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We introduce and develop a theory of fusion and statistical processes of gapped excitations in Abelian fracton
phases. The key idea is to incorporate lattice translation symmetry via its action on superselection sectors, which
results in a fusion theory endowed with information about the nontrivial mobility of fractons and subdimensional
excitations. This results in a description of statistical processes in terms of local moves determined by the fusion
theory. Our results can be understood as providing a characterization of translation-invariant fracton phases.
We obtain simple descriptions of the fusion theory in the X-cube and checkerboard fracton models, as well as
for gapped electric and magnetic excitations of some gapless U(1) tensor gauge theories. An alternate route
to the X-cube model fusion theory is provided by starting with a system of decoupled two-dimensional toric
code layers, and giving a description of the p-string condensation mechanism within our approach. We discuss
examples of statistical processes of fractons and subdimensional excitations in the X-cube and checkerboard
models. As an application of the ideas developed, we prove that the X-cube and semionic X-cube models realize
distinct translation-invariant fracton phases, even when the translation symmetry is broken corresponding to an
arbitrary but finite enlargement of the crystalline unit cell.
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I. INTRODUCTION

Quantum many-body systems with fracton excitations have
recently emerged as a frontier of condensed matter physics.
Following the early work of Chamon [1], Haah [2] discovered
a class of fracton states in a quest to realize a stable finite-
temperature quantum memory. More recently, spurred on by
the development of simpler solvable fracton models [3,4] and
by the observation that many U(1) symmetric-tensor gauge
theories [5–8] support fracton excitations [9], interest has
grown in fracton states as a new class of quantum phases of
matter that lie beyond existing paradigms. The key property
is the presence of excitations of restricted mobility, including
subdimensional particles that move along lines (“lineons”)
or planes (“planons”), and fractons that, individually, cannot
move at all. For a recent brief review of fracton phases, see
Ref. [10].

There are both gapped and gapless fracton phases in three
spatial dimensions. In many respects, gapped fracton phases
are similar to more conventional phases with intrinsic topo-
logical order (iTO) [11–14]: there is an energy gap to all
excitations, and some excitations above the gap are topolog-
ically nontrivial in the sense that individual such excitations
cannot be created locally. Moreover, on the torus there is a
degeneracy among ground states that cannot be distinguished
by local measurements. However, in gapped fracton phases,
some of the topologically nontrivial excitations are fractons or
subdimensional particles, and the ground-state degeneracy on
the torus grows subextensively with system size [2,4,15]. In
the gapless fracton phases that are currently best-understood,
fractons and subdimensional particles arise as gapped electric
and magnetic excitations of a U(1) tensor gauge theory, which
also has gapless photonlike excitations [9].

While by now there are many models exhibiting fracton
phases, there is still relatively little understanding of the

theoretical characterization of these phases (but see below for
a brief survey of prior such work). By a characterization we
mean a set of properties, and perhaps a theoretical structure
encapsulating these properties, that are both in principle mea-
surable in experiments or numerical simulations, and that are
universal in the sense that they provide robust distinctions
between different phases of matter. One important way to
characterize conventional iTO phases in two dimensions is
in terms of the topologically nontrivial gapped quasiparticle
excitations [16–21]. At the most basic level, one enumerates
the distinct types of excitations that exist above a given ground
state. Next, one studies fusion of excitations; namely, we can
ask what type of excitation arises when we make a composite
of two excitations of definite type. Finally, one can consider
statistical processes where excitations are braided around one
another. Such characterizations are important not only in
fully gapped topologically ordered states, but also for gapped
electric and magnetic excitations of (ordinary 1-form) U(1)
gauge theories in three spatial dimensions.

In this paper, we follow a similar path and describe the
characterization of fracton phases in terms of their gapped
excitations. In particular, we describe fusion and statistical
processes in Abelian fracton phases, by which we mean
those fracton phases where fusing two excitations gives a
composite excitation of definite type (see Sec. II A). The
focus throughout is on three spatial dimensions and on type-
I fracton phases [4], and in particular those type-I phases
without fractal structure, e.g., where fractons are created
at the corners of membrane operators rather than operators
with fractal support. (We recall that type-I fracton phases are
defined to be those with at least one nontrivial string operator).
We also focus on systems where the underlying degrees of
freedom are bosonic; the generalization to fermionic systems
is straightforward. Our approach to fusion of excitations is
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equally applicable to type-II phases, but this is less clear for
statistical processes, as we discuss briefly in Sec. VIII. Most of
the paper focuses on gapped fracton phases, including detailed
discussion of the examples of the X-cube and checkerboard
fracton models [4], and the semionic X-cube model [22]. In
addition, we discuss fusion of gapped electric and magnetic
excitations in symmetric-tensor gauge theories, using two
members of the family of (m, n) scalar charge theories [23]
as illustrative examples.

As compared to more conventional states, there are two key
new features in fracton phases. First is the restricted mobility
of excitations, which implies that statistical processes need
not always take the form of familiar braiding processes. The
fusion theory we develop encodes the mobility of excitations,
which allows us to use it as a starting point to describe
statistical processes. Second, the number of distinct excitation
types in fracton phases in infinite, in contrast to conventional
iTO phases. This strongly suggests that, in order to get a
manageable theory, we need to impose some structure beyond
what is present in the theory of conventional iTO phases.

To build a theory that incorporates these features, we
consider lattice translation symmetry. If we ignore translation
symmetry, the fusion of excitations in an Abelian fracton
phase is described by an infinite Abelian group, whose el-
ements correspond to distinct excitation types. Translation
symmetry acts on this Abelian group, giving it more structure
and making it into a more manageable object. Moreover, this
action directly allows us to describe the mobility of excitations
at the level of the fusion theory, which then forms the basis for
a description of statistical processes.

From a certain point of view, it may appear undesirable
to incorporate translation symmetry; for instance, gapped
fracton phases are robust in the absence of any symmetries.
However, it is by now a common observation that discrete
lattice geometry seems to play a key role in the physics of
fracton phases, and it appears that some geometrical structure
may be a necessary ingredient of a tractable theory. An impor-
tant example is the theory of foliated fracton phases [24–29],
described in more detail below, where geometrical informa-
tion is provided by a certain kind of foliation structure. Lattice
translation imposes a different kind of geometrical structure
complementary to that provided by foliation. In addition, our
approach is still useful if the translation symmetry is lowered
to a subgroup, i.e., if the crystalline unit cell is enlarged,
and can be used to study distinctions between phases that are
preserved or lost upon such lowering of symmetry. A number
of other works have also investigated the interplay between
lattice geometry or symmetry and fracton order, from a variety
of perspectives [30–39].

Another perspective on fracton phases emphasizes the
importance of emergent conservation laws that lead to
the restricted mobility of excitations [9]. One important ex-
ample is the conservation of electric charge and dipole mo-
ment in the so-called rank-2 scalar charge U(1) tensor gauge
theory; conservation of dipole moment makes isolated electric
charges into immobile fractons [9]. Another is the conserva-
tion of the number of cube excitations modulo two on each
lattice plane in the X-cube model [4]. This point of view is
also present in conventional iTO phases, and is encoded in the
fusion theory. For instance, the e particles (vertex excitations)

and m particles (plaquette excitations) in the d = 2 toric
code [40] cannot be created individually but only in pairs. This
can be understood in terms of conservation of Z2 ⊕ Z2 “topo-
logical charge,” which is really just another way of saying that
fusion of excitations is described by the Abelian group Z2 ⊕
Z2. It is thus not surprising that the fusion theories we develop
for Abelian fracton phases can also be understood as a way
of encoding the emergent conservation laws. This perspective
plays an important role in our work, in part by guiding our
computations of fusion theories in specific models.

Before proceeding to an outline of the paper, we now
briefly survey some prior work on characterizations of
Abelian fracton phases, including a discussion of foliated frac-
ton phases. (Some work has also studied fracton phases with
non-Abelian excitations [41–45]). Gapless fracton phases
can of course be partly characterized by signatures such
as spin-spin correlations and heat capacity [46]. In gapped
fracton phases, one important characterization tool has been
ground-state degeneracy [2,4,15,32], but as in conventional
iTO phases, this property depends on boundary conditions that
have to be specified. Other works have studied fracton phases
using entanglement entropy [25,47–49], in terms of nearby
phases that are accessed when certain excitations are con-
densed [23,50], and in terms of generalizations of Wilson loop
observables [51]. Many works have studied gapped fracton
and subdimensional excitations, including discussions of sta-
tistical properties and remote detection [4,22,26,32,42,43,52–
54]. References [42,43] introduced the notion of intrinsically
subdimensional excitations, which is closely related to the no-
tion of quotient superselection sectors introduced in Ref. [26].
Finally, closest to our approach, in the context of stabilizer
codes, Ref. [30] introduced the same mathematical object that
constitutes our fusion theory. Later, Ref. [31] pointed out that
this object can be used to characterize stabilizer codes, but did
not consider statistical properties.

Perhaps the best developed characterizations of gapped
fracton phases are those based on the notion of foliated fracton
phases [24–29]. Some fracton models can be defined on gen-
eral three-dimensional spatial manifolds with a certain kind
of foliation structure. Upon choosing a foliation structure,
two states are considered to be in the same foliated fracton
phase if they are adiabatically connected to one another,
possibly after stacking with layers of d = 2 topologically
ordered states placed on the “leaves” of the foliation. With
this notion of equivalence, a stack of d = 2 topologically
ordered states is considered to be trivial. This viewpoint led
to an understanding of the X-cube fracton phase as a kind
of renormalization group fixed point [24], and also led to
entanglement signatures [25] and characterizations of gapped
excitations [26] that are only sensitive to which foliated phase
a system is in.

The equivalence relation used to define foliated fracton
phases is different from that conventionally used to define
quantum phases of matter. Usually, two states are said to be
in the same phase if they can be adiabatically connected to
one another, possibly after adding degrees of freedom in a
trivial product state. Adding such trivial degrees of freedom
is not an arbitrary rule, but comes from the fact that lattice
models are idealizations where some degrees of freedom (e.g.,
core levels) are ignored, and we want the notion of a phase
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of matter to be independent of whether we ignore or include
such “inert” degrees of freedom. In defining foliated fracton
phases, one allows for adding a wider range of degrees of
freedom, and the resulting equivalence relation is coarser
than the more conventional one. In this paper, our discussion
of translation-invariant fracton phases is based on the usual
equivalence relation used to define quantum phases of matter,
with translation symmetry imposed as an extra condition. So
for instance a stack of d = 2 topological orders is a trivial foli-
ated fracton phase but a nontrivial translation-invariant fracton
phase. A more interesting example is provided by the X-cube
fracton model [4], and its semionic variant [22], which were
shown to be in the same foliated fracton phase. In Sec. VI, we
prove that these models realize distinct translation-invariant
fracton phases, even when translation symmetry is broken
corresponding to an arbitrary but finite enlargement of the
crystalline unit cell. In Sec. VIII, we comment further on these
two different notions of fracton phases.

Outline

We now provide an outline of the remainder of the paper.
In Sec. II, we develop the theory of fusion of excitations in
gapped Abelian fracton phases. In Sec. II A, we describe the
fusion theory as an Abelian group, and then in Sec. II B we in-
clude the action of lattice translation symmetry, which makes
the fusion theory into a Z[T ] module, where Z[T ] is the group
ring of the translation group T � Z3, with integer coefficients.
Section II C describes the simplest way in which the fusion
theory allows one to study the mobility of excitations and
identify fractons and subdimensional particles.

In Sec. III, we compute the fusion theory for the X-cube
and checkerboard models, which are solvable type-I frac-
ton models introduced in Ref. [4]. By “compute the fusion
theory,” we mean not only that we define it starting from
the lattice model, but that we give a simple mathematical
description that makes the fusion theory easy to work with.
We do this starting from the lattice model in Sec. III A for
the X-cube model, and in Sec. III C for the checkerboard
model. Some technical details are relegated to Appendix. In
Sec. III C, we compute the fusion theory of the X-cube model
in terms of p-string condensation, where the X-cube model is
constructed from a stack of d = 2 toric code layers, which are
coupled together by condensing extended objects dubbed p
strings [22,55]. This approach allows us to easily see that the
semionic X-cube model introduced in Ref. [22] has the same
fusion theory as the ordinary X-cube model.

Section IV develops a description of statistical processes
in terms of “local moves.” The notion of local moves is first
introduced in Sec. IV A, and then statistical processes are
described in terms of local moves in Sec. IV B, using the
d = 2 toric code as a familiar illustrative example. In Sec. V,
we proceed to describe examples of statistical processes in
the X-cube and checkerboard fracton models. We discuss
two processes in the X-cube model, a fracton-lineon process
(Sec. V A), and a lineon-lineon process corresponding to
exchange of two lineon excitations (Sec. V B). We also briefly
discuss a fracton-fracton statistical process in the checker-
board model (Sec. V C). Section VI uses the fusion theory
and the lineon-lineon statistical process to prove that the

X-cube and semionic X-cube models realize distinct
translation-invariant fracton phases.

In Sec. VII, we discuss the fusion of gapped electrically
and magnetically charged excitations in symmetric U(1) ten-
sor gauge theories. We focus on the family of (m, n) scalar
charge theories on the simple cubic lattice [23], and in particu-
lar on the (1,1) and (2,1) members of this family. We compute
the fusion theory for both electric and magnetic charges of the
(1,1) theory in Sec. VII A, and for electric charges in the (2,1)
theory in Sec. VII B), with some technical details given in
Appendix. The electric fusion theories are different, with the
(2,1) theory enjoying additional conservation laws not present
in the (1,1) theory. The (1,1) and (2,1) theories thus describe
distinct translation-invariant gapless fracton phases. The paper
concludes in Sec. VIII with a discussion of open questions
and some general remarks on the two different notions of
translation-invariant and foliated fracton phases.

II. FUSION IN ABELIAN FRACTON PHASES

A. Preliminaries: fusion theory as an Abelian group

We consider a quantum system in three spatial dimensions
with a local Hamiltonian and a gap to all bulk excitations.
To study excitations above the ground state, we take the
thermodynamic limit, and consider excitations with bounded
support. That is, we consider excitations whose local density
matrices only differ from those of a ground state within a
bounded region. There is a limiting procedure implied here,
because in order to create arbitrary such excitations within a
bounded region, other excitations generally also need to be
created somewhere far away from the bounded region. We
are taking a limit where these far-away excitations are pushed
infinitely far from the bounded region.

Excitations can then be labeled by superselection sectors
(also referred to as particle types or excitation types): two
excitations are in the same sector if they can be transformed
into one another by acting with an operator of bounded
support, while two excitations are in different sectors if this is
not possible. There is a trivial superselection sector consisting
of excitations that can be created from a ground state by
acting with operators of bounded support. We say these trivial
excitations are locally creatable, while nontrivial excitations
are those that are not locally creatable. We denote the set of
all superselection sectors by S .

The scheme we have described is applicable to pointlike
excitations, but of course there are extended excitations in
some gapped phases, such as flux loops in discrete gauge
theories. We will restrict attention to pointlike excitations for
simplicity and because many fracton phases only have such
excitations. While there are U(1) tensor gauge theories with
line excitations exhibiting restricted mobility [56], in the sense
that the line objects are not flexible and able to deform their
shape arbitrarily, it is not known whether such phenomena are
possible in fully gapped fracton phases.

