter also becomes luminous
due to black-body radiation. Thus the nature of exchange and
correlation at finite T becomes an important consideration,
posing a daunting finite-temperature many-body problem.

Calculations of thermodynamic properties of weakly cor-
related electronic systems can be obtained from various meth-
ods, including quantum Monte Carlo (QMC) [4–8], finite-
temperature DFT [9–11], and many body perturbation theory
(MBPT) [12–17]. Currently QMC is considered to be the most
accurate first principles method. However this approach can

be computationally intensive and is not routinely available for
many materials. Instead, practical calculations are often based
on the FT generalization of DFT. Although in principle, FT
DFT is exact, its use in practice depends on the accuracy of FT
exchange-correlation functionals [18–20]. Such functionals
are typically constructed from fits to QMC calculations for
the interacting homogeneous electron gas (HEG) [4–8,21,22].
Nevertheless both QMC and DFT have various limitations.
For example, there is a paucity of accurate QMC data at very
low T � TF , and currently available FT exchange-correlation
functionals have limited accuracy outside the range of avail-
able data and for derived quantities like the specific heat
[19]. Moreover, these approaches are not designed to address
various excited state properties such as optical spectra and in-
elastic losses at elevated temperatures [23,24]. Thus it is desir-
able to develop alternative approaches. Thermal effects from
phonons and other excitations are also generally important in
condensed matter [12–14,25,26], but their contributions to the
thermodynamics are essentially additive and are not discussed
here.

In an effort to address these limitations, we follow an
approach within MBPT based on the Green’s function (GF)
formalism of Martin and Schwinger (MS) [27] with a finite-
temperature retarded cumulant (RC) Green’s function [28]. In
this approach thermodynamic properties are derived in terms
of the Galitskii-Migdal-Koltun (GMK) and electron number
sum rules [14,27–29]. Our aim is to extend the approach
for thermal properties of the HEG, for both unpolarized
and spin-polarized cases, over a broad range of temperatures
including the WDM regime. These properties can generally be
separated into independent-particle and exchange-correlation
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parts. Since the independent-particle contributions for the
HEG are known to high numerical accuracy [25], we focus
here on exchange-correlation contributions [12–14,23,30–32].
Although the finite temperature Green’s function theory has
been known for many years, e.g., from the classic works of
Martin and Schwinger (MS) [27] and Luttinger and Ward
(LW) [33] and there have been many studies of low tem-
perature behavior [34], surprisingly little attention has been
devoted to its application at temperatures of order TF [15,28].
Formally, the FT GF approach is based on a Matsubara rep-
resentation of the Green’s function which can be analytically
continued to the real axis [12–14]. Variational methods such
as those based on the LW functional have also been devel-
oped [35]. In the zero-temperature limit, the theory simplifies
[33,36]. Renormalization effects are suppressed and Fermi
liquid behavior and the quasiparticle approximation become
applicable [13,33,36,37]. Another of our aims here is to assess
to what extent these simplifications remain valid at finite T .

In the remainder of this paper Sec. II describes the formal-
ism used, Sec. III contains results for several thermodynamic
properties of the unpolarized HEG, and Sec. IV those of
the spin-polarized HEG. Section V contains a summary and
conclusions.

II. FORMALISM

A. Green’s function and spectral function

Green’s function methods can be formulated in various
ways. Typically the Green’s function G is obtained using the
Dyson equation G = G0 + G0�G, where G0 is the indepen-
dent particle Green’s function, and � is the one-electron self-
energy. This equation is also valid at finite temperature. In the
GW approximation of Hedin, for example, the self-energy is
calculated to leading order the screened Coulomb interaction
W [38]. Thus �GW ≡ iGW and vertex corrections are ne-
glected. The effects of electron-electron interactions are man-
ifested in the structure of the single-particle spectral function
Ak (ω), which characterizes the energy distribution of a given
single particle level k in which G is assumed to be diagonal,

Ak (ω) = − 1

π
Im Gk (ω). (1)

An attractive alternative to the GW -Dyson equation ap-
proach is the retarded cumulant Green’s function, which we
have recently extended to finite temperature [28]. At T =
0 this approach has been applied in a variety of contexts
[39–43]. Among its advantages the method is formally exact
for the model of an isolated electron coupled to bosons
[44], and it generally improves on the GW approximation
[38,45,46], since it implicitly includes vertex corrections and
a better description of satellites. Another is that the approach
permits a physical interpretation of exchange correlation ef-
fects in terms of physical quantities such as dielectric response
[47]. In the time domain, the cumulant GF has a pure expo-
nential representation, and the spectral function is obtained
from its Fourier transform

Gk (t ) = −iθ (t )e−iεx
k t eC̃k (t ), (2)

Ak (ω) = − 1

π
Im

∫
dω eiωt Gk (t ). (3)

