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The single-particle eigenstates of the Aubry-André-Harper model are known to show a delocalization-
localization transition at a finite strength of the quasiperiodic disorder. In this work, we point out that an
intimate relationship exists between the subband structure of the spectrum and transport properties of the model.
To capture the transport properties, we have not only used a variety of single-particle measures like inverse
participation ratio, and von Neumann entropy, but also many-particle measures such as persistent current and its
variance, and many-body entanglement entropy. The many-particle measures are very sensitive to the subband
structure of the spectrum. Even in the delocalized phase, surprisingly the entanglement entropy is substantially
suppressed when the Fermi level is in the band gaps, whereas the persistent current is vanishingly small for
the same locations of the Fermi level. The entanglement entropy seems to follow area law exclusively for
these special locations of Fermi level or filling fractions of free fermions. A study of the standard deviation
of persistent current offers further distinguishing features for the special fillings. In the delocalized phase,
the standard deviation vs mean persistent current curves are discontinuous for the nonspecial values of filling
fractions and continuous (closed) for the special values of filling fractions, whereas in the localized phase, these
curves become straight lines for both types of filling fractions. We have also discussed how the results depend on
the system size. Our results, especially on the persistent current, can potentially be tested experimentally using
the present day setups based on ultracold atoms.
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I. INTRODUCTION

Over the last few decades, an immense effort has been
expended to understand properties of quantum systems in the
presence of quasiperiodic potentials [1–3]. In one dimension,
in contrast to the phenomenon of Anderson localization which
is seen even in the presence of an infinitesimally tiny ran-
dom potential [4], a substantial strength of the quasiperiodic
potential is required before localization sets in. Therefore,
the one-dimensional (1D) quasiperiodic potential model [5,6],
also known as the Aubry-André-Harper (AAH) model, admits
a “delocalization-localization transition” at finite strength of
the potential. The spectrum of the AAH model is known
to show self-similar Cantor set structure [7,8]. The energy
spectrum [7,9,10] shows band gaps (to be discussed later) at
certain locations, which is related to the quasiperiodicity in
the system.

The phase transition in the model leads to several interest-
ing transport properties which have been addressed in many
theoretical and experimental works [11–16]. A buzz of activ-
ity in recent times [17–19] has established the profitability of
the study of quantum entanglement whenever striking trans-
port properties [20–22] lie underneath. Despite the extensive
literature on the AAH model, the correlation between the
transport properties of the model and the band-gap structure
of its spectrum has not been discussed anywhere, to the best
of our knowledge. There have been only very few mentions
of such studies in the literature [23,24]. In this work, we
have made an attempt to explore the relationship between

these band gaps and the single-particle and many-fermionic
equilibrium transport properties. There are special eigenstates
in the spectra that show a drastically different localization
property as compared to the others as it is captured by the
inverse participation ratio and von Neumann entropy for a sin-
gle particle when the system size is a non-Fibonacci number
(explained later). Although, the localization properties of all
the single-particle eigenstates become identical if one chooses
the system size to be a Fibonacci number. This effect was
not explicitly revealed earlier. There are large energy gaps
at the top of these special eigenstates, the effect of which on
many-particle equilibrium transport properties in ground state
is also explored. We have numerically calculated the entangle-
ment entropy and persistent current for spinless noninteracting
fermions in the AAH potential. All the quantities seem to
capture the effect of the band gaps and agree with each other.
We have obtained vanishingly small current and substantially
suppressed entanglement entropy when the Fermi level is set
near the location of the band gap, even in the delocalized
phase where typically one obtains high current and entan-
glement. The filling-fraction-dependent many-particle results
are qualitatively independent of the choice of the system
size (Fibonacci or non-Fibonacci) unlike the single-particle
results.

Also, we have studied relations between the persistent
current and its fluctuations as a function of the strength of the
AAH potential and filling fractions. This kind of relationship
has been investigated in Ref. [25] but for a translationally
invariant one-dimensional model. In the delocalized phase of
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the AAH model, the standard deviation vs mean persistent
current curves are discontinuous for the regular filling frac-
tions and continuous (closed) for the special fillings whereas
in the localized phase, these curves become straight lines for
both types of filling fractions. One of the important findings
of our work is that none of the many-particle quantities we
have studied change drastically across the delocalization-
localization transition point in case of special filling fractions
in sharp contrast to the case of nonspecial filling fractions.
Such nontrivial filling-fraction-dependent transport properties
appear not to have been explored in any other work.

The paper is organized as follows. In Sec. II, we have de-
scribed the delocalization-localization transition in the AAH
model and briefly discussed the interesting self-similar struc-
ture of the energy spectrum and locations of the band gaps.
Thereafter in Sec. III, we have numerically studied the single-
particle properties, where we have calculated the inverse
participation ratio (IPR) and the von Neumann entropy for
each single-particle eigenstate. In Sec. IV, we have calculated
the entanglement entropy in Sec. IV A, the persistent current
in Sec. IV B, and the variance of current in Sec. IV C, for
noninteracting spinless fermions to capture the effect of the
regular and special filling fractions (the band gaps) on the
transport properties of the fermionic system. The relations
between the mean persistent current and its standard deviation
are studied in the Sec. IV D. At the end, we have rendered our
conclusions in Sec. V.

II. AUBRY-ANDRÉ-HARPER MODEL

The Aubry-André-Harper (AAH) model in one dimension
is given by the Hamiltonian [5,6]

H = −J
N∑
i

(c†
i ci+1 + H.c.)

