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We present a general methodology toward the systematic characterization of crystalline topological insulating
phases with time-reversal symmetry. In particular, taking the two-dimensional spinful hexagonal lattice as a
proof of principle, we study windings of Wilson loop spectra over cuts in the Brillouin zone that are dictated
by the underlying lattice symmetries. Our approach finds a prominent use in elucidating and quantifying the
recently proposed “topological quantum chemistry” concept. Namely, we prove that the split of an elementary
band representation (EBR) by a band gap must lead to a topological phase. For this we first show that in addition
to the Fu-Kane-Mele Z2 classification, there is C2T -symmetry-protected Z classification of two-band subspaces
that is obstructed by the other crystalline symmetries, i.e., forbidding the trivial phase. This accounts for all
nontrivial Wilson loop windings of split EBRs that are independent of the parametrization of the flow of Wilson
loops. Then, by systematically embedding all combinatorial four-band phases into six-band phases, we find a
refined topological feature of split EBRs. Namely, we show that while Wilson loop winding of split EBRs can
unwind when embedded in higher-dimensional band space, two-band subspaces that remain separated by a band
gap from the other bands conserve their Wilson loop winding, hence revealing that split EBRs are at least “stably
trivial,” i.e., necessarily nontrivial in the nonstable (few-band) limit but possibly trivial in the stable (many-band)
limit. This clarifies the nature of fragile topology that has appeared very recently. We then argue that in the
many-band limit, the stable Wilson loop winding is only determined by the Fu-Kane-Mele Z2 invariant implying
that further stable topological phases must belong to the class of higher-order topological insulators.
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I. INTRODUCTION

With the prediction and experimental verification of topo-
logical insulators [1–6], interest in band structures has been
heavily reinvigorated over the past decade. In particular, it
has been found that nontrivial topological structures may
emerge due to the presence of symmetries leading to robust
physical signatures such as helical edge states and defect
modes [7–14], which have significantly extended the seminal
founding of the quantum Hall effect (QHE). More recently,
further interest has been focused on the interplay between
topology and the underlying crystal symmetries, leading to
the uncovering of an enriched landscape of topological phases
[15–38]. These classification pursuits have revealed the ex-
istence of new invariants, effectively conveying obstructions
to deform the band structure to a trivial insulating state in
the atomic limit, and accordingly new types of edge and
surface states. Still, it is of large practical and theoretical
interest to understand these phases from a concrete perspec-
tive and consider their response to well-established probes.
A prime example in this regard are Wilson loops [16,20,24–
27,30,34,39–42].
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In this work we study the relation between crystalline
symmetries and the structure of Wilson loop spectra with the
aim of using them as clear indicators of nontrivial topologies.
In order to do so, we systematically account for all symmetries
that span the little groups at high-symmetry points (HSP)
of the Brillouin zone (BZ) and the compatibility relations
between them. This is effectively done through the charac-
terization of the band structures in terms of the irreducible
representations (IRREPs) of the underlying space groups,
which can be shown to match the descriptive equivariant K
theory in the absence of spins and time-reversal symmetry
(TRS) [31,32] and has been extended heuristically to the
spinful case including TRS [35,43,44]. In particular, we derive
the symmetry-protected windings of the Wilson loop spectra
over patches of the BZ that have been chosen such as to
take advantage of all available crystalline symmetries. In the
process we map out the different topological sectors and also
quantitatively evaluate whether insulating band structures,
which split an elementary band representation [36,41,42,45–
50] (EBR), must be topological. This general idea was postu-
lated in Refs. [36,50] and lies at the core of the “topological
quantum chemistry” (TQC) concept.

Preceding our work, Ref. [41] has rigorously related the
topology of split EBRs with the symmetry-protected quanti-
zation of Wilson loop spectra over special base loops. Further-
more, Ref. [24] had early revealed the existence of a Wilson
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loop winding in spinful topological insulators with inversion
symmetry. An example of Wilson loop winding in a split
spinless EBR has also been shown in Ref. [42], however,
without a proof that it cannot be trivialized.

In this work we rigorously characterize the topology of
split (spinful) EBRs in terms of an obstructed Z classification
of the winding of Wilson loop spectra over the BZ combining
the homotopy of the flow of two-band Wilson loops and
the symmetry quantization of Wilson loops over special base
loops. Furthermore, we reveal a refined topological feature
of split EBRs under the addition of extra bands. Namely,
we show that even when multiband Wilson loops can be
unwinded, two-band subspaces that remain separated by a
band gap from the other bands conserve their Wilson loop
winding. This in particular allows us to elucidate the recently
coined concept of “fragile topology” [51] from a quantitative
as well as clear conceptual perspective. Finally, we argue that
only the stable Fu-Kane-Mele Z2 invariant characterizes the
winding of the Wilson loop in the many-band limit, implying
that the further stable topological phases fall in the class of the
higher-order topological insulators [52,53].