Here the one-electron energy εx
k = ε0

k + �x
k is defined to

include the static exchange energy �x
k = ∑

q vk−qnq, where
vq = 4π/q2 is the bare Coulomb potential, ε0

k = k2/2, and
nk (T ) is the temperature dependent occupation number de-
fined in Eq. (11) below. Thus the static-exchange and dynamic
correlation contributions are separable, i.e., Ck (t ) = −i�x

k t +
C̃k (t ) [47]. This formalism is similar to that for T = 0, except
for the substitution of a finite temperature GW self energy
�GW

k (T ).
The cumulant formulation of the Green’s function can

be justified by the quasiboson approximation [38], in which
electron-electron interactions are represented in terms of elec-
trons coupled to bosonic excitations. A prescription for the
cumulant C̃(t ) can be obtained in analogy to that at T = 0,
by expanding both the cumulant and Dyson Green’s function
in terms of the screened Coulomb potential W , and compar-
ing term by term. Carried to all orders the cumulant GF is
formally exact. However, as in our original development [28],
we limit the approximation for the cumulant here to first order
in W . The retarded cumulant C̃k (t ) is then obtained in terms
of the retarded GW self energy �GW , i.e.,

C̃k (t ) =
∫

dω
γk (ω)

ω2
(e−iωt + iωt − 1), (4)

γk (ω) = 1

π

∣∣Im �GW
k

(
ω + ε0

k

)∣∣. (5)

These relations are valid at all temperatures, and their temper-
ature dependence is implicit in that of the self-energy [28,45].
The FT GW self-energy can be determined at various levels of
self-consistency as discussed below. Once the self-energy is
obtained, the cumulant kernel γk (ω) is given by its imaginary
part from Eq. (5). The kernel γk (ω) reflects the quasiboson
excitation spectrum, with peaks corresponding to those in the
loss function L(q, ω) = |Im ε−1(q, ω)| ∝ |Im�GW

k (ω + εk )|,
as expected on physical grounds. Equation (4) corresponds
to the Landau representation [38,44,48], which, along with
the positivity of γk (ω), ensures a positive definite spectral
function. The form for the cumulant in Eq. (4) yields a
quasiparticle peak of strength Zk = exp(−ak ), where Zk is
the renormalization constant, and ak = ∫

dω γk (ω)/ω2 is the
net strength of the satellites. The quasiparticle energy is then
εk = ε0

k + 	k , where 	k = �x
k + ∫

dω γk (ω)/ω. The Landau
form also implies that both C̃(0) and (dC̃(t )/dt )|t=0 are
zero, so the spectral function is always normalized to unity
with a first moment given by the unshifted bare one-electron
energy εx

k .

∫
dω Ak (ω) = 1;

∫
dω ωAk (ω) = εx

k . (6)

B. Finite T GW self-energy

As outlined above, the retarded cumulant Green’s function
is dependent on the retarded one-particle self-energy �k (ω),
which can be calculated from MBPT with the Matsubara
Green’s function [14,31]. Although more elaborate approxi-
mations are possible, here we use the FT GW approximation
for �GW

k (ω) at the G0W 0 level, i.e., with the noninteracting
Green’s function G0 and the RPA screened interaction W 0 =
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ε−1(q, ω)vq, where the dielectric function is given by

ε(q, ω) = 1 + 2vq

∫
d3k

(2π )3

fk+q − fk

ω − εk+q + εk
. (7)

With these approximations, the self energy corresponds to that
for electrons coupled to bosons, with a form similar to the
Migdal approximation for electrons coupled to phonons [31],

�GW (ω; n, T )

=
∫

dω′ d3q

(2π )3
|Im W (q, ω′)|

×
[

f (εk−q) + Ñ (ω′)
ω + ω′ − εk−q + iδ

+ 1 − f (εk−q ) + Ñ (ω′)
ω − ω′ − εk−q + iδ

]
. (8)

Here Ñ (ω) = 1/(eβω − 1) is the Bose factor, which domi-
nates the temperature dependence at high T since Ñ (ω) →
kBT/ω. The RPA expression for W 0 is analogous to that
often used in zero-temperature GW 0 approximations [49]. The
integral for the imaginary part ε2 of ε(q, ω) [50,51] in Eq. (7)
can be performed analytically and the real part ε1 can then be
calculated via a Kramers-Kronig transform. This yields the
FT loss function L(q, ω) = −Im ε−1(q, ω) = ε2/(ε2

1 + ε2
2 ).

For the HEG L(q > 0, ω) exhibits broadened and blueshifted
plasmon peaks with increasing T [23,51].