+
N∑
i

λ cos(2παi + θp)c†
i ci, (1)

where c†
i (ci) represents the single-particle creation (annihi-

lation) operator at site i. We consider a lattice on a circular
ring of total number of sites N . Here, λ is the strength of
the quasiperiodic potential with quasiperiodicity α, an irra-
tional number, and an arbitrary phase θp. The strength of the
nearest-neighbor hopping is J . When the irrational number α

is chosen to be a Diophantine number, all the single-particle
eigenstates of the AAH model become delocalized for λ < 2J
and localized for λ > 2J , λ = 2J being the quantum critical
point, where all the eigenstates are multifractal [11]. Also
at λ = 2J , the AAH model in position space maps to itself
in the momentum space, thus making the model self-dual
at λ = 2J [26]. In this work, we will assume J = 1 and
α = (

√
5 − 1)/2, which is inverse of the golden mean, unless

otherwise stated.

A. Generics of spectrum

The single-particle energy spectrum En and the nearest
level spacing �n = En+1 − En of the AAH model have al-
ready been investigated in seminal works [9,10,27,28]. It can

be mathematically shown that the energy spectrum forms a
Cantor setlike self-similar structure [29]. The energy-level-
spacing distribution of the AAH model is not Wigner like
in the delocalized phase [9] whereas it is Poissonian in the
localized phase [27,28]. At the critical point, the level-spacing
distribution satisfies an inverse power law [9,27]. The energy
spectra and the corresponding level-spacing spectra for the
delocalized, multifractal, and localized phases are shown in
Fig. 1. Due to the Cantor set structure of the spectra, there
are many gaps between the subbands [Figs. 1(a)–1(c)], whose
specific locations are related to the irrational number α, to be
discussed next. There are isolated states in the spectrum in
the large gaps, represented by the isolated dots in Fig. 1(a).
However, these isolated states vanish if one chooses system
size N to be a Fibonacci number, defined later in Eq. (8).

B. Special locations of band gaps

In Figs. 1(a) and 1(d) the large gaps are apparent
when the fractional index is ≈α, α2, α3, α4 (≈
0.618, 0.382, 0.236, 0.145), etc. The fluctuations in the gap
become maximum at the quantum critical or the multifractal
point λ = 2 [Fig. 1(e)] [9] and the magnitude of the gaps
increases as λ increases [Fig. 1(f)]. In this work, we explore
the effect of such gaps on the transport properties at the
single- and many-particle levels, especially in the delocalized
phase. Also, the localization properties of the single-particle
eigenstates near the locations of these band gaps may be very
different from the other eigenstates, which we will explore in
the next section.

III. SINGLE-PARTICLE TRANSPORT PROPERTIES

In order to study the transport properties of a single particle
in AAH potential, we have analyzed the inverse participation
ratio (IPR) and the von Neumann entropy. For simplicity, all
the results presented in this section are calculated assuming
θp = 0 unless mentioned. We briefly review these quantities
and present our results in the following.

A. Inverse participation ratio

The inverse participation ratio (IPR) is a key quantity
for studying delocalization-localization transitions, which is
defined as

In =
N∑

i=1

|ψn(i)|4, (2)

where the nth normalized single-particle eigenstate |ψn〉 =∑N
i=1 ψn(i) |i〉 is written in terms of the Wannier basis |i〉,

representing the state of a single particle localized at the site
i of the lattice. For a perfectly delocalized eigenstate In =
1/N , whereas In = 1 for a single-site localized eigenstate.
In the critical phases In is expected to show an intermediate
behavior. In Figs. 2(a)–2(c) the IPR for all the eigenstates
can be seen for λ = 1 (delocalized), λ = 2.0 (multifractal),
and λ = 3.0 (localized), respectively. The IPR shows sudden
jumps exactly where the subband gaps can be found as can
be seen from Fig. 2(a). In the delocalized phase, typically
IPR ∼ 1/N except at these special points where IPR behaves
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FIG. 1. (a)–(c) Single-particle energy spectra En for λ = 1.0, 2.0, and 3.0, respectively. (d)–(f) The corresponding level-spacing spectra
�n of the AAH model in log scale for λ = 1.0, 2.0, and 3.0, respectively. For all plots N = 512. Here, index is the serial number of energy
(gap) levels divided by the total number of energy (gap).

anomalously with N . At the multifractal point, the fluctuations
become maximum and the IPR shows anomalous scaling with
N almost all over the spectrum [Fig. 2(b)]. In the localized
phase, the IPR overlap with each other for different values of
N [Fig. 2(c)]. However, in this phase one obtains dips, instead
of peaks, at the positions of large band gaps.