Altogether, this sets the basis toward a systematic clas-
sification of topological crystalline phases with TRS, where
we rigorously position fragile topology of split EBRs as the
bridge in crystalline systems between unstable topology, i.e.,
pertaining to few-band models (e.g., Hopf insulators), and
stable topology, i.e., unaffected by the addition of trivial bands
(e.g., Chern insulators).

To concretize the discussion, we consider the honeycomb
lattice and focus on the specific symmorphic layer groups No.
80 (L80) and No. 77 (L77) [54,55]. For simplicity, we set
one orbital per site. This nonetheless does not compromise
the generality of our results as they illustrate an entirely
generic and systematic method that can be extended to any
other context as it reveals a direct relation between crystalline
invariants and the flow of Wilson loop spectra over patches of
the Brillouin zone that are dictated by the lattice symmetries.
L80 contains inversion symmetry (I) and is characterized
by the point group D6h, which incidentally also contains
mirror symmetry with respect to the basal plane (σh). L77
on the contrary does not include inversion nor basal mirror
symmetries and is characterized by the point group C6v .
For both layer groups, the honeycomb lattice corresponds to
Wyckoff’s position 2b such that the unit cell contains only
two sublattice sites.1 Later in the work we also consider the
effect of coupling the honeycomb lattice with the triangular
lattice made of the sublattice sites located at the center of
the honeycombs, i.e., they realize the Wyckoff’s position 1a
of L80 and L77. We assume time-reversal symmetry (TRS)
throughout the work.

Having set the stage, the work is organized in the following
way. In Sec. II we derive the exhaustive classification of
two-band spinless topological semimetallic phases for the

1All the crystallographic and group-theoretic data can be found in
the International Tables for Crystallography [54,55] and the Bilbao
Crystallographic Server [57,73]. The tables of IRREPs used in the
work were retrieved from the Bilbao Crystallographic Server using
the space groups SG183 (L77), SG191 (L80), and SG175 (L75).

honeycomb lattice. We show that on top of the well-known
essential nodal point at K (“Dirac cone”) characterized by a
“π” Berry phase, an infinity of distinct topological phases ex-
ists corresponding to the accumulation of symmetry-protected
nodal points which cannot be removed as long as the band gap
remains open at the high-symmetry points (�, M). For this
we use a global approach that goes beyond local (k · p)-type
analysis.

Once the spinless classification is known, we move on to
answering the question of the effect of spin-orbit coupling
(SOC). We start with the inversion-symmetric case for which
SOC always gaps the spinless band structure. In Sec. III
we derive the exhaustive classification of four-band spinful
topological insulating phases for the honeycomb lattice when
inversion symmetry is conserved. The classification of the
spinful inversion-symmetric case is done in terms of the flow
of the spin-polarized U(1) Berry phase (i.e., providing the
spin-polarized Chern number). When the spin components
cannot be separated, i.e., by breaking inversion symmetry,
the classification must be done in terms of the flow of U(2)
Wilson loop over the BZ. For this we introduce in Sec. IV the
Wilson loop winding and relate it to the symmetry-protected
quantization of Wilsonian phases over special base loops of
the BZ. In particular, we show that while C2zT symmetry (ro-
tation combined with TRS) protects a Z Wilson loop winding
for two-band subspaces, the C3 symmetry of the hexagonal
lattice acts as an obstruction that forbids the zero winding. As
a consequence, a split EBR must be topologically nontrivial
with a finite Wilson loop winding.

We then go further without inversion symmetry in Sec. V,
where we show that the classification of spinful topological
insulating phases with adiabatically broken inversion symme-
try, i.e., for weak Rashba SOC, agrees with the classification
with inversion symmetry. In particular, in this case the spinless
classification can be lifted into the spinful context according
to a one-to-two correspondence. When inversion symmetry
is broken nonadiabatically, however, i.e., when Rashba SOC
triggers a topological phase transition, the correspondence
between the spinless and the spinful classifications is lost. We
overcome this in Sec. VI where we present a mechanism based
on the spin locking between � and K of a set of smooth,
periodic, and rotation-symmetric Bloch functions that span
the occupied subspace, i.e., a frame made out of sections
of the vector bundle. Since this frame diagonalizes both the
Wilson loop and the matrix representation of rotations, we
obtain the symmetry-protected quantization of Wilson loop
spectra and the constraints from symmetry on the set of
allowed Wilson loop windings over the BZ. This leads to the
quantitative characterization of the topology of split EBRs
in terms of Wilson loop winding. Furthermore, our approach
gives the quantitative as well as conceptual clarification of a
new topological phase reported recently by Ref. [51], where
it was called “fragile topology” after showing that it can be
adiabatically mapped onto an atomic insulator (i.e., with a
symmetric and localized Wannier representation) when extra
trivial bands are included.