Now we discuss fusion of excitations. We consider
two excitations supported within disjoint and well-separated
bounded regions R1 and R2, belonging to sectors s1 and
s2, respectively. We then consider a state containing both
excitations; that is, the local density matrices in the regions
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R1 and R2 are the same as those in the corresponding single-
excitation states, and local density matrices outside these
regions are the same as in a ground state. Then, we ask to
which superselection sector s this composite state belongs.
In general, with the information we specified, there may be
more than one possibility for s. However, we assume that
s is uniquely specified by s1 and s2; this is what it means
for the excitations to be Abelian. Moreover, given a pair of
superselection sectors s1 and s2, we assume that we can always
find representative excitations in each sector supported within
disjoint and well-separated bounded regions R1 and R2; this
assumption allows us to define a binary operation mapping
S × S → S , and can easily be shown to hold for all the
fracton models considered in this paper.

On physical grounds, with the assumption that all excita-
tions are Abelian, the binary operation given by fusion makes
S into an Abelian group, and we use additive notation for
the fusion operation. Commutativity and associativity follow
from the expectation that the result of fusion should not
depend on any ordering of the excitations. Each excitation
must have an antiparticle excitation, so that the composite of
a particle and its antiparticle can be created locally; therefore
each sector has an inverse.

We note that there can be additional structure tied to
fusion associativity, beyond the Abelian group structure. If
we look at the effect of the fusion operation (s1 + s2) + s3

versus s1 + (s2 + s3) on the vector space of states, rather
than merely looking at the resulting superselection sector,
the two operations can differ by a phase factor encoded
in an F symbol. It is well known that some theories of
Abelian anyons in two dimensions have nontrivial F sym-
bols. For the purposes of this paper, we will not need to
describe fusion associativity at this level. However, if one
wants to develop a full generalization of the algebraic theory
of anyons for fracton phases—which is not the aim of this
paper—then presumably it would be necessary to introduce
an F symbol.

B. Fusion theory with action of translation symmetry

The fusion theory we developed above is simply an
Abelian group, and our considerations thus far are essentially
the same as for Abelian pointlike excitations in conventional
iTO phases. We could stop here, but the resulting fusion
theory would not be very useful for fracton phases, because it
contains no information about mobility of excitations. More-
over, as we will see in explicit examples, S is not finitely
generated for gapped fracton phases, and is thus a rather large
mathematical object without much structure.

Therefore we assume that our system is invariant under
three-dimensional discrete translation symmetry; that is, it
is invariant under the translation group T � Z3. The trans-
lation group acts on S; given a sector s, we can ask what
sector results upon taking a representative excitation in s
and translating it by some amount. Formally, for ta ∈ T and
s ∈ S , there is a function mapping T × S → S that we write
as tas. Here, a = (ax, ay, az ) is a vector of integers labeling
the translation, and we use multiplicative notation for T , so

that ta1ta2 = ta1+a2 . For s, s1, s2 ∈ S , we assume on physical
grounds that the following properties hold:

ta1

(
ta2 s

) = ta1+a2 s, (1)

t0s = s, (2)

ta(s1 + s2) = tas1 + tas2. (3)

The first property says that translating in steps is the same as
translating all at once. The second property is obvious—the
trivial operation of no translation at all should leave the super-
selection sector unchanged. The first two operations make the
action of T on S into a group action. The third property says
that the operations of fusion and translation commute—that
is, we can either first fuse two particles then translate the
composite, or we can first translate each particle and then fuse
them. This property should hold because the corresponding
representative excitations are the same in the two cases. It
follows from these properties that tas = 0 if and only if s = 0.

In fact, we can promote the translation group T to its group
ring with Z coefficients, denoted Z[T ]. Elements of Z[T ] are
formal integer linear combinations of elements of translations
ta, with multiplication acting in the obvious way,(∑

i

nitai

)⎛
⎝∑

j

m jta j

⎞
⎠ =

∑
i, j

nim jtai+a j . (4)

This is useful because there is a natural action of Z[T ] on S .
For instance, (

ta1 + ta2

)
s ≡ ta1 s + ta2 s, (5)(

ta1 − ta2

)
s ≡ ta1 s − ta2 s, (6)

and finally

(nta)s ≡ tas + · · · + tas︸ ︷︷ ︸
n times

. (7)

This action makes S into a Z[T ] module. We will sometimes
refer to S and related objects as a module, and sometimes as
a group.

We note that, beginning with the seminal work of Haah,
Z[T ] modules have been used to analyze stabilizer code
Hamiltonians realizing fracton phases [2,4,30,31,57]. There,
the structure appears upon representing Pauli operators or
configurations of excitations in a stabilizer code as the Laurent
polynomials of three variables x, y, and z, and noting that
translation is the same as multiplication by a monomial.
Indeed, Ref. [30] introduced the same module S that we study
here, referring to it as the set of topological charges, and
used this to show that the energy cost of separating pointlike
excitations grows at most logarithmically with distance. The
emphasis there is different from the present work, focusing
on general properties of stabilizer code models, rather than on
characterizing quantum phases of matter. Closer in perspec-
tive is Ref. [31], which contains a proof that S is independent
of Hamiltonian representative for stabilizer codes (proposition
V.12), and advocates that S be used as a characterization of
stabilizer codes (Sec. V E).
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C. Fractons and subdimensional particles

The fusion theory as developed allows us to study the
mobility of excitations. At the simplest level, it allows us to
identify each superselection sector as a fracton, lineon, planon
or fully mobile particle. First, consider a sector s ∈ S and
suppose that tas = s for some a �= 0. Since in this case s and
tas are in the same sector, there is some operator of bounded
support that, acting on an excitation in sector s, has the same
effect as translation by a. We can think of this operator as a
string operator, even though it does not necessarily have to be
“shaped like” a string, because it has the effect of destroying
an excitation in sector s at some position r, and recreating an
excitation in the same sector at r + a. Apart from destroying
and creating excitations at these two “endpoints” of the string,
no other excitations are created.

Because translation is a symmetry, an excitation and its
image under ta have the same energy. Therefore, if tas = s,
excitations in the s sector are mobile in the a direction. That
is, they can hop by a displacement a without changing energy,
and this hopping is effected by the string operator discussed
above.

Excitations represented by each sector s are mobile in
zero, one, two, or three dimensions, and the excitations are
referred to as fractons, lineons, planons, and fully mobile
particles, respectively. More formally, these possibilities can
be differentiated by considering the subgroup Ts ⊂ T consist-
ing of translations ta that take s to itself; that is, translations
satisfying tas = s. Fractons have trivial Ts; that is, they have
tas �= s for any a �= 0. For lineons, Ts � Z, corresponding
to translations along one direction. Planons have Ts � Z2,
corresponding to translations in a plane. Finally, fully mobile
particles have Ts � Z3.

III. FUSION THEORIES OF SOME SOLVABLE
FRACTON MODELS

In this section, we describe the fusion theories of some
exactly solvable gapped fracton models. We first discuss the
X-cube model, showing that its fusion theory decomposes into
two sectors, and treating these in turn (Sec. III A). We show
that each sector is isomorphic to a certain submodule of a
Z[T ] module of Z2 “plane charges,” in which a Z2 charge
is attached to each lattice plane normal to the x, y, and z
directions. The single cube excitations are fractons carrying
the charge of three intersecting planes, while the vertex exci-
tations are lineons with charges tied to two intersecting planes,
as illustrated in Fig. 1.

In Sec. III B, we obtain the fusion theory of the X-cube
model from a different point of view, starting from a sys-
tem of decoupled d = 2 toric code layers, and extending
the corresponding fusion theory to implement the p-string
condensation of Refs. [22,55]. This treatment allows us to
show that the X-cube and semionic X-cube models have the
same fusion theory. Finally, in Sec. III C, we discuss the fusion
theory for the checkerboard model.

A. X-cube model

We first consider the X-cube model [4], where one qubit
is placed on each link � of the d = 3 simple cubic lattice. We

FIG. 1. Graphical representation of the mapping between exci-
tations in the X-cube model (left) and configurations of Z2 plane
charges in the fusion theory (right). In the top panel, a single cube
excitation f is a fracton that maps to a configuration of charges
on three intersecting planes. In the bottom panel, �z is a vertex
excitation, and carries the charge on two intersecting planes. It is
apparent from the graphical representations that �z is a lineon able
to move along the vertical axis, while f is immobile. We note that
there are two distinct, independent types of plane charges, with cube
excitations carrying one type, and vertex excitations carrying the
other type (indicated by color online). The map π is a map of Z[T ]
modules defined in the text.

denote Pauli operators acting on each qubit by X� and Z�. The
Hamiltonian is

HX-cube = −
∑
v,μ

Aμ
v −

∑
c

Bc, (8)

where the first sum is over all vertices v and directions μ =
x, y, z, and the second sum is over all elementary cubes c.
As illustrated in Fig. 2, Aμ

v is a product of Z� over the “star”
of four links touching v and lying in the plane normal to μ,
while Bc is a product of X� over the 12 links in the boundary
of the cube c. All the terms in the Hamiltonian commute with
one another, so the model is exactly solvable, and its energy
eigenstates can be labeled by aμ

v , bc ∈ {±1}, the eigenvalues
of Aμ

v and Bc, respectively. Cube excitations with Bc = −1 are
fractons, while vertex excitations with Aμ

v = −1 are lineons.
With periodic boundary conditions (i.e., on a spatial 3-

torus), the ground state and excited states are degenerate, with
multiple states corresponding to a given choice of aμ

v and bc.
The degeneracy of the ground state grows subextensively with

FIG. 2. Operators in the X-cube model. (Left) Az
v is a product of

Z� over the star of four thickened links. (Right) Bc is the product of
X� over the edges of an elementary cube.
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system size, that is the degeneracy scales like exp(cL), where
L is the linear system size. While this degeneracy will not play
an important role in our discussion, we note that the system
has topological order, in the sense that the degenerate ground
states cannot be distinguished by measurement of any local
observables [4].

We are interested in configurations of excitations as speci-
fied by the sets of eigenvalues {aμ

v } and {bc}, in the limit of an
infinite system, and with only finitely many −1 eigenvalues.
There is a local constraint Ax

vAy
vAz

v = 1 on the vertex terms,
which implies ax

vay
vaz

v = 1. Apart from this constraint, any
configuration with finitely many −1 eigenvalues is realized
by some eigenstate.1 Configurations of excitations form an
Abelian group that we denote E and call the excitation group,
where the group operation is multiplication of eigenvalues.
We pass to additive notation for E by writing aμ

v = (−1)α
μ
v

and bc = (−1)βc , with αμ
v , βc ∈ Z2 = {0, 1}. Then elements

of E are bit strings of the αμ
v ’s and βc’s, with the group

operation being element-by-element addition of the bit strings
modulo two.

The excitation group decomposes as a direct sum E =
Ea ⊕ Eb, where Ea = ⊕

v (Z2 ⊕ Z2) consists of vertex-term
excitations, and Eb = ⊕

c Z2 consists of cube excitations. (We
note that the group of excitations at each vertex is Z2 ⊕ Z2

as a direct consequence of the constraint ax
vay

vaz
v = 1). Any

locally creatable energy eigenstate can be created from the
ground state by acting with a finite product of Pauli operators,
and since X� operators only create vertex-term excitations,
while Z� operators only create cube excitations, we also have
the decomposition L = La ⊕ Lb, where La ⊂ Ea consists of
all excitations created by finite products of X� operators, and
similarly for Lb ⊂ Eb.

It follows that the fusion theory is also a direct sum;
that is S = Sa ⊕ Sb, with Sa = Ea/La, and similarly for Sb.
Translation symmetry acts on E , L, and their direct summands
Ea, Eb, La and Lb, making these objects into Z[T ] modules,
so that S , Sa and Sb are also all Z[T ] modules.

We have thus shown that the fusion theory decomposes
into a fusion theory associated with vertex excitations (Sa),
and one associated with cube excitations (Sb). This conclusion
does not rely on any special properties of the X-cube model,
but rather is a general property of commuting Pauli Hamilto-
nians where some terms are products only of X� and others
are products only of Z�. Such decompositions are familiar
from discrete Abelian gauge theories, where the fusion theory
similarly decomposes into electric and magnetic sectors.

We refer to Sa and Sb as lineon and fracton fusion theo-
ries for the X-cube model, because their excitations can be
obtained by fusing together lineons and fractons, respectively.

1To see this, suppose that all the −1 eigenvalues lie within a ball
of radius R centered at the origin. We can create such a state from
a ground state by acting with string and membrane operators, where
each string or membrane creates a single cube or vertex excitation
within the ball, with the other excitations it creates lying outside the
ball. The infinite system limit corresponds to taking a limit of “large”
string and membrane operators, so that all −1 eigenvalues outside the
ball are pushed to infinity.

We treat the fracton and lineon fusion theories separately in
the following two sections.

1. Fracton fusion theory of the X-cube model

Here we describe the fracton fusion theory Sb of the X-
cube model, which is the theory of superselection sectors for
the cube excitations. We label cubes with integer coordinates
r = (x, y, z). The excitation group Eb is generated by ele-
ments f (r) satisfying 2 f (r) = 0, and a general element e ∈ Eb

is written

e =
∑

r

βr f (r), (9)

where βr ∈ {0, 1} is the same as βc as defined above. Transla-
tion symmetry acts in the obvious way,

ta f (r) = f (r + a). (10)

We specify the group Lb ⊂ Eb in terms of its generators,
which are simply the configurations of cube excitations cre-
ated by acting with a single Z� operator on the ground state.
These are:

f (r) + f (r + x̂) + f (r + ŷ) + f (r + x̂ + ŷ),

f (r) + f (r + x̂) + f (r + ẑ) + f (r + x̂ + ẑ),

f (r) + f (r + ŷ) + f (r + ẑ) + f (r + ŷ + ẑ),

where x̂, ŷ, and ẑ are the usual Cartesian unit vectors.
Our discussion so far is enough to define Sb = Eb/Lb,

but we will go further and obtain a simple description of
Sb that will allow us to understand the fusion and mobility
properties of all excitations that can be obtained from single
cube excitations. In order to do this, we recall that the number
of cube excitations in every {100} lattice plane is conserved
modulo two [4].2 That is, there is no local process that adds or
removes a single cube excitation to a plane, as is easily seen
from the form of the generators of Lb.

This motivates us to define a group of plane charges
P = ⊕

p Z2, where the direct sum is over {100} planes. The
generator for the Z2 summand associated with the xy plane
with z coordinate z is written Pxy(z), and similarly we intro-
duce generators Pxz(y) and Pyz(x) for the other Z2 summands.
Translation symmetry acts on P as a translation of the lattice
planes. That is, for a translation ta = (ax, ay, az ), we have
taPxy(z) = Pxy(z + az ), and similarly for the other generators.
This makes P into a Z[T ] module.