B. Von Neumann entropy

It is now well established that entanglement entropy is a
good measure to explore localization phenomena in quantum
systems. In this work we aim to calculate von Neumann
entropy connected to a single site. As a single particle has two
local states |0〉i and |1〉i at the site i, the local density matrix

ρn,i for the nth eigenstate can be written as [30]

ρn,i = |ψn(i)|2 |1〉i 〈1|i + [1 − |ψn(i)|2] |0〉i 〈0|i . (3)

The von Neumann entropy associated with site i is then given
by [31]

Sn,i = −|ψn(i)|2 log2[|ψn(i)|2]

− [1 − |ψn(i)|2] log2[1 − |ψn(i)|2]. (4)

In a delocalized eigenstate |ψn(i)|2 = 1/N and hence Sn,i ≈
1
N log2 N + 1

N for large value of N , whereas for a single-site
localized state Sn,i = 0. The contributions from all sites for a

FIG. 2. (a)–(c) IPR of all the single-particle eigenstates in log scale for λ = 1.0, 2.0, and 3.0, respectively. (d)–(f) von Neumann entropy
Sn of all the single-particle eigenstates for λ = 1.0, 2.0, and 3.0, respectively. In all the plots the dependence on system size N is studied.
Here, index is the serial number of eigenstate divided by the total number N .
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FIG. 3. Variation of IPR with λ of the single-particle eigenstates
near the locations of the large band gaps (index ≈ α4, α3, α2) com-
pared to the other eigenstates (with index = 0.2, 0.3, 0.5), respec-
tively. For all the plots N = 256. To smooth out the curve, an average
over 100 values of θp (running from 0 to 2π in uniform steps) is
performed.

single-particle eigenstate are given by

Sn =
N∑

i=1

Sn,i. (5)

For large values of N , Sn ≈ (log2 N + 1) in the delocalized
phase whereas Sn ≈ 0 in the extremely (single-site) localized
phase. For the critcal phases, Sn can take any intermediate
values. As we can see from Fig. 2(a) the single-particle von
Neumann entropy Sn has higher value in the delocalized phase
and varies as log N but it shows sudden fall at the special
points where IPR shows jumps and anomalous dependence
on N . In the localized phase, as expected Sn takes smaller
values and shows no dependence on N but instead of a sudden
fall one obtains peaks at the special points [see Fig. 2(c)].
At the critical point, Sn shows wide fluctuations and picks
up intermediate values showing anomalous scaling with N ,
which is shown in Fig. 2(b).

To contrast the localization properties of the special eigen-
states near the large band gaps with the nonspecial eigen-
states, the IPR is plotted as function of λ in Fig. 3. As we
can see from the figure, the nonspecial eigenstates undergo
delocalization-localization transition at λ = 2 as IPR changes
abruptly, whereas the special eigenstates, with isolated energy
levels, display different behavior as IPR vs λ curves do not
reflect criticality at λ = 2. The contrasting localization prop-
erties of the special and nonspecial single-particle eigenstates
are consistent with the breakdown of the single-parameter
scaling at the localization transition in quasiperiodic quantum
systems, recently found in the literature [32]. This kind of
special feature of not reflecting the criticality of the model
is present even in the behavior of the many-particle quantities
when Fermi level is set in those band gaps. We discuss this
in the following section. However, if one chooses the system
size from the Fibonacci sequence such as N = 34, 144, 610
(commensurate) as described in Eq. (8) of the paper, the
isolated energy levels, as shown in Fig. 1(a), disappear and all
the single-particle eigenstates become delocalized for λ < 2

and localized for λ > 2. So, the peaks in In (and corresponding
falls in Sn) as shown in Fig. 2(a) for λ < 2 disappear. Also, the
distinction between the special states and nonspecial states in
Fig. 3 vanishes in this case.

IV. MANY-PARTICLE TRANSPORT PROPERTIES

In this section, we consider noninteracting spinless
fermions in the system. Since we have seen the surprising
effect of energy gaps in the single-particle picture, we expect
to see such effects even in the system of many fermions. We
calculate many-fermionic entanglement entropy and persis-
tent current and look at the behavior of these quantities as
a function of the filling fraction ν = Np/N , where Np is the
number of fermions in a periodic ring with N sites. Entangle-
ment entropy and persistent current have been studied very
recently for the AAH model at half-filling [12,33]. In what
follows, we briefly describe the quantities and discuss our
results.

A. Entanglement entropy

For pure states, von Neumann entropy has established itself
as the standard measure of quantum entanglement, and has
been extensively used to study different many-body phases
and to make a distinction amongst them [17,18]. Intuitively,
one would expect that the greater the delocalization, the more
the entanglement and vice versa, although exceptions exist
[34]. We start with a brief discussion of the calculation of
the entanglement entropy of fermions in the ground state
[33,35–37]. For the fermionic many-body ground state |
0〉,
the density matrix can be written as ρ = |
0〉〈
0|. The en-
tanglement entropy between two subsystems is then given
by SA = −Tr(ρA log ρA), where the reduced density matrix
is ρA = TrB(ρ). However, for a single Slater determinant
ground state, Wick’s theorem can be exploited to write the
reduced density matrix as ρA = e−HA

Z , where HA = ∑
i j

HA
i jc

†
i c j

is called the entanglement Hamiltonian, and Z is obtained
from the condition Tr(ρA) = 1. The information contained in
the reduced density matrix of size 2L × 2L can be captured in
terms of the correlation matrix C of size L × L [35] within the
subsystem A, where Ci j = 〈c†

i c j〉. The correlation matrix and
the entanglement Hamiltonian are related by [35–37]

C = 1

eHA + 1
. (6)

Using this relation, the entanglement entropy for free fermions
is given by [36,37]