C. Electron number and energy sum rules

As in the formalism of MS [27], our treatment of the
thermodynamics of many-electron systems starts from the
grand potential �(μ, T ), as obtained from the grand canonical
partition function (μ, T ) = exp(−β�) = Tr exp[−β(H −
μN )], where H is the full N-electron Hamiltonian, μ the
chemical potential, and β = 1/kBT . Within MBPT, �(μ, T )
can be expressed in terms of the one-electron Green’s function
[27,33]. Thermodynamic properties are then obtained using
sum rules for the total electron number and energy [27],
together with thermodynamic identities. Thus all thermody-
namic quantities can be derived formally from effective one-
electron properties.

First using the relation N = ∂�/∂μ the total electron
number N in a system of volume V at fixed electron density
n = N/V in the thermodynamic limit is given by

N (μ, T ) =
∑

k

∫
dω Ak (ω) f (ω), (9)

=
∑

k

nk (μ, T ). (10)

Here f (ω) = 1/[eβ(ω−μ) + 1] is the Fermi factor, μ =
μ(T, n) the chemical potential which is determined self-
consistently by charge conservation N (μ, T ) = N , and

nk (μ, T ) =
∫

dω Ak (ω) f (ω) (11)

is the mean occupation number of state k at finite T . The
temperature and chemical potential dependence in N (μ, T )
stems from that in the Fermi factors f (μ, T ) and the
Bose factors Ñ (ω) in the construction of W (ω), �GW (ω),
and Ak (ω).

Next, the Galitskii-Migdal-Koltun (GMK) sum rule is
used to obtain the net electronic energy per particle ε(T ) =
E (μ, T )/N for fixed n in the thermodynamic limit [14,27,29].
The total energy E (μ, T ) is given by

E (μ, T ) =
∑

k

∫
dω

1

2

(
ω + ε0

k

)
Ak (ω) f (ω). (12)

The GMK sum rule is valid for any Hamiltonian with only pair
interactions. While the GMK sum rule depends only on one-
particle properties, it is nonvariational, and only exact when
the true Green’s function is known [52]. A constraint on the
approximation for the spectral function is given by the identity
(∂E/∂μ)T = −T (∂N/∂T )μ [27].

To facilitate the calculations, the sum rules in Eqs. (9) and
(12) can be expressed as one-dimensional Fermi integrals over
the one-electron density of states per unit volume g(ω) of
the interacting system, and similarly for the electron energy
density of states per unit volume ξ (ω),

n(μ, T ) =
∫

dω g(ω) f (ω), (13)

u(μ, T ) = nε(μ, T ) =
∫

dω ξ (ω) f (ω), (14)

where

g(ω) = 1

V

∑
k

Ak (ω), (15)

ξ (ω) = 1

V

∑
k

1

2

(
ω + ε0

k

)
Ak (ω). (16)

However, the usual Sommerfeld expansion techniques for
approximating these Fermi integrals at low T are generally
inapplicable due to the implicit temperature and chemical
potential dependence of g(ω) and ξ (ω). These densities of
states are compared in Fig. 1 for rs = 4 at T = 0. Note in
particular that the reduction in g(ω) compared to g0(ω) in
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(ε −  μ)/εF
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QP

FIG. 1. Density of states g(ε) of the HEG for rs = 4 and T = 0,
normalized by that of the independent-particle g0(εF ) at the Fermi
energy εF . Compared are the densities of states for the retarded
cumulant (RC) approach of this work (red), the independent particle
(IP) method (blue), the G0W 0 approach used here (green), the
plasmon-pole approximation (PP) of Lundqvist (black) [53], and the
quasiparticle approximation (QP) (violet).
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FIG. 2. Finite-T exchange correlation parts of the energy per
particle (top) and chemical potential (bottom) vs T/TF for the HEG
from the cumulant expansion (blue), the G0W 0 Dyson approximation
(green), and for comparison, the results of fits to QMC calculations
(red) [19,54]. Note that these quantities scale roughly inversely
with rs.

the RC, GW , and PP (plasmon pole) approximations is due
to the quasiparticle renormalization factor Zk and satellites in
the spectral function.

Since the independent particle contributions μ0(n, T ) and
ε0(n, T ) are known quantities, the chemical potential and en-
ergy per particle can be decomposed into independent-particle
and exchange-correlation parts,

μ(n, T ) = μ0(n, T ) + μxc(n, T ), (17)

ε(n, T ) = ε0(n, T ) + εxc(n, T ). (18)

The ratio |εxc(n, T )/εF | > |εx/εF | ≈ 0.25rs at low temper-
ature and is only weakly dependent on temperature below
TF , so exchange-correlation effects are always significant up
to the WDM regime. However, they become less important
for T > TF , where εxc(n, T )/ε0(n, T ) decreases rapidly with
increasing T . For the HEG, the exchange-correlation part of
the chemical potential is equivalent to the DFT exchange-
correlation potential μxc(n, T ) ≡ vxc(n, T ) [10]. In our pre-
vious development [28], we obtained results for εxc(n, T ) and
μxc(n, T ) over a broad range of temperatures and densities. In