We will see that Sb is isomorphic to a certain submodule
of P . The plane charge of any excitation Eb is computed by a
map π : Eb → P , defined by its action on generators:

f (x, y, z) 	→ Pyz(x) + Pxz(y) + Pxy(z). (11)

This expresses the fact that a single cube excitation carries
plane charges in three perpendicular lattice planes; the top

2We recall that the Miller index notation {klm} denotes a family
of symmetry-equivalent lattice planes, while (klm) denotes a family
of lattice planes all with the same orientation. So, for instance, in a
cubic crystal, (100) and (010) are distinct sets of lattice planes both
belonging to the family of {100} planes.
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panel of Fig. 1 is a graphical illustration. This map commutes
with the action of translation and so is a map between Z[T ]
modules. The observation that locally creatable excitations
have trivial plane charges is then written π (e) = 0 for any
e ∈ Lb. That is, Lb ⊂ ker π . Therefore, remembering that
Sb = Eb/Lb, π induces a map πS : Sb → P . In fact, as shown
in Appendix 1, ker π = Lb, which implies that πS is injective.
Physically this means that different superselection sectors can
be uniquely labeled by configurations of plane charges.

Because πS is injective, we have

Sb � πS (Sb) ≡ Pb ⊂ P . (12)

This defines a submodule Pb ⊂ P that is isomorphic to Sb,
and from now on we identify Sb with Pb. This gives a descrip-
tion of the superselection sectors in terms of plane charges.
Pb is generated by π [ f (r)] = Pyz(x) + Pxz(y) + Pxy(z). It is
important to note that Pb is smaller than P; that is, some
configurations of plane charges are not allowed. In fact, if
Pb were the same as P , then every cube excitation would
necessarily be a composite of planons, which is not the case. It
is thus essential to characterize the subgroup Pb ⊂ P , which
we now do.

A general element p ∈ P can be written

p =
∑

x

Qyz(x)Pyz(x) +
∑

y

Qxz(y)Pxz(y)

+
∑

z

Qxy(z)Pxy(z), (13)

where Qyz(x) ∈ {0, 1}, and similarly for the other coefficients.
We define a triple of integers characterizing p:

kp =
∑

x

Qyz(x), (14)

lp =
∑

y

Qxz(y), (15)

mp =
∑

z

Qxy(z). (16)

In Appendix 1, it is shown that that p ∈ Pb if and only if kp,
lp and mp are all even or all odd. This gives an explicit and
simple description of Sb in terms of plane charges.

Now we derive some consequences of this result. First,
we see that the cube excitations are fractons by the definition
given in Sec. II C. That is,

π [ta f (r)] �= π [ f (r)], (17)

for a �= 0, which is easily seen by explicitly evaluating the
maps on the left- and right-hand sides. Equivalently, again for
a �= 0, we have

π [ta f (x, y, z) + f (x, y, z)] �= 0, (18)

which is the statement that a pair of cube excitations is never
locally creatable, i.e., there are no string operators that create
a pair of cube excitations. We note that it has already been
established in Ref. [4] that a pair of cube excitations cannot be
created by any string operator. By obtaining this result from
the fusion theory, our treatment makes it clear that this is a
universal property of a quantum phase of matter, at least when
translation symmetry is present.

We can also use the fusion theory to discuss composites
of cube excitations. For instance, it is known that certain
composites of two cube excitations are planons. For instance,
the excitation f (r) + f (r + nẑ) can move in the xy plane, as
we can see from

π [ f (r) + f (r + nẑ)] = Pxy(z) + Pxy(z + n), (19)

where r = (x, y, z); the right-hand side is clearly invariant
under any translation in the xy plane.

More generally, we can use the fracton fusion theory to
study arbitrary composites of cube excitations. We refer to
elements of Sb with kp, lp, mp all odd (all even) as odd (even)
elements. The sum of two even elements or two odd elements
is even, and summing an even element with an odd element
gives an odd element. Therefore there is a homomorphism
from Sb to Z2 that maps odd elements to 1 ∈ Z2 and even
elements to 0 ∈ Z2. It is easy to see that all even excita-
tions can be obtained by fusing together a finite number of
planons of the form f (r) + f (r + x̂), f (r) + f (r + ŷ) and
f (r) + f (r + ẑ). Moreover, an excitation is a planon if and
only if exactly two of kp, lp, mp are zero, and is a lineon if and
only if exactly one of kp, lp, mp is zero. (We note that these
lineons are not intrinsic lineons, i.e., they are composites of
planons). Therefore only even excitations can be lineons or
planons, while all odd excitations are fractons. While there
are even fractons, these can all be obtained as bound states
of planons. Odd excitations, on the other hand, are intrinsic
fractons, by which we mean they cannot be obtained as
composites of excitations with higher mobility [42,43].

Reference [26] introduced the notion of quotient superse-
lection sectors (QSS), which are obtained by viewing two sec-
tors related by fusing planons as equivalent. In the language
of our fusion theory, the theory of QSS is a Z[T ] module
Q(Sb) obtained by constructing the submodule P(Sb) ⊂ Sb

generated by all planon excitations, and forming the quotient
Q(Sb) = Sb/P(Sb). In the present case, P(Sb) is simply the
subgroup of even superselection sectors, and Q(Sb) � Z2,
where the quotient map is the same homomorphism from
Sb to Z2 discussed above. This tells us that any two odd
excitations are related by fusing planons, which is also easy
to see directly.

2. Lineon fusion theory of the X-cube model

We now turn to the fusion theory Sa in the X-cube model,
which we refer to as the lineon fusion theory, because it de-
scribes the lineon vertex excitations and their composites. The
excitation group Ea is generated by elements �μ(r) satisfying
2�μ(r) = 0 and

�x(r) + �y(r) + �z(r) = 0, (20)

where r = (x, y, z) is the position vector of a vertex with
x, y, z ∈ Z. A general excitation e ∈ Ea can be expressed

e =
∑
r,μ

nμ(r)�μ(r), (21)

where nμ(r) ∈ {0, 1}, and where for a fixed position r, we
can take at most one of the nμ(r) to be equal to unity. The
quantities nμ(r) are related to αμ

v introduced above by nμ(r) =∏
ν �=μ αν

r .
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The submodule of locally creatable excitations La ⊂ Ea is
generated by elements of the form

�x(r) + �x(r + x̂),

�y(r) + �y(r + ŷ),

�z(r) + �z(r + ẑ),

where these are the configurations of excitations created by
acting with X� on some link of the cubic lattice. From the
form of the generators, we can observe that, for instance, the
total number of �x plus �y vertex excitations in any xy plane
is conserved modulo two, with analogous statements holding
for xz and yz planes. This motivates us to again introduce the
group P of plane charges as above in Sec. III A 1. Here, we
define a map π : Ea → P by

�x(x, y, z) 	→ Pxz(y) + Pxy(z),

�y(x, y, z) 	→ Pyz(x) + Pxy(z), (22)

�z(x, y, z) 	→ Pyz(x) + Pxz(y),

which is again a map between Z[T ] modules, illustrated in the
bottom panel of Fig. 1.

In Appendix 2, it is shown that La = ker π , so as before,
π induces an injective map πS : Sa → P , and we identify
Sa � πS (Sa) ≡ Pa ⊂ P . We need to characterize the sub-
group Pa ⊂ P . Pa is generated by elements of the form given
in Eq. (22). As before, any p ∈ P can be written in the form
Eq. (13), and characterized by the integers kp, lp and mp. In
Appendix 2, we show that p ∈ Pa if and only if kp + lp +
mp = 0 mod 2, which gives the desired characterization.

From this description of the lineon fusion theory, we see
that a single vertex excitation �μ(r) is indeed a lineon. For
instance, �x(x, y, z) maps into Pxz(y) + Pxy(z) ∈ Pa, which is
invariant under translations in the x direction, but

π [�x(x, y, z)] �= π [ta�
x(x, y, z)], (23)

for any a = (ax, ay, az ) with ay �= 0 or az �= 0. We can also
see that certain composites of two vertex excitations are
planons [4]. For instance, �x(x, y, z) + �x(x, y, z + 1) maps
to Pxy(z) + Pxy(z + 1), which is clearly invariant under trans-
lations in the xy-plane, but not under translations in the z
direction.

More generally, just as for the fracton fusion theory, exci-
tations are planons when exactly two of kp, lp, and mp are
zero, and they are lineons when exactly one of kp, lp, and mp

is zero. For planons, the nonzero integer among {kp, lp, mp}
is even. Intrinsic lineons, including single vertex excitations,
are those for which the nonzero integers among {kp, lp, mp}
are odd, as these excitations cannot be obtained as compos-
ites of higher-mobility planons. There is a homomorphism
from Sa to Z2 ⊕ Z2 defined by (kp, lp, mp) 	→ (kp mod 2, lp

mod 2, mp mod 2), and the kernel of this homomorphism
is precisely the Z[T ] module P(Sa) generated by planons.
The theory of QSS is then given by Q(Sa) = Sa/P(Sa) �
Z2 ⊕ Z2, where the three nontrivial elements correspond to
fundamental lineons mobile in the x, y and z directions, the
same result obtained in Ref. [26].

FIG. 3. Illustration of two closed p-string configurations of m
particle excitations in a model of decoupled d = 2 toric code lay-
ers on the simple cubic lattice. Panel (a) shows a finite closed p
string, while (b) is an infinite closed p string, which corresponds
to an element f −

z (r) + f +
z (r) ∈ E ext

m . The gray-shaded plaquettes are
m-particle excitations, and a segment of blue p string is shown
intersecting transversely to each m-particle plaquette. The p strings
here are infinite (no endpoints) because every cube has an even
number of m-particle excitations on its faces.

B. X-cube and semionic X-cube fusion theory from
p-string condensation

It has been shown that the X-cube model can be obtained
from three perpendicular stacks of decoupled d = 2 toric code
models upon suitably coupling the layers [22,55]. In this con-
struction, a square lattice d = 2 toric code model is placed on
each {100} square lattice layer of the simple cubic lattice, so
that two qubits reside on each link. The coupling between the
layers creates p strings, or particle strings, which are stringlike
objects built from the m particle plaquette excitations of the
toric code layers. It was argued that condensing the p strings
results in the phase of the X-cube model. We refer the reader
to Refs. [22,55] for more details.

Here, we would like to describe p strings and their conden-
sation within the framework of our fusion theory, both for the
X-cube model and the semionic X-cube model of Ref. [22].
We focus with the X-cube model and discuss its semionic
cousin at the end of the section. Starting with decoupled toric
code layers, we say that an excitation is a closed p string if it
consists only of m particles (plaquette excitations), and if there
are an even number of m particle excitations on the six faces of
each elementary cube of the lattice. As shown in Fig. 3, such
configurations can be viewed as Ising string configurations on
the dual cubic lattice, by drawing a perpendicular line through
each plaquette occupied by an m particle.

The fusion theory for the system of decoupled toric code
layers is S = Se ⊕ Sm, where Se is the fusion theory of e
particle excitations (vertex excitations) and Sm that of m-
particle excitations. We have

Se = ⊕layers Z2, (24)

Sm = ⊕layers Z2, (25)
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FIG. 4. Illustration of the labeling of cubic lattice plaquettes used
in the discussion of p-string condensation. Each plaquette is labeled
by a pair (r, μ), where μ is the normal direction, and r is the vertex
at the corner of the plaquette as shown.

where the direct sums are over all the decoupled toric code
layers. The Z2 generator corresponding to an e particle (m
particle) in the layer normal to the z axis with z = z0 is written
ez(z0) [mz(z0)], and similarly for the other two orientations of
layers. Translation symmetry acts in the obvious way.

It is easy to see that finite closed p strings are locally
creatable and thus are trivial excitations. Therefore, in order
to describe p-string condensation from the perspective of the
fusion theory, we need to work with infinite p strings [see
Fig. 3(b)]. However, these objects are not contained within
the fusion theory as it stands, because we only consider exci-
tations of bounded support. We thus need to extend the fusion
theory to include certain excitations of unbounded support,
and in order to do this we go back to the description of
excitations in terms of the excitation group, or Z[T ] module,
E = Ee ⊕ Em.

It is enough to focus on Em, because the p strings are built
from m particles. We have Em = ⊕pZ2, where the direct sum
is over all square plaquettes of the cubic lattice. We label
plaquettes p by the position of one corner r = (x, y, z) and
the direction of the normal vector μ = x, y, z, and denote
the corresponding generator by mμ(r) (see Fig. 4). Pairs of
m particles on neighboring plaquettes lying within the same
layer can be created locally, and Lm ⊂ Em is generated by
mz(r) + mz(r + x̂), mz(r) + mz(r + ŷ), and the corresponding
elements for other orientations of plaquettes.

By definition, elements of Em are excitations of bounded
support. We now define an extended excitation Z[T ] module
Eext

m with Em ⊂ Eext
m that includes infinite p strings, which are

unbounded excitations. Eext
m is generated by elements f ±

μ (r),
where μ = x, y, z, which are open infinite p strings. For
instance, we define

f +
z (x0, y0, z0) =

∞∑
z=z0+1

mz(x0, y0, z), (26)

f −
z (x0, y0, z0) =

z0∑
z=−∞

mz(x0, y0, z), (27)

with similar expressions for the other orientations. The offset
of +1 in the definition of f +

z (x0, y0, z0) ensures that, upon

p-string condensation, the corresponding fracton excitation
has coordinates (x0, y0, z0). The generators of Em can be
obtained from these generators of Eext

m ; for instance,

mz(r) = f −
z (r) + f −

z (r − ẑ). (28)

Eext
m contains both finite closed p strings, and infinite closed

p strings such as f −
z (r) + f +

z (r) and f −
z (r) + f +

y (r). It is easy
to see that fusing two closed p strings (finite or infinite)
gives another closed p string, so that closed p strings form
a submodule of Eext

m .
We now consider the extended fusion theory Sext

m =
Eext

m /Lm. It is important to note that, while we modified the
excitation group, we do not modify the group of locally
creatable excitations Lm, because we still want to consider
two excitations equivalent only when they are related by
an operator of bounded support. Consider the infinite open
p-string f −

z (x0, y0, z0), which comes with a semi-infinite tail
extending in the −z direction with transverse position (x0, y0).
The direction of the tail and its transverse position at infinity
cannot be changed by acting with an operator of bounded
support, and this information is thus preserved upon taking
the quotient by Lm. Moreover, the coordinate z0 is also robust
under acting with bounded operators, because changing z0

corresponds to creating or destroying m particles. Therefore
all the f ±

μ (r) generators remain distinct upon taking the quo-
tient by Lm. That is

ql
[

f σ
μ (r)

] = ql
[

f σ ′
μ′ (r′)

]
(29)

if and only if σ = σ ′, μ = μ′ and r = r′, where ql is the
quotient map and σ, σ ′ ∈ {+,−}.

The extended fusion theory Sext
m looks almost like Sb, the

fracton fusion theory of the X-cube model, with ql [ f ±
μ (r)]

playing a similar role to π [ f (r)]. However, there is the
important and obvious difference that, here, the generators
depend on the direction of the tail, while there are no such
labels of the generators in Sb. Indeed, in Sext

m the generators
group into six classes if we treat the action of translation as
an equivalence operation, while for Sb all the generators are
related by translation.