SA = −
L∑

m=1

[ζm log ζm + (1 − ζm) log(1 − ζm)], (7)

where ζm’s are the eigenvalues of the correlation matrix C.
Subsystem scaling of entanglement entropy has been used
to distinguish quantum phases [17,18,38]. For free fermions
in d dimension, typically SA ∝ Ld−1 log L [39] in metallic
phases and SA ∝ Ld−1 in the localized phase in the pres-
ence of disorder. To produce smoother SA vs L plots for
the AAH model, we have done an average of SA over 100
(nonrandom) values of θp ∈ [0, 2π ] in uniform steps. Scaling
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FIG. 4. (a)–(c) Dependence of entanglement entropy SA of the many-body ground state on subsystem size L (in log scale) for increasing
values of the filling of fermions ν for λ = 1.0 (a), λ = 2.0 (b), and λ = 3.0 (c), respectively. For (a)–(c), N = 256. (d)–(f) Variation of SA with
ν for increasing system size N for λ = 1.0 (d), λ = 2.0 (e), and λ = 3.0 (f), respectively. For the last three plots L = N/2. For all the plots, an
average over 100 values of θp (running from 0 to 2π in uniform steps) has been carried out.

of SA of the many-fermionic ground state with L is shown in
Figs. 4(a)–4(c) for increasing values of ν for the delocalized,
multifractal, and localized phases, respectively. As can be
seen from Fig. 4(a), typically, in the delocalized phase SA ∝
log L including the half-filled case [33] except when ν ≈
α2, α3, and α4 (0.382, 0.236, and 0.145) where SA becomes
a constant abiding by the area law of entanglement entropy. In
the localized phase, SA always follows area law independent
of ν [Fig. 4(c)]. In the multifractal phase, generally SA scales
in some intermediate manner with L whereas the area law per-
sists when ν = 0.145, 0.236, 0.382. The variation of SA with
ν is shown in Figs. 4(d)–4(f) for increasing values of N for
λ = 1.0, 2.0, and 3.0, respectively. In the delocalized phase,
the sudden drops of SA at ν = 0.145, 0.236, 0.382, 0.618,
etc., are clearly visible in Fig. 4(d) coinciding with the appear-
ance of large gaps in the energy spectrum. In the multifractal
and localized phases, the energy spectrum becomes more
fragmented due to appearance of large gaps. The fluctuations
in SA maximize at the multifractal point and hence the SA vs
ν plots become more complicated [see Figs. 4(e) and 4(f)].
However, the value of SA goes down as the strength of disorder
λ increases, which is shown explicitly in Fig. 5. It is to be
noted that for the special values of ν = 0.145, 0.236, 0.382
the criticality (λc = 2) of the AAH model is not reflected in
the behavior of SA with λ whereas for other values of filling
(ν = 0.2, 0.3, 0.5) there is a sharp decrease of SA at λc = 2
indicating the inherent critical nature of the model. It is to
be noted that the results presented here on the entanglement
entropy remain unaffected if one chooses to study with the
system sizes which are Fibonacci numbers N = 34, 144, 610,
etc., unlike the single-particle quantities discussed previously.
This indicates that the many-particle phenomena are not gov-
erned by the presence or absence of the isolated single-particle
localized states in the large band gaps. Rather, many-particle
results are the manifestation of the large gaps in the single-
particle energy spectrum.

B. Persistent current

Next, we discuss the persistent current in the fermionic
system, which has also been used to study localization phe-
nomena [40]. Persistent current can be generated by applying
a phase twist at the boundary. With periodic boundary con-
ditions, this is equivalent to attaching a flux to the fermions
moving in a ring. In a mesoscopic quantum ring, a persistent
current of electrons can be produced by applying a magnetic
flux φ inside the ring. In a quantum ring, the current-flux
relationship can depend on factors such as band structure,
disorder, interaction, ring geometry, number of particles etc.
In this work, we mainly focus on the current-flux relationship
and its variation with the strength of quasiperiodic disorder
λ of the AAH model and the filling fraction ν = Np/N of
the Np fermions in a ring of N sites. We will put θp = 0

FIG. 5. Variation of SA with λ for increasing values of filling of
fermions ν. For all the plots L = N/2 where N = 256 and an average
over 100 values for θp (running from 0 to 2π in uniform steps) is
carried out.
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FIG. 6. (a)–(c) Persistent current Ic as function of the flux φ in unit of φ0 for increasing values of filling fraction ν for λ = 1.0, 2.0, and
3.0, respectively. For all plots (a)–(c), different colors denote different values of ν as defined in (c). (d)–(f) |Ic| as function of ν for λ = 1.0, 2.0,
and 3.0, respectively, at fixed φ = 0.25φ0. For all the plots, α = 377/610 with N = 610.

for all the results presented in this section. An irrational
number can be expanded as a continued fraction [41], which
makes possible a successive rational approximation of it in
the form of a0/b0, where a0 and b0 are coprime integers. A
rational approximation of α is given by α = Fs−1/Fs for two
successive members in the series defined as [42]

Fs = Fs−1 + Fs−2 (8)

with F0 = 0, F1 = 1, which converges to the inverse of the
“golden mean” (

√
5 − 1)/2 in the limit s → ∞. We will make

a rational approximation over α as described above along
with N = Fs to validate the periodic boundary condition in
this section. In order to calculate the persistent current, we
consider a phase-twisted Hamiltonian for fermions, which is
given by

H (θ ) = −J
∑

l

(e−iθ/N c†
l cl+1 + H.c.) + λ

∑
l

cos(2παl )c†
l cl ,

(9)

where cl is the fermionic annihilation operator acting on site l
and θ = 2π

φ

φ0
, where φ0 = h/e is the unit flux quanta. After

diagonalization of this Hamiltonian, the single-particle energy
levels εn(φ) are used to calculate the persistent current [40,43]

Ic(φ) = −∂E0

∂φ
, (10)

where E0 = ∑
n εn(φ)θ (EF − εn) is the ground-state energy

of the system and EF is the Fermi energy at zero temperature.
In the absence of any potential, the energy dispersion is given
by εn(φ) = −2J cos[ 2π

N (n + φ

φ0
)] where −N/2 � n < N/2.