Given the finding of Ref. [51], a natural task is to determine
the stability of the topology of split EBRs. For this, we study
numerically in Sec. VII the six-band case by including an
extra sublattice site at the center of the unit cells, i.e., coupling
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the honeycomb lattice (Wyckoff’s position 2b of L77) with
the triangular lattice (Wyckoff’s position 1a of L77). We find
that the Wilson loop windings of two-band subspaces that
originate from a split EBR are unstable under the nonadia-
batic coupling with extra trivial bands (i.e., closing the energy
gap), and this independently of the set of IRREPs of the bands
under consideration hence greatly generalizing the finding of
Ref. [51]. Based on the results of Sec. VII, we give in Sec. VIII
a detailed discussion for all the combinatorial ways of form-
ing two- and four-band subspaces. We show that while the
many-band Wilson loops loose the Z-type winding breaking
down to the Z2 Fu-Kane-Mele classification, the two-band
subspaces originating from a split EBR that remain separated
from the other bands by a band gap do conserve their nonzero
Wilson loop winding. We argue that this fragile topology of
split EBRs is related to the existence for two-band subspaces
of a smooth (periodic) and rotation-symmetric Bloch frame
over special base loops of the BZ, while such a frame fails
to exist in four-band subspaces. This provides a rigorous
characterization of the fragile topology of split EBRs within
homotopy theory of vector bundles. Furthermore, we identify
the patterns of Wilson loop spectra that survive as the number
of bands is increased, thereby identifying the Fu-Kane-Mele
Z2 invariant as the only invariant that characterizes the Wilson
loop winding in the many-band limit. Our results thus bridge
the gap between unstable topology, as described by homo-
topy theory for few-band models, and stable topology that is
captured by K theory and is unchanged under the addition
of trivial bands. We eventually briefly discuss the breaking
of C2zT and TRS from which insulating phases with a high
Chern number can be generated.

Let us end this introduction with a note on terminologies.
We follow for convenience the vocabulary of TQC given very
recently in Refs. [36,50]. A band representation (BR) is any
band structure in reciprocal space that is induced from a
basis set of degrees of freedom localized in real space, i.e.,
represented by localized Wannier functions, such that the set
is closed under all the symmetries of the system, i.e., each
symmetry acts as a permutation of the Wannier functions. A
BR is composite if it is equivalent to a direct sum of BRs.
An EBR is a BR that is not composite. Whenever a BR also
satisfies TRS is called a physical band representation (PBR).
Therefore, in this work all the BRs are physical. A general
band representation, or a quasiband representation (qBR), is
any group of bands isolated from the other bands by an energy
gap, i.e., it must satisfy all the compatibility relations that
connect the IRREPs of the different regions of the BZ.

II. SPINLESS CASE

Let us start the discussion with the well-known charac-
terization of nodal charges in spinless systems in terms of
the Berry phase. A special feature of the spinless two-band
model is that inversion symmetry (I) and spinless TRS (T 2 =
+1) are both effectively satisfied. Hence, the results of this
section characterize both Altland-Zirnbauer (AZ) classes [9]
A and AI, and the two layer groups L77 and L80, i.e.,
AI + L80(2b) ∼= A + L77(2b) for a two-band model. While
we refer to the symmetry class AI + L80(2b) in this section,
we use the fewer IRREPs of L77 for convenience. We give

TABLE I. Spinless IRREPs of rotations of the little cogroups
[56] at �, K , and M, for the layer groups L77, L80, and L75.
Retrieved from the Bilbao Crystallographic Server [57].

� C6v D6h C6h C2z C3z

�1 �−
2 �−

1 1 1
�4 �+

3 �+
2 −1 1

K C3v D3h C3h C3z

K3 K6
K4

K6

ei2π/3

e−i2π/3

M C2v D2h C2h C2z

M1 M−
2 M−

1 1
M4 M+

3 M+
2 −1

the relevant IRREPs for the little cogroups at �, K , and M in
Table I.

The EBR of the spinless honeycomb lattice is two dimen-
sional as a result of the fact that the two sublattice sites are
inseparable under L77, e.g., C6 symmetry exchanges A and
B sites. The two-band EBR is characterized by the IRREPs
at the high-symmetry points (HSPs) and high-symmetry lines
(HSLs) of the BZ according to Fig. 2(a). The simple nodal
point (NP) at K is an essential degeneracy of AI + L80(2b)
such that the EBR cannot be split, i.e., no band gap can
separate the two bands over the BZ. It follows that the system
must be a topological semimetal at half-filling, i.e., there
is one (spinless) electron per unit cell. In the following we
always consider the half-filled case with a formal Fermi level
set such that half of the eigenstates have energy below and
half have energy above the Fermi level.