Upon p-string condensation, closed p strings can disappear
into and appear from the vacuum, and should be identified
with trivial excitations. Mathematically, we describe this via
the quotient Sext

m /�, where � ⊂ Sext
m is the submodule of

closed p strings. Denoting this quotient map by qσ , we iden-
tify Sext

m /� with the fracton fusion theory Sb via

qσ ◦ ql [ f ±
μ (r)] = π [ f (r)]. (30)

It still remains to describe the lineon fusion theory Sa

from this perspective. Here, following Refs. [22,55], we need
to consider statistics of excitations in Se with the p-string
condensate. There is a statistical phase of −1 when a single
e-particle excitation is braided around a p string, so these
excitations are confined. However, bound states of pairs of
e particles in perpendicular planes have trivial statistics with
p strings, and these excitations correspond to the elementary
lineons (vertex excitations) of Sa.

This approach can also be used to obtain the fusion theory
of the semionic X-cube model introduced in Ref. [22]. That
model is constructed via p-string condensation starting from
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FIG. 5. The shaded cubes form the A sublattice in the checker-
board model. The Ac and Bc terms in the Hamiltonian are products of
Zv and Xv , respectively, over the eight vertices at the corners of each
A-sublattice cube.

decoupled layers of d = 2 doubled semion string-net mod-
els [58]. The nontrivial excitations of each doubled semion
layer are a bosonic flux m, and semions s and s′ = s + m.
The single-layer fusion theory is Z2 ⊕ Z2. The p strings are
built from the m particles, and we can obtain the fusion theory
of the semionic X-cube model exactly as above. While the
semionic X-cube model is defined on a decorated version
of the cubic lattice, this does not play an important role (as
explained below), and the fusion theory is identical to that
of the X-cube model, with fractons arising at ends of open
p strings, and lineons arising as bound states of semions in
two perpendicular layers.

In more detail, in the construction of Ref. [22], each
doubled semion layer is a square-octagon lattice, and these
layers are assembled into a modified simple cubic lattice; each
cube is truncated at its corners, resulting in a lattice composed
of truncated cubes with octagonal and triangular faces, and
octahedra centered on cubic lattice vertices. Every m-particle
excitation can be moved to an octagonal plaquette, and closed
p strings are defined to be excitations composed only of m
particles, where m particles occupy an even number of the
octagonal faces of each truncated cube. Apart from these
minor modifications, the analysis proceeds exactly as in the
case of the X-cube model.

It has been shown that the X-cube and semionic X-cube
models realize the same foliated fracton phase [26]. How-
ever, despite having the same fusion theory, in Sec. VI, we
prove these models are in distinct translation-invariant fracton
phases, because their statistical properties are different.

C. Fusion of fractons in the checkerboard model

We now consider the fracton or cube excitations of the
checkerboard model [4]. In the checkerboard model, qubits
are placed on the sites v of a d = 3 cubic lattice, with Pauli
operators denoted by Xv and Zv . We divide the elementary
cubes into A and B sublattices, so that each sublattice con-
sists of edge-sharing cubes forming a “checkerboard” pattern
(see Fig. 5). Giving the cube centers integer coordinates r =
(x, y, z), the A sublattice is defined by requiring x + y + z =
0 mod 2. We denote the set of points in the A sublattice by
	, and 	 is a face centered cubic lattice with primitive trans-

lation vectors a1 = (0, 1, 1), a2 = (1, 0, 1) and a3 = (1, 1, 0).
The Hamiltonian is invariant under this translation symmetry
and is

Hcheckerboard = −
∑
c∈	

Ac −
∑
c∈	

Bc, (31)

where Ac = ∏
v∈c Zv and Bc = ∏

v∈c Xv . All the terms in the
Hamiltonian commute with one another, so the model is ex-
actly solvable, with energy eigenstates labeled by eigenvalues
ac and bc of Ac and Bc, respectively. In a ground state, ac =
bc = 1 for all c ∈ 	. Single cube excitations, where one of ac

or bc is equal to −1, are fractons.
As in the X-cube model, the fusion theory decomposes as

S = Sa ⊕ Sb. The model has an obvious self duality where Xv

and Zv are exchanged, so Sa and Sb are isomorphic as Z[T ]
modules, and it is enough to focus on ac = −1 excitations
and Sa.

The excitation group is Ea = ⊕
r∈	 Z2, with the Z2 sum-

mand for the cube at r denoted by f (r). The generators of
La ⊂ Ea are elements of the form

f (r) + f (r + x̂ + ŷ) + f (r + ŷ + ẑ) + f (r + x̂ + ẑ),

f (r) + f (r + x̂ + ŷ) + f (r + ŷ − ẑ) + f (r + x̂ − ẑ).

Again we introduce the group P of Z2 plane charges in {100}
planes, and, exactly as in the fracton fusion theory of the X-
cube model, Eq. (11) defines a map π : Ea → P .

It is true that ker π = La; it is obvious that La ⊂ ker π ,
and the reverse inclusion is shown in Appendix 3. Therefore
π induces an injective map πS : Sa → P , and as before we
identify Sa with πS (Sa) = Pa ⊂ P .

Our next task is to characterize the submodule Pa ⊂ P . A
general element p ∈ P can be expressed as in Eq. (13). First,
we define integers characterizing p by

ko
p =

∑
x odd

Qyz(x), (32)

ke
p =

∑
x even

Qyz(x), (33)

and similarly for lo,e
p (with sums over odd and even y), and

mo,e
p (with sums over odd and even z). We define a submodule

P̃ ⊂ P by imposing the constraints

ko
p + lo

p + mo
p = 0 mod 2, (34)

ko
p + le

p + me
p = 0 mod 2, (35)

ke
p + lo

p + me
p = 0 mod 2, (36)

ke
p + le

p + mo
p = 0 mod 2. (37)

In Appendix 3, it is shown that P̃ = Pa, so these constraints
provide the desired characterization of Pa.

In Ref. [27], it was shown that the checkerboard model is
equivalent to two copies of the X-cube model. More precisely,
an explicit local unitary was found that maps the checkerboard
model to two copies of the X-cube model plus trivial ancilla
qubits. This mapping does not respect the full translation sym-
metry of the checkerboard model, but instead breaks it down
to the lower symmetry of translations by a = (ax, ay, az ) with
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even ax, ay, az. The equivalence between the checkerboard
model and two copies of the X-cube model should thus be
manifest in the fusion theory if we also break the translation
symmetry accordingly, and we now show that this is indeed
the case.

We will show that under the reduced translation symmetry,
Sa = S f ⊕ S� as a direct sum of Z[T ] modules, where S f and
S� are isomorphic to the fracton and lineon fusion theories of
the X-cube model, respectively. We let R = (x, y, z) with
x, y, z even, so that R labels unit cells under the reduced
translation symmetry. There are four cube centers in each unit
cell, and we choose a set of generators for Ea as follows:

f0(R) = f (R), (38)

�x(R) = f (R) + f (R + ŷ + ẑ), (39)

�y(R) = f (R) + f (R + x̂ + ẑ), (40)

�z(R) = f (R) + f (R + x̂ + ŷ), (41)

where the notation suggests the connection to the X-cube
model.

We define S f to be the subgroup of Sa generated
by {π [ f0(R)]}, while S� is the subgroup generated by
{π [�μ(R)]}. It is clear that both S f and S� are submodules
under the reduced translation symmetry, and Sa = S f ⊕ S�

as a direct sum of modules. What we need to do is establish
the isomorphism with the X-cube fracton and lineon fusion
theories.

First we consider

π [ f0(R)] = Pyz(x) + Pxz(y) + Pxy(z), (42)

where R = (x, y, z) and x, y, z are all even. It is imme-
diately apparent from this expression that S f is isomorphic
to the fracton fusion theory of the X-cube model—the only
difference is the restriction that x, y, z are even, but because
the reduced translation symmetry is also only for translation
vectors with even components, the Z[T ] modules are isomor-
phic.

Next we consider

π [�x(R)] = Pxz(y) + Pxz(y + 1) + Pxy(z) + Pxy(z + 1), (43)

where R = (x, y, z) and x, y, z are all even, and with similar
expressions for �y and �z. From these expressions, given p ∈
S�, it is clear that Qyz(x) = Qyz(x + 1), Qxz(y) = Qxz(y + 1)
and Qxy(z) = Qxy(z + 1). Therefore the coefficients Qμν (n)
with n odd are superfluous, and we obtain an isomorphic Z[T ]
module if we replace the generators with

π [�x(R)] → Pxz(y) + Pxy(z), (44)

with similar expressions for �y and �z. Therefore, following
the above argument for the isomorphism of S f with the X-
cube fracton fusion theory, we see that S� is isomorphic to the
lineon fusion theory of the X-cube model.

IV. STATISTICAL PROCESSES FROM LOCAL MOVES

A. Local moves

We have already seen how including translation symmetry
in the fusion theory allows us to describe the mobility of

excitations, and distinguish fractons, lineons, and planons.
Here, we go farther and start from the fusion theory to
describe processes in which excitations move through space.
We will be particularly interested in statistical processes,
from which robust phase factors originating from long-range
statistical interactions among excitations can be extracted.

We will be interested in processes where an initial config-
uration of excitations evolves under some adiabatic change
of parameters. In more conventional topological phases, it
is enough to start with an initial configuration of excitations
that are moved as a function of time, without any excitations
being created or destroyed. In general, moving a fracton or
subdimensional excitation may require creating other non-
trivial excitations, so we will need to consider processes in
which excitations are created and destroyed. It is convenient
to abstract away from the language of adiabatic evolution, and
to view a process as a sequence of discrete local moves. Each
local move can be realized by acting with a local operator
supported on a ball of radius rloc, where rloc is some arbitrary
but fixed length scale. In the processes of interest, excitations
are moved over large length scales of order rstat, and statistical
phase factors will only be well-defined in the limit rstat → ∞,
keeping rloc fixed. (Note that we always take rstat 
 L, where
L is the linear system size).

To describe local moves, we start with the observation
that any set of excitations that fuses to the trivial excitation
is locally creatable. For instance, the pair of X-cube model
vertex excitations

�x(r) + �x(r + x̂) = (1 + tx̂ )�x(r) (45)

is locally creatable, and this corresponds to the existence of
a string operator creating the two excitations of the pair at
its endpoints. Acting with this string operator on an initial
state realizes a local move where the two vertex excitations
are inserted into the initial state and fused with any existing
excitations. Depending on the initial state, the same local
move can create the pair of vertex excitations (if they are
not already present), can destroy the pair of vertex excitations
(if they are both present in the initial state), or can move a
vertex excitation from one position to another (if one of the
two excitations is present in the initial state). Similarly, while
no pair of cube excitations in the X-cube model is locally
creatable, the set of four such excitations given by

(1 + tx̂ + tŷ + tx̂+ŷ) f (r) (46)

is locally creatable, and insertion of this set of excitations is
thus a local move.

More generally, we would like to describe local moves
with reference only to the fusion theory, since this encodes
universal properties of the gapped excitations. Given a supers-
election sector s ∈ S , we are interested in linear combinations
of translations satisfying(∑

a

cata

)
s = 0, (47)

where the ca are integers and only finitely many ca are
nonzero. The left-hand side of this equation corresponds to
a set of excitations whose relative positions are known, and
that collectively fuse to the trivial excitation. As long as the

195136-11



SHRIYA PAI AND MICHAEL HERMELE PHYSICAL REVIEW B 100, 195136 (2019)

excitations are not too far apart, these excitations fit into a
ball of radius rloc, and we have a local move where this set
of excitations is inserted into some initial state and fused
with any excitations already present. We can always multiply
Eq. (47) by any translation ta, so this local move can be made
anywhere in space. If s is an element of order n (i.e., ns = 0
for a positive integer n, and ks �= 0 for 0 < k < n), then we
can restrict the coefficients ca to run from 0 to n − 1, because
terms nta in Eq. (47) correspond to trivial excitations that do
not need to be included in the description of the local move.

This discussion can be formalized in a useful way. First,
given s ∈ S , we define a ring Rs as follows. If s is of infinite
order, then Rs = Z[T ]. If s is of order n, then we take the quo-
tient Rs = Z[T ]/(n), where (n) ⊂ Z[T ] is the ideal generated
by n. The ring Rs is the set of formal linear combinations of
translation operations ta, with coefficients valued in Zn; that
is, we take the coefficients ca to be valued in Zn. The reason
to focus on Rs rather than Z[T ] is that each nonzero element
r ∈ Rs corresponds to a set of nontrivial excitations obtained
by translating s, where the nontrivial excitations are simply
the terms in rs obtained by writing r as a linear combination
of translations.

Next, we are interested in elements r ∈ Rs with rs = 0. The
set of such elements forms an ideal Is ⊂ Rs, and each nonzero
element r ∈ Is corresponds to a set of nontrivial excitations
that fuse to the trivial excitation. As long as these excitations
are not too far apart, then nonzero elements r ∈ Is correspond
to local moves. Moreover, because Rs is a Noetherian ring, the
ideal Is is finitely generated;3 that is, Is is the set of linear com-
binations of a set of k generators {q1, . . . , qk}. Formally, Is =
{r1q1 + · · · + rkqk|ri ∈ Rs}, and we write Is = (q1, . . . , qk ).
Because there are only a finite number of generators, we
can choose rloc so that all the generators correspond to local
moves. It then follows that a general nonzero element of Is

corresponds to a sequence of local moves. For simplicity, we
refer to Is as the ideal of local moves of s. We note that two
sectors related by translation have the same ring Rs and the
same ideal of local moves; that is, Rs = Rtas and Is = Itas, as is
easily shown.

To illustrate these constructions, we consider the fracton
and lineon excitations of the X-cube model. In the X-cube
model, the ideal of local moves I f for a fracton excitation f =
π [ f (r)] is

I f = (1 + tx̂ + tŷ + tx̂+ŷ, 1 + tŷ + tẑ + tŷ+ẑ, 1 + tx̂ + tẑ + tx̂+ẑ ).

These generators correspond to the obvious local moves
where we insert four cube excitations at the corners of a
plaquette. For a lineon excitation �z = π [�z(r)], we have

I�z = (1 + tẑ, 1 + tx̂ + tŷ + tx̂+ŷ),

with corresponding expressions for �x and �y lineons.
For the most part, in this paper we will consider local

moves obtained as above using the translation symmetry.
However, in general, there are local moves not contained in
the ideal of local moves of any excitation. As an example,
we consider the fracton fusion theory of the X-cube model

3We thank Jeongwan Haah for pointing this out.

(a) Step 1 (b) Step 2

(c) Step 3

FIG. 6. Braiding of an e particle (red dashed circle) around a
m particle (black solid circle) in the d = 2 toric code. First the m
particle is moved to the right from its initial position, then the e
particle is braided around it, and finally the m particle is moved back
to its initial position. Each step is sequence of a large number of local
moves.

upon breaking the tx̂ symmetry, but preserving the translation
subgroup generated by t2x̂, tŷ and tẑ. We let f1 = π [ f (r)]
and f2 = tx̂ f1 = π [ f (r + x̂)]. f1 and f2 are generators for
Sb with the lower translation symmetry. Unlike with the full
translation symmetry, f1 and f2 are not related by translation.
The set of excitations { f1, f2, tẑ f1, tẑ f2} is locally creatable,
and cannot be obtained from any ideal of local moves, but
certainly corresponds to a legitimate local move as long as
rloc is chosen large enough to accommodate all the excitations
in a ball of radius rloc. This can always be done because, even
though we have no information about the relative location of
two excitations in sectors f1 and f2, two such excitations will
be a finite distance apart.