For Np fermions in N sites, the persistent current can be
written as [43]

Ic = −I0

sin
[

π
N (2 φ

φ0
+ η)

]
sin( π

N )
, (11)

where I0 = 4πJ
Nφ0

sin(Npπ/N ). The persistent current Ic exhibits
periodic variation with flux φ/φ0 and a phase shift η is
generated due to the parity of the number of fermions N .
For odd Np, η = 0 in region −0.5 � φ

φ0
< 0.5 and for even

Np, η = −1 in region 0 � φ

φ0
< 1. The persistent current

decreases with system size as I0 ∝ 1/N and it is maximum
when ν = 0.5 since I0 is maximum at the same point.

Now, as the AAH disorder is turned on, the current-flux
plots are shown in Fig. 6 In the delocalized phase, Ic is almost
vanishing for all values of φ when ν = 0.145, 0.236, 0.382.
Otherwise, the maximum of Ic increases with ν [Fig. 6(a)].
The Ic − φ plots look like sawtooth curves because when N is
very large, one can use in Eq. (11) the small-angle approxima-
tion for the sine function: (sin(x) ≈ x). In the critical phase Ic

is periodic with φ but its magnitude is very small, whereas Ic

is still vanishing for special values of ν as mentioned before
[Fig. 6(b)]. In the localized phase Ic vanishes for all values of
φ and ν [Fig. 6(c)] as has been reported for the particular case
of half-filling [12]. The absolute value of the persistent current
|Ic| as function of ν for three values of λ = 1.0, 2.0, 3.0
at fixed value of φ = 0.25φ0 is plotted in Figs. 6(d)–6(f).
The current falls off substantially at the special filling ν =
0.145, 0.236, 382 even when the system is in the delocalized
phase in Fig. 6(d) similar to the dependence of SA on ν as
shown in Fig. 4(d). In the multifractal phase, the magnitude
of current significantly decreases whereas its fluctuations
increase as function of ν as shown in Fig. 6(e) similar to SA

in multifractal phase [Fig. 4(e)]. The current vanishes for all
values of ν as one goes into the localized phase as can be seen
from Fig. 6(f). The dependence of |Ic| on λ for increasing
values of ν at fixed φ is shown in Fig. 7. The criticality of
the AAH model is evident from the Ic − λ plots for normal
filling ν = 0.2, 0.3, 0.5 as Ic vanishes at λc = 2 for those
fillings whereas Ic goes to zero for smaller values of λ < 2
well before λ = 2 for nontrivial ν = 0.145, 0.236, 0.382. This
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FIG. 7. The absolute value of the persistent current |Ic| as func-
tion of λ for increasing values of ν at fixed φ = 0.25φ0. For all the
plots α = 377/610 with N = 610.

shows that the critical nature of the model is somehow sup-
pressed at those fillings as is also clear from Fig. 5.

The persistent current can also be calculated from the ex-
pectation value of the current operator defined as Jc = − ∂H

∂φ
.

The current operator can thus be written as

Jc =
∑

l

Jc
l,l+1, (12)

where Jc
l,l+1 = −i 2πJ

N (e−i 2πφ

φ0N c†
l cl+1 − ei 2πφ

φ0N c†
l+1cl ) and φ is ex-

pressed in the units of φ0. The two definitions of the persistent
current are related via the Feynman-Hellmann (FH) theorem
as 〈− ∂H

∂φ
〉 = − ∂E0

∂φ
, except at points of degeneracies [44–47] in

the energy spectrum. At the degenerate points, the system has
many eigenfunctions corresponding to a single energy and any
linear combination of the true eigenfunctions also satisfies the
Schrödinger equation. As FH theorem equates two quantities

involving eigenfunctions and eigenvalues, respectively, the
equality apparently becomes invalid in the presence of degen-
eracies in the eigenvalues (for details, see the Appendix).

C. Variance of persistent current

A study of the fluctuations of observables in quantum
systems can be very profitable, as they carry important in-
formation about the systems, sometimes more than the mean
values of the observables. Here, we will study the persistent
current, computed using the definition Ic = 〈Jc〉, as described
in Eq. (12). The variance of the persistent current is given by

Ivar
c = 〈Jc2〉 − 〈Jc〉2, (13)

where

Jc2 =
∑

l

Jc
l,l+1

2 +
∑
l �=l ′

Jc
l,l+1Jc

l ′,l ′+1

(14)

and

〈
Jc

l,l+1
2〉 = −4π2J2

N2
(2〈c†

l cl〉〈c†
l+1cl+1〉

− 2〈c†
l cl+1〉〈c†

l+1cl〉 − 〈c†
l+1cl+1〉 − 〈c†

l cl〉),

〈
Jc

l,l+1Jc
l ′,l ′+1 + Jc

l ′,l ′+1Jc
l,l+1

〉 = −4π2J2

N2
[(〈c†

l cl ′+1〉δl ′,l+1

+ 2〈c†
l cl+1〉〈c†

l′cl ′+1〉 − 2〈c†
l cl ′+1〉〈c†

l ′cl+1〉)e−i2θ

− (2〈c†
l cl+1〉〈c†

l ′+1cl ′ 〉 − 2〈c†
l cl ′ 〉〈c†

l ′+1cl+1〉)]