-0.14
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-0.08

-0.06

-0.04

-0.02
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 0.01  0.1 1  10  100

εx

εc

ε
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FIG. 3. Comparison of exchange εx and correlation εc contribu-
tions to the the exchange-correlation energy per particle εxc vs T/TF

for the HEG at rs = 4 from the cumulant Green’s function approach
of this work (solid) and RPIMC data (circles) [4].

this followup we have significantly improved the precision of
our calculations. This is particularly important at low T where
the temperature dependence of εxc(n, T ) and μxc(n, T ) is very
weak. Figure 2 shows a comparison of our updated results
with the revised Karasiev et al. parametrization of QMC data,
referred to below as KSDT [19,20]. These comparisons show
that the accuracy of our present implementation of the FT
RC Green’s function approach is typically better than 10%,
though it becomes worse at very low densities rs ≈ 10 or
higher [8].

By definition the correlation energy is the difference be-
tween the total energy and that calculated in the Hartree-Fock
independent particle approximation, Ec ≡ Exc − E0

x . Thus the
exchange and correlation energies per particle can also be
separated unambiguously, as illustrated in Fig. 3. Note that
the temperature dependence of εxc(T ) in Fig. 2 is very weak at
low T , so that the much stronger temperature dependences of
the exchange and correlation parts tend to cancel. Physically
this cancellation is due to the screening of the Fock exchange
operator, which otherwise would lead to singular behavior in
the density of states and specific heat at T = 0+ [38]. Figure 3
also shows that the εx(T ) decays rapidly above TF , so that the
WDM regime is dominated by Coulomb correlation effects,
independent of spin.

D. Other approaches

1. Luttinger-Ward approach

Analogous sum rules in the T → 0+ limit were derived
by Luttinger and Ward (LW) by exploiting the stationary
property of the grand potential � with respect to variations
in � [13,33]. They obtain for the electron count

NLW(μ, T ) =
∑

k

∫
dω Dk (ω) f (ω), (19)

where the effective spectral function Dk (ω) is

Dk (ω) = 1

π
Im

∂ ln Gk (ω)

∂ω
. (20)
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The difference between Ak (ω) and Dk (ω) can be understood
from the identity ∂ ln Gk/∂ω = −G(1 − ∂�k/∂ω) [13]. Re-
markably, the sum and integral in Eq. (19) over Gk (ω)∂�k/∂ω

vanishes at T = 0 so that NLW gives a count equivalent to that
for N in Eq. (9). This difference is also reflected in the be-
havior of the satellites. The exact quasiparticle peak in Ak (ω)
at εk = ε0

k + �(k, εk ) has a strength Zk = 1/(1 − ∂�k/∂ω),
while the remaining spectral weight is in the satellites. In
contrast the quasiparticle peak at εk in Dk (ω) has strength
unity and is infinitely sharp on the Fermi surface k = kF ,
while the satellites have both positive and negative strengths.
A consequence of this equivalence is that that satellites and
quasiparticle renormalization effects cancel completely in the
behavior of N (μ, T ) and in the chemical potential μ(n, T ) in
the limit T = 0+. For this reason LW argue that their results
for thermal properties at T → 0+ are exact and equivalent to
those of a pure quasiparticle approximation [36].

LW also show that renormalization effects cancel in the
specific heat ratio which, as in Fermi liquid theory (FLT),
is defined as cv/c0

v = m∗ at T → 0+, where the effective
mass m∗ = kF /vF is the only nonuniversal parameter of FLT
[13,37]. In particular, m∗ is defined in terms of quasiparticle
energy dispersion or the quasiparticle density of states gqp(ω)
at the Fermi level

m∗ = k

dεk/dk

∣∣∣∣
k=kF

= π2

kF
gqp(μ), (21)

where the Fermi momentum kF = (3π2n)1/3. Although at
T = 0, the Fermi momentum is not changed by many-body
effects according to the Luttinger theorem, the Fermi surface
is smeared by the Fermi function for T > 0 and not well
defined. Moreover at T ≈ TF , the chemical potential lies
below the lowest quasiparticle energy. It is therefore of interest
to examine the validity of the LW results at finite T .