B. Statistical processes

Now we describe statistical processes in terms of local
moves, illustrating our general discussion with a trivial—or,
more properly, very familiar—example from the d = 2 toric
code model. Statistical processes of some fracton phases are
discussed in Sec. V. There are some similarities to an earlier
approach to statistics in d = 2 [59].

A statistical process acts on a specified initial configuration
of well-separated excitations, which is assumed to be the same
as the final configuration at the end of the process, so that
the system returns to its initial state multiplied by a phase
factor. To specify a configuration of excitations, we need to
know the superselection sector and the spatial position of each
excitation. The process is defined in terms of n steps, each
of which is a sequence of a large number of local moves.
The number of moves in each step is large because we are
interested in processes that move excitations over distances
on the order of rstat, which we refer to as “large” distances,
in contrast to “small” distances on the order of rloc. It is
important to keep in mind that excitations can be created and
destroyed during a step.

A familiar example of a statistical process is the braiding
of an e particle (vertex excitation) around an m particle (pla-
quette excitation) in the d = 2 toric code. Figure 6 illustrates
this process in three steps. It is important that these steps can
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be rearranged and executed in two different orders, resulting
in two different processes, one in which e braids around m
(123; as shown), and one in which no braiding occurs (132).
Looking only at the process where the braiding occurs is
not enough to extract the statistical phase factor, because
there are also local contributions to the phase that accumu-
late during each step. However, these local contributions are
the same for both processes, and the statistical phase factor
(which is −1 in this case) is the relative phase between the
two processes.

In this toric code example, in order to have a well-defined
separation between local and nonlocal contributions to the
phase, it is important that the excitation being moved during
each step stays a large distance away from the other excitation.
We can generalize this requirement to an arbitrary statistical
process, by first defining the spatial support of each step.
Each local move is implemented by acting with an operator
supported in a small spatial region, and taking the union of
these regions for the local moves in a step gives the spatial
support of the step. We then require that the support of each
step is a large distance away from all excitations except those
that are moved, created or destroyed by the step. We refer to
this as the spatial separation requirement, and it is sufficient
to obtain a well-defined statistical phase factor by comparing
two different arrangements of the steps in a process. It may
be possible to weaken the spatial separation requirement in an
interesting way, but we will not pursue this here.

Any statistical phase factor we find should be a property
of an equivalence class of statistical processes; that is, the
statistical phase should not depend on all the details of a
particular process, and there should be a notion of small
deformations of processes that do not affect the statistical
phase. As a familiar illustration of this idea, we can visualize
the toric code example in terms of world lines for the e
and m excitations, where the m world line executes a full
braid around the e world line as a function of time. We can
obtain equivalent statistical processes by smoothly deforming
the world lines, forbidding crossings. While this notion of
equivalence invokes a continuum picture, we can formulate
essentially the same idea in the discrete language of local
moves appropriate for our treatment.

In general, we allow two types of small deformations
of a statistical process. For type-I deformations, among the
sequence of local moves that make up a step, we replace
any subsequence of local moves supported in a small region
with an equivalent subsequence, also of small support. By
equivalent subsequence, we mean that the two subsequences
have the same effect on the initial configuration of excitations
before the subsequence. It is allowed to replace the empty
subsequence (i.e., the subsequence with no moves) with a
subsequence of small support that does not create any exci-
tations. It is important that the new process obtained by this
deformation has to satisfy the spatial separation requirement.
In type-II deformations, we add or remove a local move at the
end of a step. This changes the configuration of excitations
after the step, and a corresponding move must be added or
removed at the beginning of some other step (not necessarily
the next step) so that the final and initial conditions match
for each pair of adjacent steps. Again, the new process has
to satisfy the spatial separation requirement. We can also

FIG. 7. Deformations of the e-m braiding process in the d = 2
toric code. The panels of the figure are described in the text.

contemplate other kinds of equivalence operations that might
be important in a more systematic treatment, such as splitting
steps into two steps and joining adjacent steps together, but
we leave this for future work as it will not be needed for the
present discussion. Along the same lines, we believe there is
nothing fundamental about working with steps, and it should
be possible to formulate a description of statistical processes
as (long) sequences of local moves.

We illustrate this discussion using the toric code example.
Individual local moves correspond to inserting a pair of e (m)
particles on adjacent sites (plaquettes). Figure 7(a) shows a
type-I deformation where a single such local move (dashed
red link) is replaced with a sequence of three local moves.
Figure 7(b) shows an allowed deformation (solid green line)
of step 2 in the statistical processes that can be obtained as
a sequence of small type-I deformations. Figure 7(c) shows a
deformation (solid green line) that is not allowed because it
violates the spatial separation requirement, with the e particle
coming too close to the m particle. The spatial separation
requirement implies that the particle world lines cannot cross.
Finally, Fig. 7(d) shows a deformation that modifies step 1
by moving the final location of the m particle, which can be
obtained as a sequence of small type-II deformations, and for
which step 3 must also be modified accordingly.

We note that in all the statistical processes we consider
in this paper, only a finite number of local moves distinct
up to an overall translation appear, which means it is always
possible to choose a fixed rloc accommodating all the local
moves.
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FIG. 8. Fracton-lineon process in the X-cube model. In step (1)
the fracton cube excitation f (blue circle) is destroyed, and three cube
excitations are created at the other corners of the blue membrane. In
step (2), the lineon vertex excitation � (red square) is moved through
the blue membrane. Step (3) then undoes step (1), and step (4) undoes
step (2).

V. STATISTICAL PROCESSES OF SOME
FRACTON PHASES

A. X-cube and semionic X-cube model: fracton-lineon process

We now discuss some examples of statistical processes of
fracton phases, beginning with the “fracton-lineon” process
of the X-cube fracton phase illustrated in Fig. 8. Because the
semionic X-cube and ordinary X-cube models have the same
fusion theory, this is also a statistical process in the semionic
X-cube model. The process consists of four steps as shown,
with an initial configuration of a single cube excitation f and
a single vertex excitation �. Steps 1 and 3 are sequences of the
local moves described by Eq. (46), and steps 2 and 4 are built
from the local moves expressed in Eq. (45). Two orderings of
the steps are possible; one is 1234 as shown in Fig. 8, and the
other is 1324. The latter process is obviously deformable to
the trivial process where the particles do not move, while in
the former fracton-lineon process there is a kind of “braiding”
between the lineon and the fracton associated with the lineon’s
string piercing the membrane in step 2. Each step is associated
with a product of Pauli operators in the X-cube model, and
the phase accumulated during the process can be obtained by
multiplying these operators in the order given. It is easy to

FIG. 9. The spatial separation requirement is violated if steps
1 and 3 of the fracton-lineon process are deformed by removing
local moves to shrink the membrane to that illustrated on the top-
right. At an intermediate stage of the deformation (bottom), a cube
excitation is present within the black circle after step 1, and the lineon
passes nearby this cube excitation during step 2, violating the spatial
separation requirement.

see that we obtain a phase of −1 for the ordering 1234, and
a phase of 1 for the 1324 ordering, so there is a nontrivial
statistical phase of −1 associated with the fracton-lineon
process. We emphasize that the nontrivial statistical phase
is an invariant characterizing deformation classes of process,
and by computing it we prove that the fracton-lineon process
cannot be deformed to the trivial process.

It is interesting to understand the obstruction that arises
if we try to deform the fracton-lineon process to the trivial
process. For instance, we might like to reduce the size of the
membrane appearing in steps 1 and 3, so that the lineon string
no longer passes through it. Such an attempted deformation
is illustrated Fig. 9, from which we see that the obstruction is
provided by the spatial separation requirement.

The fracton-lineon process can be deformed in interesting
ways. For instance, step 4 can be deformed as shown in
Fig. 10(a). This deformation relies on the fact that �x(r) +
�y(r) + �z(r) = 0, so while a single lineon cannot “turn a
corner,” it can split into a pair of lineons moving in perpen-
dicular directions. It is important to note that step 2 cannot
be similarly deformed without violating the spatial separation
requirement. Once step 4 is deformed as in Fig. 10(a), the
fracton-lineon process can be further deformed, by deleting
moves from the beginning of step 4 and adding them to the
end of step 2, until step 4 becomes trivial. This results in
a process where step 2 is as shown in Fig. 10(b), with a
lineon “cage” enclosing the fracton at the upper-right corner.
This process can be viewed as the remote detection of the
enclosed fracton via the lineon process (or its corresponding
operator) illustrated in Fig. 10(b). Such remote detection has
been discussed previously in other works [22,26,32,54], and
is analogous to the remote detection of a d = 2 toric code m
particle by braiding an e particle around it, as in step 2 of
Fig. 6.
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FIG. 10. (a) An allowed deformation of step 4 in the fracton-
lineon process. (b) Step 2 in a modified fracton-lineon process where
step 4 has been deformed away, as described in the text.

We also note that there are a number of processes related to
the fracton-lineon process by choosing a different initial state,
but with precisely the same steps. For instance, Fig. 11(a)
corresponds to a process where the planon composed of two
cube excitations is braided with the lineon � [4]. Similarly,
there is a “vacuum process” [Fig. 11(b)] where no particles
are present in the initial state. In this process, for instance,
step 1 creates a set of four fractons out of the vacuum.
These processes have the same −1 statistical phase factor
as for the fracton-lineon process, because in each case one
multiplies precisely the same products of operators to extract
the statistical phase.

For Abelian anyons in d = 2, it is well known that the
fusion theory puts constraints on the possible statistical phase
factors that can be associated with a given braiding process.
For instance, +1 and −1 are the only two statistical phases
consistent with fusion in the e-m braiding process of the toric
code (Fig. 6). This can be seen by noting that a composite
of two e particles fuses to the trivial sector, and so must
braid trivially with m, while observing that the phase factor

FIG. 11. Two processes related to the fracton-lineon process by
changing the initial state, but with the same sequence of steps.
(a) shows the initial state in the lineon-planon process, which consists
of a pair of f fractons that together form a planon, and the same
lineon � as in the fracton-lineon process. (b) shows the initial state
for a vacuum process where no particles are present.

for such a process should be a product of two e-m braiding
phase factors. More formally, the latter observation is the
bilinearity property of the braiding phase factor. Precisely the
same argument shows that for any system where the fusion
theory is the same as that in the X-cube model, the only
possible statistical phase factors for the fracton-lineon process
are +1 or −1. Indeed, the semionic X-cube model has the
same fusion theory and the same −1 statistical phase factor
for its fracton-lineon process. It is tempting to try to formalize
this discussion by defining a bilinear form on the Z[T ] module
of the fusion theory, and while this may be sensible it will
require more thought in future work, because composites of
cube excitations and vertex excitations have different mobility
and cannot all undergo the same fracton-lineon process. It
is important to emphasize that there is a difference between
attaching statistical phase factors to processes, which clearly
makes sense, and attaching them to sets of elements in the
fusion theory, which makes sense for anyons in d = 2 but is
not necessarily sensible in fracton phases.

B. X-cube and semionic X-cube model: lineon-lineon process

There is also a lineon-lineon exchange process in the
X-cube and semionic X-cube models, in which two vertex
excitations mobile along the same line are exchanged, as
shown in Fig. 12. One might guess that the exchange statistics
is not well-defined because the particles are confined to the
same line, and they cannot be exchanged without getting close
together. However this expectation is too naïve, because one
of the lineons can be moved out of the way by splitting it
into three excitations away from the other’s line of motion, as
illustrated in step 2 of Fig. 12. Such a process was discussed
previously in Ref. [42]. Other related processes discussed in
prior work are mentioned briefly at the end of this section.

This process is easily seen to give a trivial statistical phase
factor for the vertex excitations in the X-cube model, as their
string operators are simply products of X Pauli operators.
However, a nontrivial statistical phase occurs for other lineon
excitations in the X-cube model. For instance, we can replace
the initial-state excitations �x(0) and �x(xd x̂) by

�̃x(0) = �x(0) + f (ĉ) + f (ĉ − ẑ) (48)

and

�̃x(xd x̂) = �x(xd x̂) + f (xd x̂ + ĉ) + f (xd x̂ + ĉ − ẑ), (49)

respectively. To avoid confusion, here we use a single coordi-
nate system to label positions of vertex and cube excitations,
and ĉ = (x̂ + ŷ + ẑ)/2 is the offset between the simple cubic
lattices of vertices and cube centers. These new excitations
are composites of vertex excitations with planons composed
of two cube excitations, where the planons are mobile in the
xy plane.

It is convenient to view the new excitations in terms of the
coupled-layer construction (see Refs. [22,55] and Sec. III B),
which lets us describe the excitations of the X-cube model in
terms of excitations of d = 2 toric code layers. This will allow
us to compute the statistical phase factor in a very simple
manner. Schematically (i.e., dropping position labels), we can
write for both these excitations

�̃x = ey + ez + mz = ey + εz, (50)
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FIG. 12. Lineon-lineon exchange process in the X-cube model. The initial configuration consists of two vertex excitations �x (0) and �x (xd x̂)
on the x axis at positions labeled a and d , respectively, with xd x̂ the position vector of d and xd ∈ Z. In step 1, the lineon at a is moved to
position c. Step 2 is the most nontrivial step: the lineon initially at d is moved off the x axis by splitting it into �y and �z vertex excitations,
producing three �x excitations off the axis, which are then moved in the −x direction and eventually recombined into a �x excitation at position
b. In the remaining three steps, �x excitations are moved along the x axis as shown. If the steps are executed in the order shown, then the two
lineons are exchanged during this process. However, if instead the steps are carried out in the order 15243, no exchange occurs.

where eμ, mμ, and εμ are the d = 2 toric code excitations in
a layer with normal in the μ direction. This follows from the
fact that the vertex excitations are bound states of toric-code
e particles in perpendicular layers, and the composite of two
cube excitations is identified with a toric-code m particle. We
also replace the �y and �z excitations that appear (as string
operators) in step 2, according to �y,z → �̃y,z, with �̃y = �y +
mz and �̃z = �z. The criterion for choosing these replacements
is that the same statistical process must still be possible for the
new excitations.

Now, each step in Fig. 12 can be viewed as a process
where the d = 2 toric code excitations are moved within
their corresponding planes. In step 2, some pairs of d = 2
excitations are created, moved, and then annihilated. It is
straightforward to see that for the 12345 ordering of steps,
the d = 2 particles making up the initial-state �̃x excitations
are exchanged, i.e., there is an exchange of ey with ey and an
exchange of εz with εz. These exchanges are counterclockwise
in the xz and xy planes, respectively. On the other hand, for
the 15243 ordering, no particles are exchanged. Therefore the
statistical phase is −1 and comes from the εz − εz exchange.

Exchanges of �̃y and �̃z are also well-defined statistical
processes, obtained by rotating Fig. 12. We denote the sta-
tistical phase angles for these exchanges by θ

x, y, z
�� , and we

have θ x
�� = θ

y
�� = π while θ z

�� = 0. These statistical phase
angles are defined for any triple of excitations �̃x, y, z satisfying
tμ̂�̃μ = �̃μ (where μ̂ is the unit vector in the μ direction) and∑

μ=x, y, z �̃μ = 0. We observe that∑
μ=x, y, z

θ
μ

�� = 0 mod 2π , (51)

both for the triple �̃x, y, z of vertex excitations bound to
planons, and for the triple �x, y, z simply consisting of vertex
excitations.