+ H.c. (15)

The variation of Ivar
c with φ is shown in Fig. 8 for regular

filling ν = 0.2 and special filling ν = 0.236 in the delocalized
(λ = 1.0), critical (λ = 2.0), and localized (λ = 3.0) phases,
respectively. The variance of current varies periodically with

FIG. 8. Dependence of the variance of persistent current Ivar
c on the flux φ (in units of φ0) for fermions with different filling fractions ν

and for increasing values of the strength λ of the quasiperiodic potential. (a), (c), (e) Ivar
c vs φ plots for λ = 1.0, 2.0, and 3.0, respectively, and

fixed regular value of ν = 0.2. (b), (d), (f) Ivar
c vs φ plots for λ = 1.0, 2.0, and 3.0, respectively, and fixed special value of ν = 0.236. Total

number of sites N = 144 and α = 89/144 for all the plots.
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FIG. 9. (a) The variation of Ivar
c with λ for the fixed φ = 0.25φ0

for regular and special filling fractions ν of fermions. (b) The first
derivative of Ivar

c with λ for the fixed φ = 0.25φ0 for increasing
filling fractions ν of fermions. Total number of sites N = 144 and
α = 89/144 for all the plots.

flux but it becomes discontinuous if the Fermi level overlaps
with quasidegenerate levels (φ = ±0.5φ0) for regular fillings
(ν = 0.2 in the figure) in the delocalized phase λ < 2 as
can be seen from Fig. 8(a). However, for special fillings
[ν = 0.236 in Fig. 8(b)] Ivar

c shows a continuous sinusoidal
variation with φ as the Fermi level does not lie within degen-
erate levels for any value of φ. At the critical point λ = 2.0,
Ivar
c vs φ plots become sinusoidal for regular fillings due to

lifting of the degeneracies as shown in Fig. 8(c) for ν = 0.2,
whereas Ivar

c becomes independent of φ for special fillings
[see Fig. 8(d)]. In the localized phase, Ivar

c is constant for both
types of fillings as shown in Figs. 8(e) and 8(f), respectively.
For clarity, a fixed value of φ = 0.25φ0 is chosen for which
the Fermi level is always nondegenerate for any filling fraction
ν. For φ = 0.25φ0, the variation of Ivar

c with λ is shown for
regular and special values of ν in Fig. 9(a). The variance
of current monotonically increases with λ as the fluctuations
of quantum observables increase with localization. The first
derivative of Ivar

c with respect to λ is calculated as a function
of λ to show how the slope of the plots in Fig. 9(a) change
across the delocalization-localization transition. It turns out
that for the regular fillings, the change of slope shows a
maximum at the transition point λ = 2 whereas no such peaks
appear at the same point in the plots for special fillings
[see Fig. 9(b)]. The variation of Ivar

c with filling fraction ν

FIG. 10. Dependence of the variance of persistent current Ivar
c on

the filling fraction ν for increasing values of the strength λ of the
quasiperiodic potential and fixed φ = 0.25φ0. Total number of sites
N = 144 and α = 89/144 for all the plots.

is shown in Fig. 10 for λ = 1.0, 2.0, and 3.0, respectively.
In the delocalized phase (λ = 1.0), the plot shows sudden
increase of Ivar

c at the values of special fillings whereas those
maxima disappear as one gets into the localized phase. Such
increase of quantum fluctuations is a property of localized
systems which indicates that the fermionic system behaves
like a localized one for special fillings even when λ < 2.

D. Relation between persistent current and its fluctuations

In this section, we will explore the relationship between the
persistent current Ic and its standard deviation δIc, which are
related by

δIc = √
Ivar
c . (16)

The δIc vs Ic plots are shown in Fig. 11. These plots are
obtained by varying the flux uniformly in the entire range
φ ∈ [−πφ0, πφ0]. In the delocalized phase, the δIc-Ic curves
are open and discontinuous for the nonspecial values of ν due
to the presence of quasidegeneracies in the energy spectrum,
as shown in Fig. 11(a), whereas these are closed continuous
curves for the special fillings as can be seen from Fig. 11(b)
due to no degeneracies. Such discontinuous δIc-Ic curves at
the degenerate points have been recently reported for a one-
dimensional model without any disorder [25]. At the critical
phase, the δIc-Ic curves are closed ones for the nonspecial ν

due to the lifting of degeneracies [Fig. 11(c)] and the curves
are straight lines for special values of ν [Fig. 11(d)]. In the
localized phase, the δIc-Ic curves are horizontal lines for any
value of ν [see Figs. 11(e) and 11(f)]. The area enclosed by
the δIc-Ic curves can be calculated to distinguish between
the nonspecial and special fillings across the delocalization-
localization transition in the AAH model. For the nonspecial
values of ν, the area is undefined in the delocalized phase for
λ < 2 due to quasidegeneracies at the specific values of φ.
At λ = 2, for the nonspecial values of ν, the δIc-Ic curves are
closed ones and the area enclosed by these are finite whereas
the area goes to zero in the localized phase λ > 2 as shown
in Fig. 12(a). For the special fillings, for small values of λ the
area is finite but it goes to zero as λ increases well before it
reaches the critical point λ = 2, as can be seen in Fig. 12(b).
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FIG. 11. The δIc-Ic curves for fermions with different filling fractions ν and for increasing values of the strength λ of the quasiperiodic
potential. (a), (c), (e) δIc-Ic curves for λ = 1.0, 2.0, and 3.0, respectively, and fixed regular value of ν = 0.2. (b), (d), (f) δIc-Ic curves for
λ = 1.0, 2.0, and 3.0, respectively, and fixed special value of ν = 0.236. Total number of sites N = 144 and α = 89/144 for all the plots.