2. Quasiparticle approximation

In order to assess the importance of satellites and renor-
malization effects at finite T , it is useful to consider a pure
quasiparticle (QP) approximation without these effects. In this
paper the QP approximation refers to calculations with the
spectral function Aqp

k (ω) = δ(ω − εk ), where εk is the real
part of the quasiparticle energy εk = ε0

k + �k (εk ). Here �k (ω)
is taken to be the FT G0W 0 approximation for the retarded
GW self-energy defined above, although the QP energies
could be taken from any approximation for the self-energy.
The chemical potential can then be obtained by inverting
the electron count in Eq. (9) with the QP spectral function
Aqp

k (ω) = δ(ω − εk ),

Nqp(μ, T ) =
∑

k

f (εk ) = V
∫

dω gqp(ω) f (ω). (22)

This alternative formula for N (μ, T ) at T = 0 was also
derived by LW. As a result, calculations of the chemical
potential and other thermodynamic properties of the HEG
greatly simplify, since a full frequency dependent self-energy
is not required. Note that while the QP and FLT results for
the chemical potential are identical at T = 0, results for other
quantities such as the total energy or specific heat are not the
same. In particular FLT gives an exact result for the specific
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FIG. 4. Exchange-correlation part of the chemical potential vs
T/TF at rs = 4, as calculated using the RC (blue), GW (green),
LW (violet), and QP (black) spectral functions, and compared to the
KSDT fit (red) [19,54].

heat at T = 0+ in terms of the exact quasiparticle energies
due to the stationary properties of the Green’s function at
T = 0 [13,36]. In contrast the QP approximation in this work
refers to an explicit approximation for the spectral function,
and the accuracy of results depend on the property being
calculated, and how it is calculated. For example, the QP
approximation within the Galitskii-Migdal-Koltun sum rule
does not give accurate results for the total energy even at
T = 0. Figure 4 shows a comparison of the chemical potential
from the QP, RC and GW , and LW spectral functions, as well
as the KSDT fit to QMC data. While the RC is closest to
KSDT over the range studied, the QP approximation gives
results that are bracketed by GW and RC over a large range
of temperatures. However, the LW approach based on Eq. (19)
rapidly loses accuracy with increasing temperature. The fairly
good agreement between QP and RC shows that satellites
and quasiparticle renormalization effects are largely, though
not completely, suppressed at finite T for calculations of the
chemical potential. On the other hand, we find that using
the QP approximation in the GMK sum rule for E (μ, T ) is
less satisfactory, with errors of order 25%. Consequently the
QP approximation is reasonable only for some pathways to
thermodynamic quantities.

III. THERMODYNAMIC PROPERTIES

A. Chemical potential and energy per particle

Due to the exact separation of independent particle and
exchange-correlation parts, one can regard the exchange-
correlation contributions as those from an independent ther-
modynamic system, i.e., an exchange-correlation hole. Thus
the contributions from the independent particle and exchange-
correlation parts are additive and can be calculated and/or
tabulated separately. By inverting Eq. (9) for N (μ, T ) we
obtain the Gibbs free energy per particle μ(n, T ) = G/N .
Then subtracting the independent particle contribution, we
obtain μxc(n, T ). Next using this result for μ(n, T ) in Eq. (12)
and subtracting the independent particle part ε0(n, T ) yields
the exchange-correlation energy per particle εxc(n, T ). These
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calculations are carried out with our cumulant Green’s func-
tion and the G0W 0 approximation for the self-energy [28].
In this paper, μxc(n, T ) and εxc(n, T ) have been recalculated
with improved precision, particularly in the low temperature
regime, since great numerical care is needed to avoid the
near singular behavior of the calculations. Our results, as
illustrated in Fig. 2, are typically accurate to better than about
10% compared to QMC fits of KSDT. Various thermodynamic
properties can then be derived in terms of μ(n, T ) and/or
ε(n, T ) using thermodynamic identities.

B. Helmholtz free energy and electron pressure

The Helmholtz free energy F = E − T S can be obtained
by numerical integration. First, keeping the electron den-
sity n fixed and using the identity [55] ∂[F (n, T )/T ]/∂T =
E (n, T )/T 2, the free energy density per particle f = F/N is
given by a high temperature integration

f (n, T ) = T

T ′ f (n, T ′) − T
∫ T

T ′
dτ

ε(τ, n)

τ 2
, (23)

where T ′ is a suitably high temperature above which the
asymptotic form fxc(T ) → −(3T )−1/2r−3/2

s is valid [56].
Despite the singular factor 1/τ 2 in the integrand, if the
zero temperature energy is subtracted, the integral to ob-
tain f̄ (T ) = f (T ) − f (0) is well behaved when T → 0+.
The reason is that ε̄(n, T ) ≡ ε(n, T ) − ε(0, n) vanishes at
T = 0 due to the linear behavior of the specific heat,
ε̄(n, T ) → (1/2)γ (n)T 2, (T → 0+). Alternatively, one can
obtain f (n, T ) by integrating the chemical potential over the
electron density (or rs) at low density keeping V and T fixed,
using the relation μ = ∂ (F/V )/∂n with n(r) = 3/4πr3,

f (n, T ) = 3r3
s

∫ ∞

rs

dr
μ(n(r), T )

r4
. (24)