We also consider this process for the semionic X-cube
models, where the corresponding d = 2 excitations are the
bosonic flux mμ, the semion sμ, and the antisemion s′μ =
sμ + mμ. The vertex excitations are composites of semions
in two perpendicular layers, e.g., �x = sy + sz. For the triple
of vertex excitations �x, �y, and �z, we have θ

μ

�� = π , and∑
μ=x, y, z

θ
μ

�� = π mod 2π , (52)

which suggests there is a fundamental difference between the
semionic X-cube model and the ordinary X-cube model. We
discuss this further in Sec. VI, where we prove that these
models realize distinct translation-invariant fracton phases.

Other processes involving lineons have been discussed
previously. The mutual statistics of two lineons moving along
perpendicular, intersecting lines was discussed in Ref. [22]
and shown to be nontrivial for the vertex excitations of the
semionic X-cube model. It appears likely that this “full braid”
lineon process is related to the lineon-lineon exchange process
discussed here. Also, Ref. [52], in analogy with the ribbon
twists that can be used to diagnose the topological spin of
anyons in d = 2, considered adding a twist to a lineon string
operator, and referred to this as a “boxing process.” The
relationship of this twist to a statistical process in the sense
we define it here is not obvious, but it appears likely that our
lineon-lineon statistical process corresponds to the twist of
Ref. [52], in the same sense that anyon exchange corresponds
to a ribbon twist in d = 2.

C. Checkerboard model: fracton-fracton process

We also discuss a process involving fractons in the checker-
board model, that does not appear to have a simple interprera-
tion as a braiding or exchange of mobile particles. Of course,
giving up some translation symmetry, the checkerboard model
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FIG. 13. Fracton-fracton process in the checkerboard model. The
initial configuration is shown in (1) and has two pairs of fractons, one
pair separated along the x axis and the other pair separated along the
z axis. The blue solid circle fractons are excitations of the Ac terms in
the checkerboard Hamiltonian, while the red striped circle fractons
are excitations of the Bc terms. In step (1), the blue solid circle pair
of fractons is moved to the positions indicated by the dashed blue
circles. Step (2) proceeds similarly for the red striped circle fractons.
Carrying out this process on the lattice, the two membrane operators
used to implement steps (1) and (2) intersect on a line segment
containing L lattice sites. Step (3) reverses step (1), and step (4)
reverses step (2). Multiplying together the operators implementing
each step gives a phase of (−1)L for the order of steps shown, but a
trivial phase for the order 1324.

is equivalent to two copies of the X-cube model, so there
should be an interpretation of this process in terms of X-
cube model statistical processes, perhaps some combination
of fracton-lineon and lineon-lineon processes. However, it is
not clear that this viewpoint provides a simple interpretation
of the process in question.

The fracton-fracton process is illustrated in Fig. 13 and
described in the caption. As noted there, the process is charac-
terized by an integer length L, and results in a statistical phase
of (−1)L. Evidently, changing L by one gives two inequivalent
processes. While this is somewhat surprising, the (−1)L is
clearly a statistical phase factor and proves that there are at
least two deformation classes of such processes in the fusion
theory of the checkerboard model, depending on the parity of
L. It is straightforward to consider simple deformations that
would change L and see that the spatial separation require-
ment is violated in the course of the deformation.

VI. X-CUBE AND SEMIONIC X-CUBE MODELS REALIZE
DIFFERENT FRACTON PHASES

As an application of the theory of fusion and statistics, we
prove that the X-cube and semionic X-cube models realize
distinct translation-invariant fracton phases. Indeed, this was
already argued to be the case in Ref. [22] where the semionic
X-cube model was introduced. The argument was based on
the observation that the lineon-lineon mutual statistics in
one model could not be transformed into that of the other

by binding planons. However, without a clear framework
to characterize fusion and statistics this argument did not
definitively establish the difference between these two phases.
Indeed this distinction was called into question by Ref. [26],
which showed that the X-cube and semionic X-cube models
realize the same foliated fracton phase. (See Sec. I for a brief
discussion of the notion of foliated fracton phase).

Here, we prove that these models realize distinct
translation-invariant fracton phases. Notably, this conclusion
holds even if we break the translation symmetry down to any
subgroup isomorphic to Z3, i.e., if the translation-breaking
corresponds to an enlargement of the crystalline unit cell. One
may also ask what happens if translation symmetry is broken
completely, but our approach does not apply in that case, and
we are not aware of any means currently available to provide a
sharp answer. Nevertheless, the distinction between these two
phases should not be thought of as a fragile one that disappears
upon breaking translation symmetry.

First of all, as noted in Sec. III B, the fusion theories for the
X-cube and semionic X-cube models are isomorphic, so any
distinction must come from statistical processes. We will con-
sider the lineon-lineon process described in Sec. V B, which is
sufficient to establish the desired result. We let SXc and SsXc

be the fusion theories for the X-cube and semionic X-cube
models, respectively. Even though there is no difference be-
tween these two Z[T ] modules, it is better for our purposes to
view them as isomorphic and not to identify them. This allows
us to describe additional structure attached to SXc and to SsXc

that partly characterizes the statistics in the two models. SXc

is generated by the cube excitation f (0) and vertex excitations
�x(0), �y(0). In this section, we abuse notation and denote
elements of SXc by representative elements of the excitation
group E , without explicitly writing the projection map π . We
denote the corresponding cube and vertex excitations for SsXc

by fs(0), �x
s (0), �

y
s (0). There is a Z[T ] module isomorphism

α : SXc → SsXc defined by mapping the generators of SXc

to the corresponding generators of SsXc in the obvious way.
It is important to note that while α is an isomorphism of
Z[T ] modules, it does not preserve statistics, i.e., it does
not preserve the statistical phase factors attached to statistical
processes.

The approach will be to assume the two models are in the
same phase and obtain a contradiction. Under this assumption,
there is an isomorphism of Z[T ] modules β : SsXc → SXc

that, unlike α, does preserve statistics. Therefore there is an
automorphism γ = β ◦ α, with γ : SXc → SXc, such that the
statistical properties of γ [�x(0)], γ [�y(0)] and γ [�z(0)] are
identical to those of �x

s (0), �
y
s (0) and �z

s(0). In particular, for
the triple of excitations γ [�x(0)], γ [�y(0)], γ [�z(0)], we must
have the lineon-lineon statistical phase factors θ

μ

�� = π , and
moreover

∑
μ=x, y, z θ

μ

�� = π mod 2π .
We will show that no such automorphism γ exists. We let

�̃μ ≡ γ [�μ(0)]. Focusing first on �̃x, we have, in general,

�̃x =
∑

r

a(r) f (r) +
∑
r,μ

bμ(r)�μ(r), (53)

where the first sum is over cube centers, the second sum over
vertex centers, and the coefficients a(r) and bμ(r) take values
in {0, 1}. Because γ is an automorphism of Z[T ] modules we
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have tx̂ �̃x = �̃x. This implies that the first term in Eq. (53)
reduces to a sum of my and mz planons, while the second
term is a sum of �x(r) excitations. These conclusions are
easily reached using the description of the fusion theory in
terms of plane charges. It is convenient to represent the �x(r)
excitations in terms of toric code eμ particles, by �x(x, y, z) =
ey(y) + ez(z). Formally we can write

�̃x =
∑
y∈Z

[αy(y)my(y) + βy(y)ey(y)]

+
∑
z∈Z

[αz(z)mz(z) + βz(z)ez(z)]. (54)

with coefficients αμ, βμ ∈ {0, 1}, and similarly, we have

�̃y =
∑
x∈Z

[αx(x)mx(x) + βx(x)ex(x)]

+
∑
z∈Z

[αz(z)mz(z) + βz(z)ez(z)], (55)

�̃z =
∑
x∈Z

[αx(x)mx(x) + βx(x)ex(x)]

+
∑
y∈Z

[αy(y)my(y) + βy(y)ey(y)]. (56)

Here, the same αμ and βμ coefficients appear in the three
expressions due to the requirement that

∑
μ �̃μ = 0.

Now we consider the lineon-lineon process and compute
θ

μ

�� for the triple of excitations �̃μ. First we consider θ x
��.

During this process, each excitation appearing in the sum over
y is exchanged with another identical such excitation, giving
a contribution of π to the statistical phase when αy(y) =
βy(y) = 1 [in this case the excitation appearing is εy(y)], and
a contribution of zero otherwise. The corresponding statement
holds for the sum over z, and the total statistical phase is thus

θ x
�� =

⎡
⎣π

∑
j∈Z

(αy( j)βy( j) + αz( j)βz( j))

⎤
⎦ mod 2π . (57)

The obvious corresponding expressions hold for θ
y
�� and θ z

��,
and therefore we have

∑
μ=x, y, z

θ
μ

�� =
⎡
⎣2π

∑
j∈Z

∑
μ=x, y, z

αμ( j)βμ( j)

⎤
⎦ mod 2π = 0.

(58)

This is a contradiction, and completes our proof that the ordi-
nary and semionic X-cube models realize distinct translation-
invariant fracton phases.

Now we consider breaking translation down to a subgroup
isomorphic to Z3, and show that the conclusion is unchanged.
Such a subgroup is generated by three linearly independent
translation vectors a1, a2, and a3, which are integer linear
combinations of x̂, ŷ and ẑ. First we consider a1 = nxx̂, a2 =
nyŷ, and a3 = nzẑ, in which case the argument proceeds es-
sentially unchanged. The key observation is that tnμμ̂�̃μ = �̃μ

puts exactly the same restriction on the form of �̃μ as in the
case of full translation symmetry. Next, in the general case,
the vectors Nxx̂, Nyŷ, and Nzẑ can be obtained as integer

linear combinations of a1, a2 and a3 for some nonzero integers
Nx, y, z. To see this, we consider

∑
i niai = Nxx̂ as the matrix

equation ⎛
⎝a1x a2x a3x

a1y a2y a3y

a1z a2z a3z

⎞
⎠

⎛
⎝n1

n2

n3

⎞
⎠ =

⎛
⎝Nx

0
0

⎞
⎠. (59)

We assume Nx is a nonzero integer, and the equation can
be solved for n1, n2, n3 by inverting the matrix. While the ni

thus obtained need not be integers, they are rational numbers
because the inverse matrix has rational entries. Changing Nx

by multiplying it by a suitable integer then results in a set of
integers Nx �= 0 and n1, n2, n3 satisfying the equation. This
shows that the translation group generated by a1, a2, a3 has
a subgroup generated by Nxx̂, Nyŷ, Nzẑ, and using only this
subgroup we are back to the first case again.

VII. FUSION OF ELECTRIC AND MAGNETIC
EXCITATIONS IN U(1) TENSOR GAUGE THEORIES

Here, we develop a fusion theory for gapped electric and
magnetic excitations in the deconfined phase of some U(1)
tensor gauge theories with fracton and subdimensional excita-
tions. There are some differences between these theories and
gapped fracton phases. First of all, there are gapless photon
excitations. Second, even in the deconfined phase, there are
sometimes gapped electric or magnetic excitations whose en-
ergy cost diverges with the separation from other excitations.
For instance, in the d = 3 rank-2 scalar charge theory, the
energy to create an isolated electric charge grows linearly
with the separation from other charges, a phenomenon dubbed
electrostatic confinement [9]. Nonetheless, we still expect that
superselection sectors and their fusion make sense. Indeed,
this is certainly the case for gapped electric and magnetic
charges in ordinary vector U(1) gauge theories in d = 3,
and as in that case the presence gapless photon modes is
not expected to present any issues. Electrostatically confined
excitations with diverging energy cost may seem problematic,
but, in the examples we consider, the energy density in the
electric and magnetic fields still goes to zero far away from
the excitation in question. As pointed out in Ref. [9], such
an isolated electrostatically confined excitation is thus still
expected to be stable. However, in rank-3 and higher tensor
gauge theories, there are excitations where the energy density
itself diverges at long distances, and these excitations are not
stable [9]. We will not consider such examples, for which
the notion of superselection sectors does not make sense.
But we do note that our analysis can be applied to tensor
gauge theories with such unstable excitations, as long as
one restricts attention to the stable excitations whose energy
density vanishes in the far field.

Even though gapless photons are present, we do expect that
some notion of statistics of gapped finite-energy excitations
makes sense. For instance, in ordinary vector U(1) gauge
theories it is well known that binding a bosonic electric charge
with a bosonic magnetic monopole results in a fermionic
dyon [60]. However, we leave the exploration of such phe-
nomena in tensor gauge theories for future work.

We treat two different lattice rank-2 scalar charge theories
here, both in d = 3. These theories belong to a family of
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theories labeled by (m, n), where m and n are positive rel-
atively prime integers, which were characterized by consid-
ering the Higgs mechanism whereby a charge-2 matter field
condenses, and studying the gapped phase that arises [23]. In
contrast, we provide a characterization that applies directly
to the deconfined phase of the (m, n) theory, which we illus-
trate with two examples. First we discuss the (1,1) theory,
sometimes referred to simply as the scalar charge theory,
and for which the mobility of electrically charged excitations
was first discussed in Ref. [9]. In Sec. VII B, we obtain the
fusion theory for the electric excitations of the (2,1) theory.
We find that the (1,1) and (2,1) theories have different fusion
properties, and in particular the (2,1) theory has additional
conservation laws not present in the (1,1) theory. We see that
these theories thus describe different gapless fracton phases,
even though their physics in the photon sector is identical.
This is consistent with the results of Ref. [23], where it was
shown that the (1,1) theory becomes four copies of the d = 3
Z2 toric code upon condensing charge-2 matter (a result also
obtained in Ref. [50]), while the (2,1) theory enters the X-cube
fracton phase.

A. Fusion in the (1,1) scalar charge theory

We consider a family of rank-2 U(1) tensor gauge theories
on the simple cubic lattice, following Ref. [23] (see also
Ref. [50] for a discussion of one of these theories). We briefly
introduce these models here; for more details the reader is
referred to Refs. [23,50]. The degrees of freedom are quantum
rotor variables that realize a symmetric rank-2 U(1) tensor
gauge field on the lattice, with the electric field operators
Eμν taking integer eigenvalues, and the gauge potential Aμν

a 2π -periodic phase field. The diagonal components of E and
A reside on lattice sites, while the off-diagonal components
live on square plaquettes, and [Aμν, Eμν] = −i for variables
on the same site. We also introduce charged matter fields on
lattice sites, with nr taking integer eigenvalues, and θr the
corresponding canonically conjugate 2π -periodic phase. We
consider the Gauss law

m(
x
xExx + 
y
yEyy + 
z
zEzz )

+n(
x
yExy + 
y
zEyz + 
x
zExz ) = nr, (60)

where m and n are positive relatively prime integers.
We introduce the magnetic field tensor Bμν , which is

traceless but not symmetric, whose diagonal (off-diagonal)
components reside on the sites (plaquettes) of the dual cubic
lattice, and which is given by

Bμν =
{
εμλσ
λAσν, μ = ν

εμνλ(m
νAλν − n
λAνν ), μ �= ν
, (61)

where in the second line there are no implied summations and
λ �= μ, ν. The Hamiltonian is

H = U
∑

r,μ�ν

E2
μν − K

∑
r,μ,ν

cos(Bμν )

+ u
∑

r

n2
r − J

∑
r,μ<ν

cos[n
μ
νθ − Aμν]

− J
∑
r,μ

cos[m
μ
μθ − Aμμ], (62)

where U, K, u, J > 0. When u � J and K is large, there
is a deconfined phase with gapped electric and magnetic
charges, and a gapless photon excitation with five polariza-
tions, whose low-energy Gaussian description can be obtained
by expanding the −K cos(B) term to quadratic order. Within
this Gaussian theory, the integers m and n play no role and can
be removed by a rescaling.