FIG. 12. (a) The area enclosed by the δIc-Ic curves as function
of λ for nonspecial filling fractions. The green dotted line represents
region where area cannot be defined as a closed curve is not obtained
due to quasidegeneracies. (b) The area enclosed by the δIc-Ic curves
as function of λ for special filling fractions. For all the plots N =
144 and α = 89/144. The δIc-Ic curves are plotted by varying φ ∈
[−π, π ]φ0.

This once again reinforces the finding that the criticality of the
AAH model is reflected by the nonspecial fillings but not by
the special fillings.

It is noteworthy that although the isolated single-particle
localized states are absent in single-particle spetra when
the system size is chosen to be a Fibonacci number
(N = 144, 610, . . .), the many-particle results on the persis-
tent current depend on whether the values of filling frac-
tion ν are special ones or not. Hence, this establishes that
the contrasting behavior between the two kinds of filling
fractions is a manifestation of the large gaps in the single-
particle spectra rather than the presence or absence of the
isolated localized single-particle states. We would like to
mention that there are large gaps above the Fermi level
when ν = α, α2, α3, α4, which approximately evaluates to
ν = 0.618, 0.382, 0.236, 0.145. One has to choose the numer-
ical values of α carefully so that there is a large gap above
the Fermi level. The results remain qualitatively unchanged
even for smaller system sizes. However, the delocalization-
localization transition at λ = 2 for nonspecial filling fractions
becomes sharper as the system size N increases. For special
filling fractions, the system gets localized at λ < 2. As sys-
tem size increases, these localization transition points shift
to lower values of λ. Hence, quantitatively, the distinctions
between special fillings and nonspecial fillings, as shown in
Figs. 5, 7, 9, 12, etc., become sharper as one goes from smaller
to larger system sizes.

V. CONCLUSION

We have studied the effect of the single-particle energy
gaps on the transport properties (single-particle and
many-particle fermionic) of the AAH potential in one
dimension. Even in the well-known delocalized phase
(λ < 2), the IPR and von Neumann entropy of the single-
particle eigenstates drastically rise and fall off, respectively,
for non-Fibonacci system sizes when the eigenstate
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index = α, α2, α3, α4(≈ 0.618, 0.382, 0.236, 0.145). The
single-particle spectrum contains large gaps above the energy
levels with these special indices. The eigenstates with the
special indices are isolated states with a different kind of
localization properties as compared to the other eigenstates.
However, these isolated localized states disappear when the
system sizes are Fibonacci numbers such as N = 144, 610,
etc. For Fibonacci system sizes, all the single-particle
eigenstates have the same kind of localization properties and
the peaks (falls) in the IPR (von Neumann entropy) vanish.

Next, we have considered the many-particle properties
of the free-fermionic ground states. The entanglement en-
tropy falls off substantially when the filling fraction is ν =
α2, α3, α4 (≈0.382, 0.236, 0.145). Also, the subsystem scal-
ing of SA follows the area law at the same special values
of ν, whereas in the delocalized phase SA shows logarithmic
violation of the area law for normal fillings ν = 0.2, 0.3, 0.5.
The entanglement entropy of the fermionic ground states with
special values of ν do not seem to show any signatures of
criticality at λc = 2 unlike the nonspecial fillings. All these
filling-dependent features on many-particle entanglement en-
tropy are completely independent of whether or not the system
size is a Fibonacci number. This proves that the contrast-
ing behavior of the entanglement entropy for the special
and nonspecial fillings is a manifestation of the large gaps
rather than the isolated localized states in the single-particle
spectra. The persistent current of fermions exhibits similar
striking filling-fraction-dependent behavior. It is vanishingly
small even in the delocalized phase for those special fillings
and the criticality of the AAH model is not reflected in the
behavior of the current with λ. We have also calculated the
variance of the persistent current and explored its relations
with the mean value of persistent current in our model. In the
delocalized phase, the standard deviation vs mean persistent
current curves is discontinuous for the nonspecial values of
filling fractions and continuous (closed) for the special values
of filling fractions whereas these curves become straight lines
in the localized phase for both types of filling fractions. The
area enclosed by these curves can be used to distinguish
between the nonspecial filling fractions and special filling
fractions across the delocalization-localization transition. In
the delocalized phase, the area is undefined for nonspecial
fillings and finite for special fillings, whereas the area is zero
in the localized phase for all fillings.