This formula is the FT generalization of a similar ex-
pression for the ground state energy per particle ε(n, 0) =
f (n, 0) [53,57]. Results for these two pathways for obtaining
fxc(n, T ) are compared in Fig. 5 for rs = 4. Note that these
results for fxc(n, T ) differ by a small, approximately constant
shift, of about 0.013 Hartree. This discrepancy suggests that
our cumulant Green’s function based on the G0W 0 self-
energy is not fully self-consistent or conservative. Similarly,
as discussed by Holm [58], the lack of partial or full self-
consistency in GW calculations at T = 0 also leads to nearly
constant shifts in the chemical potential resulting from differ-
ent formulas. Consequently, some level of self-consistency,
such as the quasiparticle self-consistent GW (QPSCGW)
approximation, may be an improvement for some quantities
[34]. However, a detailed treatment of self-consistency in
the cumulant expansion has not yet been developed and is
therefore beyond the scope of the present work.

Nevertheless, the above discrepancy does not imply a
serious limitation of our current approach. Clearly the result
based on the high-temperature integration of ε(n, T )/T 2 from
the GMK sum rule matches more closely to QMC results
and is therefore a preferred prescription. This choice is also
justified on physical grounds since the density integration path
depends on the chemical potential at very low densities where
correlation effects are strongest and the cumulant approach
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f x
c

t

KSDT
rs-integration
t-integration

Shifted rs integration

FIG. 5. Exchange correlation part of the Helmholtz-free energy
calculated via an integration over temperature (green) compared with
that calculated via integration over rs (blue), and the KSDT (red)
[19,54]. The black curve shows the rs form shifted by a constant
0.013 Hartree.

least reliable. As an alternative prescription, the discrepancy
in the density integration path can be accounted for simply
by adding a shift so that f (n, T ) matches to the ground state
energy per particle at T = 0. As shown in Fig. 5 both of these
prescriptions yield very good agreement with QMC.

Given f (n, T ) and μ(n, T ), the electron pressure can be
obtained from the relation � = −pV = (F − G), i.e.,

p(n, T ) = n[μ(n, T ) − f (n, T )]. (25)

A decomposition into independent particle and exchange-
correlation parts similar to those for ε and μ applies to all
derived thermodynamic potentials and densities, so

f (n, T ) = f 0(n, T ) + fxc(n, T ), (26)

p(n, T ) = p0(n, T ) + pxc(n, T ). (27)

The exchange-correlation contributions to the Helmholtz free
energy per particle fxc, and the electron pressure pxc for the
HEG, are shown in Fig. 6. The accuracy of the calculation of
pxc is less than that of fxc due to the subtraction in Eq. (25)
and depends on how fxc and μxc are calculated. We note that
p0(n, T ) = (2/3)nε0(n, T ) for all n and T and asymptotes
to the classical limit p → nkBT at high T (see Fig. 7). The
exchange-correlation pressure pxc(n, T ) corresponds to the
generalization of the Fermi or exchange pressure due to the
Pauli principle. At low T this contribution is dominated by
exchange and at high T by correlation contributions. However,
in contrast to the dominance of the Fermi pressure at T = 0,
the exchange-correlation effects are both small compared to
the independent particle pressure for T � TF .

C. Entropy and specific heat

Of long-standing interest in many-body theory is
the behavior of the entropy per particle s = S/N and
constant volume specific heat cv of interacting Fermi
systems. In the low temperature limit T → 0+, both
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FIG. 6. Exchange-correlation contributions to the Helmholtz-
free energy per particle fxc (top) and the electron pressure pxc

(bottom) vs T/TF for the the HEG from the retarded cumulant
Green’s function approach (RC, blue) [28], compared to those from
GW (green) and the KSDT fit (red). Note that the RC generally
agrees better than GW with the KSDT fits.

s(n, T ) and cv (n, T ) are linear in temperature and equal,
i.e., cv (n, T ) = T ∂s(n, T )/∂T = s(n, T ) ≡ γ (n)T . The ratio
cv/c0

v = γ /γ 0 = m∗ then corresponds to the effective mass
m∗ = kF /vF defined in Eq. (21). However, values of m∗ for
the HEG have been notoriously difficult to pin down defini-
tively [17,59]. Likewise there is currently a lack of accurate
QMC data at very low T which could help resolve this issue.
To our knowledge, however, the behavior of the specific heat
in the WDM regime has not been extensively investigated.