We now specialize to the (1,1) theory, and first develop
the fusion theory of the gapped electric charge excitations.
Configurations of electric charge are elements of the Z[T ]
module Ee = ⊕

r Z, where the direct sum is over all sites
of the cubic lattice. We denote the generator of the Z
summand at r by f (r), so that e ∈ Ee can be written e =∑

r q(r) f (r), where q(r) ∈ Z and only finitely many q(r) are
nonzero. Translation acts in the obvious way by ta f (r) =
f (r + a). Any locally creatable charge configuration can
be created by acting with a finite product of exponentials
exp[i(Aμν − 
μ
νθ )]. Single such operators create the gen-
erators of Le ⊂ Ee, which are 2 f (r) − f (r − ẑ) − f (r + ẑ),
f (r) − f (r + x̂) − f (r + ŷ) + f (r + x̂ + ŷ), and the elements
obtained from these by acting with cubic symmetry oper-
ations. These charge configurations can be understood as
quadrupoles on a line of three sites, and on the four corners
of a square, respectively.

To proceed, we will define a Z[T ] module Se, and then
show it is isomorphic to Ee/Le. It is known that the total
charge and dipole moment of an electrically charged excita-
tion are conserved [9], in the sense that these quantities cannot
be changed by any local process, so we may expect that dif-
ferent superselection sectors should be labeled by their charge
and dipole moment. We thus define Se = Z ⊕ Z ⊕ Z ⊕ Z,
and write an element s ∈ Se by s = Qα + D · β, where α, βx,
βy, and βz generate the four Z summands, and Q, Dμ ∈ Z. We
will see that Q corresponds to an excitation’s charge and D to
its dipole moment. We define translation to act on Se by

taα = α + a · β, (63)

taβμ = βμ. (64)

This gives the desired transformations of charge and dipole
moment, namely Q → Q and D → D + Qa. It is clear that
excitations with Q �= 0 are fractons, while Q = 0 excitations
are fully mobile.

To establish an isomorphism between Se and Ee/Le, we
first define a map π : Ee → Se by

π [ f (r)] = α + r · β, (65)

which is easily checked to be a map of Z[T ] modules,
and which simply expresses mathematically that a charge
q(r) = 1 contributes 1 to the total charge and r to the total
dipole moment. It is easy to see that Le ⊂ ker π , so we
have an induced map πS : Ee/Le → Se. In Appendix 4, we
show that πS is an isomorphism. We thus see that charge
and dipole moment give a complete labeling of different
electric superselection sectors in the (1,1) scalar charge theory.
Electrically charged excitations in this theory do not have any
additional conserved quantities. This is in contrast to other
(m, n) theories, which do have additional conservation laws
as we illustrate in Sec. VII B for the (2,1) theory.
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(a) (b) (c)

FIG. 14. (a) and (b) depict the generators of Lm ⊂ Em, the Z[T ]
module of locally creatable magnetically charged excitations of the
(1,1) scalar charge theory. Solid lines represent q(r, μ) = ±1, with
the sign given by the direction of the arrow, while dotted lines
represent q(r, μ) = 0. (c) Shows an element of Lm that can be
obtained by adding generators; elements of this form are used in
Appendix 5 in a proof that ker π ⊂ Lm. The line with a double arrow
represents q(r, μ) = ±2.

Now we turn to the gapped magnetically charged exci-
tations of the (1,1) scalar charge theory. It is convenient to
suppress electric charge excitations completely and pass to
a dual description, where the magnetic charge is an opera-
tor nμ(r) with integer eigenvalues, on the links of the dual
cubic lattice [50], and we can view the charge as a vector
quantity. The pair (r, μ) denotes the link directed in the +μ

direction from the dual site r, where μ = x, y, z. In this dual
description the magnetic field tensor Bμν has real eigenvalues,
is again traceless but not symmetric, and the diagonal (off-
diagonal) components reside on sites (plaquettes) of the dual
cubic lattice. We have the dual Gauss law


μBμν = nν (r). (66)

As noted in Ref. [50], using the Gauss law and integrating by
parts, one can show that the vector charge Qμ = ∑

r nμ(r) and
its scalar first moment P = ∑

r,μ rμnμ(r) are both conserved.
We introduce the Z[T ] module Em whose elements are

configurations of magnetic charge, and Em = ⊕
r,μ Z, where

the direct sum is over links of the dual cubic lattice. We denote
the generator of the Z summand for the link at (r, μ) by
g(r, μ), so a general element e ∈ Em is expressed

e =
∑
r,μ

q(r, μ)g(r, μ), (67)

with q(r, μ) ∈ Z. Translation acts in the obvious way by
tag(r, μ) = g(r + a, μ).

Letting φμ be the phase field canonically conjugate to nμ,
and αμν the dual gauge potential conjugate to Bμν , any locally
creatable configuration of magnetic charge can be created by
acting with a finite product of operators exp[i(αμν − 
μφν )]
for μ �= ν, and also exp[i(αμμ − ανν − 
μφν + 
νφν )].
These operators correspond to generators of Lm ⊂ Em of
the form g(r + ŷ, x) − g(r, x) [Fig. 14(a)] and g(r, x) −
g(r − x̂, x) − g(r, y) + g(r − ŷ, y) [Fig. 14(b)], and others ob-
tained by acting on these with cubic symmetry operations.

As for the electric sector, we define a Z[T ] module Sm,
and then show it is isomorphic to Em/Lm. As a group, Sm =
Z ⊕ Z ⊕ Z ⊕ Z, with generators αx, αy, αz and β for the four
Z summands. A general element s ∈ Sm can be written s =
Q · α + Pβ, where we will see that Qμ, P ∈ Z correspond to

the total vector charge and moment P. Translation is defined
by act by

taαμ = αμ + aμβ, (68)

taβ = β, (69)

which gives the expected transformations Q → Q and P →
P + Q · a. Clearly excitations with Q = 0 are fully mobile,
while excitations with Q �= 0 are planons mobile in the plane
perpendicular to Q.

We define a map π : Em → Sm by

π [g(r, μ)] = αμ + rμβ, (70)

which is easily checked to be a map of Z[T ] modules.
Moreover, the generators of Lm map to zero under π , so
Lm ⊂ ker π , and π induces a map πS : Em/Lm → Sm, which
in Appendix 5 is shown to be an isomorphism, so that Sm is
the fusion theory of the magnetically charged excitations of
the (1,1) scalar charge theory.

B. Fusion in the (2,1) scalar charge theory

Now we consider the (2,1) scalar charge theory, which
is defined above in Sec. VII A. We will restrict our atten-
tion to the fusion theory of the gapped electric charge ex-
citations. Electric charge configurations are the same Z[T ]
module Ee defined above. Here, the generators of Le are
2[2 f (r) − f (r − ẑ) − f (r + ẑ)] (where the overall factor is
m = 2) and f (r) − f (r + x̂) − f (r + ŷ) + f (r + x̂ + ŷ), and
elements related to these by cubic symmetry.

In this case, we define a Z[T ] module �e, and then we
will show that a certain submodule Se ⊂ �e, which we will
characterize, is isomorphic to Ee/Le. We define �e to be
the direct sum of modules �e = S (1,1)

e ⊕ Pb, where S (1,1)
e is

the fusion theory of electric charge excitations in the (1,1)
scalar charge theory, and where Pb ⊂ P is the fracton fusion
theory of the X-cube model and P is the Z[T ] module of Z2

plane charges, as described in Sec. III A 1. We recall that an
element p ∈ P can be characterized by integers kp, lp, mp, and
p ∈ Pb if and only if kp, lp and mp are either all odd or all
even. We can also further label elements p ∈ Pb by integers
ko,e

p , lo,e
p , mo,e

p introduced in Sec. III C.
Now we define the obvious map π : Ee → �e by its value

on generators:

π [ f (r)] = α + rμβμ + Pyz(x) + Pxz(y) + Pxy(z), (71)

where r = (rx, ry, rz ) = (x, y, z).
Our first task is to show that ker π = Le, so that πS :

E/Le → �e is injective, and we can identify Se = im πS . It is
clear that Le ⊂ ker π ; we need to show the reverse inclusion.
We consider e ∈ Ee with π (e) = 0. This implies that the
charge and dipole moment of e are zero, so e can be written
as a linear combination of generators of L(1,1)

e , the locally
creatable electric charge configurations of the (1,1) theory.
Starting with this expansion and subtracting off generators of
Le, we get a new element

e′ =
∑
r,μ

nμ(r)�μ(r), (72)
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which satisfies π (e′) = 0, where the coefficients nμ(r) ∈
{0, 1}, and where

�μ(r) = f (r + μ̂) − 2 f (r) + f (r − μ̂). (73)

We have for instance

π [�z(r)] = Pxy(rz + 1) + Pxy(rz − 1). (74)

Since only a finite number of the nμ(r) are nonzero, it is thus
clear that we must have nμ(r) = 0 for all r, μ, in order for all
the plane charges in π (e′) to vanish, so that e′ = 0. We have
thus shown e ∈ Le.

We now characterize Se ⊂ �e. For any e ∈ Ee, we write

π (e) = Qα + D · β + p, (75)

where p ∈ Pb. It is easy to check that

Q mod 2 = kp mod 2 = lp mod 2 = mp mod 2, (76)

Dx mod 2 = ko
p mod 2, (77)

Dy mod 2 = lo
p mod 2, (78)

Dz mod 2 = mo
p mod 2. (79)

We have shown that if s ∈ Se, then these constraints are
satisfied. In fact, the converse is also true, i.e., if these
contraints hold, then s ∈ Se, so Eqs. (76)–(79) give a full
characterization of Se. To show this, we let

e = Q f (0) +
∑

μ=x, y, z

Dμ[ f (μ̂) − f (0)] +
∑
r,μ

nμ(r)�μ(r),

(80)

for arbitrary integers Q and Dμ, and with arbitrary nμ(r) ∈
{0, 1}, and observe that

π (e) = Qα + D · β + p. (81)

By choosing nμ(r), we can obtain any p ∈ Pb satisfying the
constraints Eqs. (76)–(79).

VIII. DISCUSSION

In this work, we introduced a set of ideas to describe
the fusion and statistics of gapped excitations in Abelian
fracton phases. Because statistical processes involve motion
of excitations, the mobility of excitations needs to be encoded
in any such theory. Our approach accomplishes this by assum-
ing lattice translation symmetry, and our results can thus be
viewed as a characterization of translation-invariant fracton
phases. Translation symmetry is incorporated into the fusion
theory as an action on superselection sectors, which results
in the mathematical structure of a Z[T ] module, which we
computed for some gapped type-I fracton models and U(1)
symmetric-tensor gauge theories. This leads to a description
of statistical processes in terms of local moves, and we dis-
cussed some examples of statistical processes in the X-cube
and checkerboard fracton models. As an application of our
approach, we gave a proof that the X-cube and semionic
X-cube models realize distinct translation-invariant fracton
phases, even when the translation symmetry is broken down
to any subgroup isomorphic to Z3.

Our work opens up a number of questions in the study of
fracton matter. This paper focuses on type-I fracton phases,
but it would be interesting to consider extensions of our ideas
to type-II fracton models such as Haah’s cubic code. Our
approach to fusion of excitations applies equally well in type-
II systems. However, an obstacle to studying type-II fracton
phases using these methods is a lack of simple characteriza-
tions of the fusion theory, along the lines of its description
in terms of plane charges for the X-cube model. If such a
description exists, it will be important to find it in future work.
Moreover, it is not obvious to what extent statistical processes
are well defined in type-II fracton models. The issue is that in
such systems, a process creating an isolated fracton requires
surmounting energy barriers that grow logarithmically with
its distance from other excitations, due to creation of other
excitations at intermediate stages of the process [61]. We
expect that it should still be possible to identify processes
associated with well-defined statistical phase factors, as long
as the intermediate-stage excitations can be kept far away
from others during the process, but some care will be required.

For anyons in d = 2, any statistical process can be decom-
posed as a sequence of elementary exchange and full-braid
operations. Moreover, in conventional iTO phases we are
used to the idea that the fusion theory puts constraints on
statistics. An example is the fact that an Abelian excitation
in d = 2 that fuses with itself to vacuum can only be a boson,
a fermion, or a semion. These issues are not understood for
statistics in fracton phases, and they will need to be addressed
in order to develop a more complete theory in the future. For
instance, given the fusion theory for the X-cube model, can
any statistical process be decomposed into fracton-lineon and
lineon-lineon processes? How can we attach a complete set of
data describing statistics to the fusion theory, and what are the
possibilities?

Another direction to explore will be fusion and statistics
of non-Abelian fracton phases, of which there are now a few
examples [41–45]. It seems reasonable that a fusion theory
might be provided by a fusion category with some kind
of action of translation symmetry. If such a mathematical
description can be obtained, then it will be interesting to
use it as a starting point for a theory of statistical processes
of non-Abelian fracton and subdimensional excitations. Ul-
timately one might like to develop an “algebraic theory of
fractons” encoding both fusion and statistics in some algebraic
structure, analogous to a unitary modular tensor category for
anyons in d = 2.

We close with some general remarks on the nature of
fracton phases of matter, which are highlighted by the contrast
between the translation-invariant fracton phases we focus on
here, and the notion of foliated fracton phases introduced in
Refs. [24–29] and briefly described in Sec. I. There are (at
least) two definitions we can imagine giving for the notion
of quantum phases of matter. One definition is in terms of an
equivalence relation defined by adiabatic continuity and the
operation of adding “trivial” degrees of freedom in a product
state. This definition underlies the translation-invariant frac-
ton phases we discuss. A second definition is provided by
viewing phases of matter as renormalization group (RG) fixed
points, which is closer to the point of view taken in work on
foliated fracton phases.
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Our experience with more conventional quantum phases
of matter, including iTO phases, leads to an expectation that
these two definitions should agree. However, the definitions
disagree dramatically in fracton phases. For instance, in order
to view the ground state of the X-cube model as an RG
fixed point, it is necessary to allow for adding and removing
d = 2 topologically ordered layers [24], and this leads to a
coarser equivalence relation than in the first definition above.
Nonetheless, one should not simply discard the first definition;
in doing so, for instance, one would lose valuable distinctions
among states that cannot be adiabatically connected by vary-
ing parameters within some particular lattice model (without
adding degrees of freedom). We believe that exploring the
tension between these two definitions of phases of matter will
be an interesting direction for future work on fracton phases
of matter, with potential implications beyond the realm of
fractons.
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APPENDIX : TECHNICAL DETAILS IN FUSION THEORY
COMPUTATIONS

In this Appendix, we give some details that are skipped in
the computation of fusion theories in Secs. III and VII A.