The persistent current depends on whether the values of
filling fraction are special ones or not even when system sizes
are Fibonacci numbers when the isolated single-particle local-
ized states are absent in the single-particle spectra. Hence, this
again establishes that the interesting many-particle phenom-
ena depend on the locations of large gaps in the single-particle
energy spectra rather than on the presence or absence of the
isolated localized states. The effect of energy gap structures on
transport properties as described in this work has been hitherto
unexplored. The connection between the persistent current
and its quantum fluctuations is very interesting and may be
extended to other contexts like the many-body localization.
The filling-fraction-dependent persistent current is one of
the striking aspects of our work. This may potentially be
tested in cold-atom-based experiments [48–51] by creating a
synthetic flux in bichromatic optical lattices, given that the

results are independent of system sizes and even valid for
small system sizes. The nonequilibrium dynamics of a wave
packet with specific energy may be used to probe the single-
particle transport properties as it has been done in Ref. [23].
A similar nonequilibrium study of a cleverly defined many-
particle wave packet may be useful in this regard, although
this work is based on the equilibrium transport properties.
Our results open up the possibility of further exploration of
nontrivial filling-fraction-dependent localization or delocal-
ization phenomena in the AAH model. Hopefully, our work
will encourage the community to revisit the energy spectra of
quantum systems with quasiperiodic potential and thus help
fine tune our understanding of filling-fraction dependence.
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FIG. 13. Comparison of two approaches to compute the persis-
tent current. (a) The variation of persistent current Ic with the flux φ

(in units of φ0) for fermions with filling fraction ν = 0.3 calculated
by taking derivative of the ground-state energy using “forward differ-
ence” method and by taking the expectation of the current operator,
which is connected to the first method via FH theorem. (b) The same
plot for ν = 0.5. Total number of sites N = 144 and disorder strength
λ = 0 for all the plots.
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FIG. 14. Dependence of the single-particle gaps � on the flux
φ (in units of φ0) at the nth energy level where n/N = 0.3 and 0.5,
respectively. Total number of sites N = 144 and disorder strength
λ = 0 for all the plots.

APPENDIX: DEGENERACY AND PERSISTENT CURRENT:
NO DISORDER CASE

In this Appendix we will discuss breakdown of the
Feynman-Hellmann (FH) theorem in presence of degenera-
cies and how that shows up in the calculation of the persistent
current and its variance for a one-dimensional tight-binding
chain without any disorder. According to FH theorem〈

−∂H

∂φ

〉
= −∂E0

∂φ
, (A1)

which simplifies to

〈Jc〉 = −∂E0

∂φ
, (A2)

where E0 is energy of the many-fermionic ground state, flux
φ (in units of φ0), and Jc is defined in the main text [Eq. (12)],
which is calculated using the elements of the correlation ma-
trix. So, the left-hand side of Eq. (A2) involves the fermionic
ground-state wave function whereas the right-hand side of the
same involves the ground-state energy. The single-particle en-
ergy dispersion for a one-dimensional periodic lattice without
any disorder is given by

εn = −2J cos

[
2π

N

(
n + φ

φ0

)]
, (A3)

where n = 0,±1,±2,±3, . . . . For a nondegenerate spectra,
using E0 = ∑

n εn(φ)θ (EF − εn) one obtains the expression
of the persistent current written in Eq. (11) in the main text,
using both the approaches depicted in Eq. (A2). Figures 13(a)
and 13(b) show the variation of the persistent current Ic

with flux φ for filling fraction ν = 0.3 and 0.5, respectively,
computed using both the approaches for comparison. It is to
be noted that there is an exact overlap between two methods
except at φ = ±0.5φ0 and 0,±1φ0 in Figs. 13(a) and 13(b),
respectively. The Ic − φ curves look different for different
fillings as the number of fermions is odd in one case and even
in the other case and as Ic depends on whether the number
of fermions is odd or even. When the Fermi level lies in the
degenerate levels, the current by taking the derivative of the

FIG. 15. (a) The variation of Ivar
c with the flux φ (in units of φ0)

for fermions with filling fraction ν = 0.3 calculated using Eq. 15.
(b) The same plot for ν = 0.5. Total number of sites N = 144 and
disorder strength λ = 0 for all the plots.

ground-state energy calculated using the forward difference
method happens to give the known exact results, whereas the
calculation of expectation of the current operator involving the
ground-state wave function gives a different result. The single-
particle energy gap � at the nth level is shown as function of
flux φ for n/N = 0.3 and 0.5, respectively, in Fig. 14. The gap
vanishes at φ = ±0.5φ0 and 0,±φ0, respectively.

The variance of the persistent current Ivar
c as function of

flux φ is shown in Figs. 15(a) and 15(b) for filling fractions
ν = 0.3 and 0.5, respectively. The curves show discontinuities
exactly at the point of degeneracies as mentioned earlier.
At the point of degeneracies, any linear superposition |
0〉
of the true ground states |�0〉 is also a valid solution of
the Schrödinger equation. On numerical computation, one
does not obtain the true degenerate ground state and the FH
theorem as mentioned in Eq. (A2) breaks down in presence of
degeneracies [44–47]. The corrected FH theorem for degener-
ate case can be described by adding one additional condition
in the degenerate subspace, written as [45–47]

〈�0,i| − ∂H

∂φ
|�0, j〉 = 0 for i �= j,

〈�0,i| − ∂H

∂φ
|�0,i〉 = −∂E0

∂φ
, (A4)
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where i, j = 1, . . . , q for the q-degenerate subspace. Af-
ter numerically computing the ground states |
0〉’s at
the degenerate point, one essentially constructs matrix A
given by

Ai j = 〈
0,i| − ∂H

∂φ
|
0, j〉 , (A5)

which contains off-diagonal elements. Then, one di-
agonalizes the matrix A to obtain the correct linear

superposition

|�0,i〉 =
q∑

j=1

Ci j |
0, j〉 (A6)

that satisfies the conditions shown in Eq. (A4). The degen-
erate points should be treated specially under the treatment
charted out here. These details are included in the interest of
completion, although we have not used such treatments in our
work.
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