In an effort to investigate this behavior we first evaluate
the entropy per particle s(n, T ) using the relation T s = ε − f
with a high temperature integration for f . The exchange cor-
relation part is then obtained by subtracting T s0, and similarly
for cv = T ∂s/∂T ,

s(n, T ) = s0(n, T ) + sxc(n, T ), (28)

cv (n, T ) = c0
v (n, T ) + cvxc(n, T ). (29)

Results for the exchange-correlation entropy per particle sxc

are shown in Fig. 8. Remarkably entropic effects on the
exchange-correlation contributions are only substantial at rel-
atively high T of order TF . This behavior reflects the crossover
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FIG. 7. Electron pressure p(n, T )/n compared to the indepen-
dent particle result for the HEG at rs = 4 from the RC (blue), IP
(green), and from KSDT fits (red). Note that the effect of exchange
and correlation is significant for T < TF but relatively small for
T � TF .

from exchange- to correlation-dominated behavior in WDM
where spin can be ignored.

Our results for the specific heat are illustrated in Fig. 9.
First (top), we compare those at T = 0 for cv/c0

v = m∗ from
Eq. (21), to calculations based on Fermi liquid theory as in
Eq. (21), the RPA [53,60], and the KSDT parametrization.
Note that the RC results more closely match those from
the KSDT fits to QMC. However, they are slightly higher
than those of Fermi liquid (FLT) or the RPA. Next (bottom),
we compare the temperature dependence of cv (T )/c0

v (T ) to
KSDT. Although both curves exhibit an oscillatory behav-
ior, the minima and maxima in the RC calculation occur at
higher temperatures. The value of γ at T = 0 also fixes the
leading quadratic temperature variation of the energy and the
Helmholtz free energy,

ε(n, T ) = ε(n, 0) + (1/2)γ T 2 + · · · , (30)

f (n, T ) = ε(n, 0) − (1/2)γ T 2 + · · · . (31)
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FIG. 8. Exchange-correlation contributions sxc(n, T ) to the en-
tropy per particle, scaled by temperature T at various densities for
the HEG from RC (blue), GW (green), and KSDT (red).
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Similarly the density dependence of γ (n) determines the
leading quadratic behavior of the chemical potential. From the
relation (∂μ/∂T )n = −(∂s/∂n)T , we find

μ = μ(0) − 1

2

dγ (n)

dn
T 2 + · · · . (32)

Nevertheless, this quadratic behavior does not persist at higher
T where the Fermi surface broadens over a width of order
kBT . For example, in the quasiparticle approximation, the
low T specific heat corresponds to an average of the density
of states gqp(ω) over this smeared Fermi surface. From the
negative curvature of gqp(ω) near ω ≈ μ in Fig. 1, one expects
a reduction in the magnitude of cv/c0

v with increasing T
near T = 0, as observed in the lower part of Fig. 9. These
results suggest that the ratio cv (T )/c0

v (T ) has a minimum at
some temperature below TF . This is roughly consistent with
the variations seen in the KSDT fit to QMC data at low
temperature. However, the ratio is difficult to estimate with
precision numerically, as cv (T ) and c0

v (T ) are both very small
at low T [54].
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FIG. 10. Isothermal compressibility of the HEG vs density pa-
rameter rs at various temperatures t = T/TF . For comparison results
from QMC and GW�-MBPT at T = 0 are also given [17].

D. Isothermal compressibility

Another quantity of interest is the isothermal compress-
ibility κ , which is related to the density fluctuations in the
system and can be obtained from the density dependence of
the chemical potential

κ (n, T ) = − 1

∂μ(n, T )/∂n
= 4π

r2
s

∂μ/∂rs
. (33)

Results for κ (n, T ) are shown in Fig. 10, where the low
temperature results are seen to be in good agreement with
those from QMC and many-body perturbation theory, includ-
ing vertex corrections [17].

IV. SPIN-POLARIZED ELECTRON GAS

We conclude our derivation of thermodynamic properties
with a brief discussion of spin-dependent contributions. Spin
polarization is important in many contexts in condensed mat-
ter, especially in magnetism. Here we assume for simplicity
that electrons with different spins can be treated indepen-
dently. For example, in the HEG electrons of each spin σ =
±1/2 are uniformly distributed with fixed spin-dependent
equilibrium number densities n± where n = (n+ + n−) =
N/V is the total number density. By defining the degree of
spin polarization as χ = (n+ − n−)/n, and n = (4πr3

s /3)−1

where rs is the Wigner-Seitz density parameter, the finite-
temperature spin dependent interacting electron gas can be
described by three parameters χ , T , and rs. We also define
the dimensionless spin-dependent reduced temperatures τσ ≡
T/T σ

F , where T σ
F = εσ

F /kB is the Fermi temperature for the
spin-σ electrons in the gas.