1. Fracton fusion theory of the X-cube model

First, we show that ker π ⊂ Lb, which implies that ker π =
Lb as claimed in Sec. III A 1. We need to show that for e ∈ Lb,
π (e) = 0 implies e ∈ Lb. That is we need to show that any
excitation with trivial plane charges is locally creatable. Our
strategy will be to start with an arbitrary such excitation, and
reduce it to the trivial configuration by acting with a finite
product of Z� Pauli operators. Among those planes of constant
z that contain at least one cube excitation, we find the plane
with z = z0 such that no cube excitations are present for z <

z0. By acting with Z� on a suitable link �, we can create two
fractons on nearest-neighbor cubes in this plane, while also
creating two fractons in the z = z0 + 1 plane. This allows us
to annihilate any pair of cube excitations in the z = z0 plane,
independent of their location, at the expense of creating some
excitations in the z = z0 + 1 plane. Since by assumption the
z = z0 plane contains an even number of cube excitations, we
can eliminate all excitations in this plane. This process can
be repeated to eliminate all cube excitations except those in a
single z = z1 plane.

The next step is to divide the z = z1 plane into columns
with fixed x coordinate. Among those columns containing at
least one cube excitation, we find the x = x0 column, where
x0 is such that no cube excitations are present for x < x0.
This column must contain an even number of cube excitations,
because the yz plane containing it contains an even number of
cube excitations. We can then act with Z� on suitable links
to move pairs of cube excitations from the x = x0 column to
the x = x0 + 1 column, until no cube excitations with x = x0

remain. We repeat this process until all excitations reside in
a single column with x = x1 (and z = z1). At this point, there
can be no cube excitations remaining, because when all the
cube excitations reside in a single column, the only way for
all plane charges to be trivial is to have no excitations at all.
This shows that any excitation with trivial plane charges is
locally creatable.

Second, we show that p ∈ Pb if and only if the integers
kp, lp, mp are either all even or all odd. It is obvious that
any sum of generators Pyz(x) + Pxz(y) + Pxy(z) of Pb gives
an element with kp, lp, mp all even or all odd. So we
just have to show that any element p ∈ P with kp, lp, mp

either all even or all odd can be obtained as a sum of such
generators. Equivalently, we can add generators to the element
in question to reduce it to the identity. First, we can obviously
add generators to produce a new element where mp = 0, and
where kp and lp are even. Now we add generators to set lp = 0
without changing mp or kp. To do this, let y1 and y2 be two
values of y for which Qxz(y) = 1; there must be at least two
such values because lp is even. We then add the two gener-
ators Pyz(x) + Pxz(y1) + Pxy(z) and Pyz(x) + Pxz(y2) + Pxy(z),
where x and z are arbitrary. The Pyz and Pxy terms cancel,
and the Pxz terms set Qxz(y1) = Qxz(y2) = 0. We can continue
this procedure until lp = 0. The same procedure can then be
applied to set kp = 0 without changing lp or mp, and we thus
reduce p to zero by adding generators.

2. Lineon fusion theory of the X-cube model

First we show that La = ker π . First, it is obvious that
La ⊂ ker π , because the generators map to 0 under π . To
show ker π ⊂ La, and thus La = ker π , consider an excitation
e ∈ ker π . Our first step will be to eliminate all the μ = x, y
vertex excitations in favor of μ = z vertex excitations, by
adding generators of La to e. Expressing e using Eq. (21), we
have

0 = π (e) =
∑

(x, y, z)

[nx(x, y, z)(Pxy(z) + Pxz(y))

+ ny(x, y, z)(Pxy(z) + Pyz(x))

+ nz(x, y, z)(Pxz(y) + Pyz(x))]. (A1)

Focusing on the z = z0 plane, we observe that the coefficient
of Pxy(z0) in this expression must be even, and is equal to∑

x,y(nx(x, y, z0) + ny(x, y, z0)). That is, the total number
of μ = x, y vertex excitations in the z = z0 plane is even.
Moreover, because e.g., a μ = x excitation is equivalent to a
μ = y and μ = z excitation by the relation Eq. (20), we can
take the number of μ = x and μ = y excitations to be equal.
Any pair of μ = x and μ = y excitations can moved (i.e., by
adding La generators) to the point where their lines of motion
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FIG. 15. Reducing a configuration of 1d particles with trivial
plane charges to that with only sz excitations.

intersect, where they fuse together to a μ = z excitation, as
illustrated in Fig. 15. Repeating this procedure in every xy-
plane, we obtain a new configuration with only μ = z vertex
excitations.

The μ = z excitations can then all be moved into the
same xy plane, say with z = 0, resulting in a new excitation
e′. π (e′) = 0 implies that e′ has an even number of μ = z
excitations on every row and column of the z = 0 plane. By
Eq. (20), each of these excitations is equivalent to a pair
of μ = x and μ = y excitations. In every row, we have an
even number of μ = x excitations, which can be brought
together and annihilated. Similarly, the μ = y excitations can
be brought together and annihilated in every column. This
process is illustrated in Fig. 16. It follows that La = ker π .

Now, we show that p ∈ Pa if and only if kp + lp + mp =
0 mod 2. It is obvious that any sum of the generators in
Eq. (22) satisfies kp + lp + mp = 0 mod 2. Conversely, we
suppose that p satisfies kp + lp + mp = 0 mod 2, and we
will show that p can be brought to the trivial element by
adding generators. Without loss of generality, assume kp �
lp � mp. Then each of the kp Pyz(x) terms appearing in p can
be grouped with a Pxz(y) term to form a generator that we
subtract from p. This eliminates the Pyz(x) terms, and leaves
(lp − kp) Pxz(y) terms, which we then each group with a Pxy(z)
term to form a generator. We thus eliminate all the Pyz(x)
and Pxz(y) terms, leaving (mp + kp − lp) Pxy(z) terms, with

FIG. 16. Local moves needed to “clean up” a configuration of
trivial plane charges to the vacuum.

(mp + kp − lp) even. Each of these terms can be replaced by a
generator according to Pxy(z) → Pxy(z) + Pyz(x0), for a fixed
x0, without affecting the value of p, because Pyz(x0) appears
in the sum an even number of times and cancels out. This
establishes the desired result.

3. Fusion theory of the checkerboard model

We first show that ker π ⊂ La. That is, given e ∈ Ea such
that π (e) = 0, we would like to show that e can be reduced
to zero by adding generators of La. It is clear that π (e) = 0
implies the number of excitations in every plane of constant
z is even. We first focus on the plane with z = z0, where z0 is
chosen so that there are no excitations with z > z0. A subset
of the generators of La can be written

f (x, y, z0) + f (x − 1, y + 1, z0) + f (x − 1, y, z0 − 1)

+ f (x, y − 1, z0 − 1),

f (x, y, z0) + f (x + 1, y + 1, z0) + f (x, y − 1, z0 − 1)

+ f (x + 1, y, z0 − 1),

where x and y are arbitrary as long as (x, y, z0) ∈ 	. Ignoring
the z = z0 − 1 terms, these generators correspond to arbitrary
nearest-neighbor pairs of excitations in the z = z0 plane. Since
the total number of excitations in this plane is even, we can
add such generators to remove all z = z0 excitations, at the
possible expense of creating some new excitations with z =
z0 − 1.

We can repeat the above procedure, with decreasing z0,
until we obtain a new configuration e′ ∈ Ea, such that all
excitations are contained in a single plane of fixed z = z1, and
still π (e′) = 0. It is possible to sum generators of La to obtain
elements of La with support only in the z = z1 plane, of the
form

f (x, y, z1) + f (x + 2, y, z1) + f (x, y + 2, z1)

+ f (x + 2, y + 2, z1), (A2)

where x and y are arbitrary such that (x, y, z1) ∈ 	. π (e′) = 0
implies that there are an even number of excitations in every
row and column in the z = z1 plane, and we can add elements
of the form in Eq. (A2) to eliminate all excitations except in
two adjacent columns, in a new configuration e′′. At this point,
there is only a single cube in each row that could host an
excitation, so the constraint of an even number of excitations
in each row implies e′′ = 0, and we have finished showing
ker π ⊂ La

Now we show that P̃ = Pa. First we show that Pa ⊂
P̃ . If p ∈ Pa, then p = π (e) for some e ∈ Ea. Writing e =∑

r∈	 n(r) f (r) with n(r) ∈ {0, 1}, we define quantities

Neee =
∑

x, y, z even

n(x, y, z) mod 2, (A3)

Neoo =
∑

x even

∑
y,z odd

n(x, y, z) mod 2, (A4)

Noeo =
∑

y even

∑
x,z odd

n(x, y, z) mod 2, (A5)

Nooe =
∑

z even

∑
x,y odd

n(x, y, z) mod 2. (A6)
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It is straightforward to express ko,e
p , lo,e

p and mo,e
p in terms of

these quantities by

ko
p mod 2 = Noeo + Nooe mod 2, (A7)

lo
p mod 2 = Neoo + Nooe mod 2, (A8)

mo
p mod 2 = Neoo + Noeo mod 2, (A9)

ke
p mod 2 = Neee + Neoo mod 2, (A10)

le
p mod 2 = Neee + Noeo mod 2, (A11)

me
p mod 2 = Neee + Nooe mod 2. (A12)

From these expressions it is straightforward to check that
Eqs. (34)–(37) hold, which shows that p ∈ P̃ and so Pa ⊂ P̃ .

Next we show P̃ ⊂ Pa. That is, given p ∈ P̃ , we need to
show there exists e ∈ Ea such that p = π (e). Equivalently, we
can start with a general p ∈ P̃ and add elements of the form
π (e) until p is reduced to zero. First, it is clearly possible to
add elements π (e) to set Qxy(z) = 0 for all z, resulting in a
new element p with mo

p = me
p = 0. This results in simplified

constraints

ko
p + lo

p = 0 mod 2, (A13)

ko
p + le

p = 0 mod 2, (A14)

ke
p + lo

p = 0 mod 2, (A15)

ke
p + le

p = 0 mod 2. (A16)

These constraints are solved by either all ko,e
p = lo,e

p = 0
mod 2, or all ko,e

p = lo,e
p = 1 mod 2.

Now suppose that Qxz(y) = 1 for some y, then there must
be some y′ �= y for which also Qxz(y′) = 1, in order to satisfy
the constraints. We can then add π [ f (x, y, z) + f (x′, y′, z)]
to set Qxz(y) = Qxz(y′) = 0,while keeping all Qxy(z) = 0, and
this can be repeated until Qxz(y) = 0 for all y.

This results in a new element p where ko
p = ke

p = 0 mod 2
and Qxz(y) = Qxy(z) = 0 for all y and all z. Suppose Qyz(x) =
1, then there must be x′ �= x, but with x′ of the same parity as
x, where also Qyz(x′) = 1. We can then add π [ f (x, y, z) +
f (x′, y, z)] to set Qyz(x) = Qyz(x′) = 1 without changing any
of the Qxz(y) or Qxy(z). This can then be repeated until p is set
to zero, which shows P̃ ⊂ Pa as desired.

4. Fusion theory for electric charges in the (1,1) scalar
charge theory

We would like to show that πS : Ee/Le → Se is an isomor-
phism. First we will show that ker π = Le, which implies πS

is injective. In Sec. VII A, we pointed out that Le ⊂ ker π ,
so here we just need to show ker π ⊂ Le. Given e ∈ E with
π (e) = 0, we will reduce e to zero by adding generators of Le.
By adding generators of the form 2 f (r) − f (r − ẑ) − f (r +
ẑ) (and those related to it by cubic rotations), any excitation
e ∈ Ee can be reduced to one with q(r) �= 0 only within a
2 × 2 × 2 cube, which we take to have opposite corners at
r = 0 and r = x̂ + ŷ + ẑ, so we take e to be of this form.

FIG. 17. The z = 0 face of the 2 × 2 × 2 cube with zero charge
and dipole moment. The four vertices have charges q1, . . . , q4 as
shown, and positions r1 = (0, 0, 0), r2 = (1, 0, 0), and so on.

Now, π (e) = 0 implies the total charge and dipole moment
of the charge configuration on the cube both vanish. Consider
two opposing square faces of the cube, which for convenience
we call the top and bottom faces, and let qtop be the charge
on the top face. Then the charge on the bottom face is −qtop

because the total charge vanishes. But because the dipole
moment also must vanish, we have qtop = 0. Therefore the
total charge on all the square faces of the cube is zero.

Next consider the z = 0 face of the cube as illustrated in
Fig. 17. The charges q1, . . . , q4 at the corners satisfy

4∑
i=1

qi = 0,

4∑
i=1

xiqi = 0,

4∑
i=1

yiqi = 0. (A17)

The solution to these equations is q1 = q4 = −q2 = −q3 = n,
and this charge configuration is n times the generator f (0) −
f (x̂) − f (ŷ) + f (x̂ + ŷ), so we can set all the charges on this
face to zero by adding generators. The same holds for the z =
1 face, so we can reduce e to zero by adding Le generators.
Therefore we have shown that πS is injective.

The next step is to show that πS is surjective. Let

e = Q f (0) + Dx[ f (x̂) − f (0)] + Dy[ f (ŷ) − f (0)]

+ Dz[ f (ẑ) − f (0)], (A18)

for Q, Dx, Dy, and Dz arbitrary integers. Then clearly

π (e) = Qα + D · β. (A19)

5. Fusion theory for magnetic charges in the (1,1) scalar
charge theory

Here we show that πS : Em/Lm → Sm is an isomorphism.
It is easily checked that Lm ⊂ ker π , so to show πS is injective
we need to establish ker π ⊂ Lm. First, any element e ∈ Em

can be reduced to one of the form

e =
∑

n∈Z,μ

q(nμ̂, μ)g(nμ̂, μ), (A20)

where μ̂ = x̂, ŷ, ẑ, by adding Lm generators of the form shown
in Fig. 14(a). Moreover, by adding Lm elements of the form
illustrated in Fig. 14(c), e can be further reduced so that
q(nμ̂, μ) = 0 unless n = 0,−1. Now we use π (e) = 0. The
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vanishing of the coefficient of αμ in π (e) implies

g(0, μ) + g(−μ̂, μ) = 0. (A21)

Therefore we have

e =
∑

μ

nμ[g(0, μ) − g(−μ̂, μ)], (A22)

for integers nμ. Then the vanishing of the coefficient of β

implies
∑

μ nμ = 0. Therefore

e = nx[g(0, x) − g(−x̂, x) − g(0, z) + g(−ẑ, z)]

+ ny[g(0, y) − g(−ŷ, y) − g(0, z) + g(−ẑ, z)], (A23)

which is a linear combination of Lm generators, so e ∈ Lm.
Next, to show that πS is surjective, we consider e ∈ Em with

e = Qxg(0, x) + Qyg(0, y) + Qzg(0, z)

+ P[g(0, x) − g(−x̂, x)], (A24)

where Qμ and P are arbitrary integers. We have

π (e) = Q · α + Pβ, (A25)

so π and πS are clearly surjective.
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