The thermodynamics of the spin-dependent system can
then be treated analogously to the unpolarized system, substi-
tuting the spin-dependent quantities respectively. For example
calculations of the spin dependent energy per particle εσ (T ) =
Eσ (T )/N are again calculated with the spin-dependent gener-
alization of GMK sum rule, i.e., with a spin-dependent spec-
tral function Akσ (ω) as in Eq. (1). Likewise, each spin pop-
ulation has a chemical potential fixed by the spin-dependent
densities nσ and Fermi factors fσ (ε) = 1/[eβ(ε−μσ ) + 1]. The
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spin-polarized HEG with χ = 1 from the cumulant Green’s function
(blue), compared with GW (green) and KSDT (red) results.

spin-dependent self-energies are again approximated by the
GW approximation at the G0W 0 level but with implicit tem-
perature and spin dependence in the Fermi and Bose factors.
The exchange-correlation parts are also defined analogously
by subtracting the independent particle contributions. Results
for the energy and chemical potential vs T for full polarization
χ = 1 are shown in Fig. 11.

Similarly, the spin-dependent Helmholtz free energies
Fσ (T ) can again be calculated by integrating Eσ (T )/T 2 as
in Eq. (12). Thus the total Helmholtz F and Gibbs free
energies G can be expressed as a sum over spin-dependent
contributions

F =
∑

σ

Fσ =
∑

σ

Nσ fσ (T ) (34)

G =
∑

σ

Gσ =
∑

σ

Nσμσ (T ). (35)

Similarly the pressure can be obtained from the thermody-
namic potential � = F − G = −V �σ pσ (T ), so

p =
∑

σ

nσ [μσ − fσ ]. (36)
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FIG. 12. Exchange-correlation parts of the Helmholtz free en-
ergy per particle fxc (top) and electron pressure pxc (bottom), vs
τ = T/TF for the spin-polarized HEG with χ = 1 from the cumulant
expansion (blue), GW (green), and KSDT (red).

Results for fxc and pxc based on high temperature integration
and matched to the limiting forms

fxc(T ) → −(3T )−1/2r−3/2
s + O(T −1), (37)

εxc(T ) → −(1/2)(3T )−1/2r−3/2
s + O(T −1) (38)

are shown in Fig. 12. These results are independent of both σ

and χ [56].

V. SUMMARY AND CONCLUSIONS

We have presented calculations of a number of thermody-
namic properties of the interacting HEG including optional
spin polarization over a wide range of densities and tem-
peratures up to the warm dense matter regime T ∼ TF . Our
approach is based on the many-body formalism of MS with a
FT extension of retarded cumulant Green’s function and sum
rules for the total electron number and energy. This approach
permits a quantitative analysis of exchange and correlation
contributions to the thermodynamics and consequently pro-
vides an alternative source of data for the electron gas. Al-
though the temperature and density dependence is implicit,
the numerical results can be parameterized either to deter-
mine or to improve existing finite-temperature DFT exchange-
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correlation functionals [19,20,61]. We find that exchange-
correlation effects are slowly varying at low temperature T <

TF but decrease rapidly in the WDM regime T � TF where
exchange becomes small and Coulomb correlation dominates.
Consequently at “cool” temperatures (T � TF ) and nor-
mal densities (2 < rs < 6), conventional approaches such as
Fermi liquid theory are good approximations. More generally,
we find that the FT RC approach with a G0W 0 self-energy is a
very good approximation for a much wider range of tempera-
tures, including the WDM regime. The RC approach generally
improves on the GW and QP approximations, and is typically
accurate to better than 10% compared to QMC, though the
errors are larger at very low densities rs ∼ 10 [8]. Moreover
improvements are possible. It seems likely, for example, that
part of the error is due to the nonconserving properties of the
RC Green’s function. These errors are reflected by the small
discrepancies in quantities like the Helmholtz free energy
calculated using different thermodynamic identities. This is
a well known limitation of the G0W 0 approach leading to
similar discrepancies in the chemical potential [58], which
are cured for the most part by self-consistency. However,
these discrepancies do not pose a serious limitation to our
approach, since either a high-temperature integration or a well
defined shift both yield accurate results compared to QMC.

Results for the entropy and specific heat are consistent with
the predictions of Fermi liquid theory in the T → 0+ limit,
but deviations are observed at higher temperatures, even well
below TF . Although the RC results for the specific heat ratio
cv/c0

v = m∗ are closer to those from QMC, especially at high
densities, they are somewhat larger than other methods, and
there is a need for more quantitative treatments to resolve
the differences. We also find that satellites and quasiparti-
cle renormalization effects are largely but not completely
suppressed at finite T for some quantities, though not the
total energy. Consequently, the QP approximation with a
GW self-energy can sometimes be fairly good. Although the
calculations presented here are restricted to thermodynamic
properties of the HEG, the retarded cumulant method is more
generally applicable and provides a systematic, first principles
approach for calculations of many physical properties.
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