The stability of the NP is captured by the Berry phase
computed over a base loop that encircles the NP and where
only the occupied eigenstate is taken into account. Let us first
consider the half-BZ (HBZ) patch Sα that is bounded by the
oriented loop lα ∼ l−1

MM ◦ l�M (blue solid line in Fig. 1, where
∼ means that we discard the two segments that cancel each
other under a translation by a reciprocal lattice vector), where
we write lP2P1 an oriented open loop in momentum space
that threads the BZ starting at P1, crossing P2, and ending at
the shifted point P1 + K (P1,2 ∈ {�, K1,2, M1,2,3}, K = ±b1(2),
see Fig. 1), and l−1 is the loop l in the reversed orientation.
Folding [20,27,30,34] l�M and lMM with C2z, we find the Berry
phase factor (γ [lα] ≡ γα)

eiγα = ξ�
2

(
ξM

2

)3
, (1)

where ξ k̄
n is the Cnz rotation symmetry eigenvalue of the

occupied eigenstate at HSP k̄, i.e., given the allowed IRREPs
of Fig. 2(a) these are ξ�

2 = ξM
2 = +1 for the IRREPs �1 and

M1, and ξ�
2 = ξM

2 = −1 for the IRREPs �4 and M4. This leads
to a Z2 quantization of the Berry phase. For instance, given
the occupied IRREPs of Fig. 2(a) we find that the NP at K
is characterized by a π Berry phase or, strictly speaking, by
the set γα ∈ {π + n2π}n∈Z which we write as a congruence
relation γα = π (mod 2π ). Performing a band inversion at �,
�4 ↔ �1 (or similarly at M, M1 ↔ M4) an extra simple NP
must appear on each HSL � ≡ �K (respectively T ≡ MK).
Indeed, band crossings over � (T ) cannot be avoided due to
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FIG. 1. First BZ of the honeycomb lattice spanned by the primi-
tive reciprocal vectors b1 and b2. High-symmetry points (HSP) �, K ,
and M. Inequivalent high-symmetry points are written with different
subscripts, i.e., K1, K2, M1, M2, M3. Half Brillouin zone (HBZ)
patches Sα (blue) and Sβ (green), with their respective oriented
boundaries lα ∼ l−1

MM ◦ l�M (blue) and lβ (dashed green), and the
patch Sρ (red) bounded by lρ = l−1

�K ◦ l�M (dotted red) covering one
sixth of the BZ. lP2P1 is the oriented open loop that threads the
BZ starting at point P1, crossing P2 and ending at the shifted point
P1 + K with the reciprocal lattice vector K = ±b1(2). We mean by
∼ equal up to segments that cancel each other through a translation
by a reciprocal lattice vector. Note that the different segments of the
curves directly correspond to the underlying crystal symmetries.

the distinct symmetry characters of the bands with respect to
the vertical mirror symmetries of the HSL as marked by the
IRREPs �1,2 and T1,2 [see Fig. 2(a)]. We now have four simple
NPs within the HBZ Sα , but Eq. (1) gives γα = 0 (mod 2π )
such that this C2z-based computation of the Berry phase loses
track of the NPs.

In order to have a finer definition of the Berry phase which
takes advantage also of the other crystalline symmetries, let us
now consider the HBZ patch Sβ bounded by the oriented loop
lβ (green dashed line in Fig. 1). Contrary to lα , lβ exhibits the
C3z symmetry of the K point which allows us to split it into
three symmetric sections. A third of the loop can therefore
be taken as the path beginning at M2 crossing � and ending
at M1, i.e., l ′

β = lM1� ◦ l�M2 . Then, using a smooth reference
gauge for the eigenstates, we find the noncyclic Berry phase
over the loop segment l ′

β (see derivation in Appendix A 4)

eiγ ′
β = 2 − (1 + i

√
3)ξ�

2 ξM
2

2 − (1 − i
√

3)ξ�
2 ξM

2

, (2)

with the symmetry eigenvalues of the occupied eigenstate
determined by

ξ�
2 = −sign{Re[hAB(�)]},

ξM
2 = sign{Re[hAB(M )]}. (3)

K3

K M
4

1 M4

M1 K6

K4K4

K M
2

1 M2

M1+

- +

-

(a () b)

FIG. 2. Examples of band structures for the EBRs of (a) spinless
symmetry class A + L77(2b) ∼= AI + L80(2b), and (b) spinless
symmetry class A + L75(2b), when restricted to Wyckoff’s position
2b. Notations from the Bilbao Crystallographic Server [57] for the
IRREPs of the space groups.

Here, hAB(k) is the off-diagonal element of the tight-binding
model written in the Bloch basis

∑
Rn

eik(Rn+rA(B) )|wA(B), Rn〉
where Rn labels the unit cells, rA(B) is the sublattice position
within one unit cell, and 〈r|wA(B), Rn〉 = w(r − Rn − rA(B) )
gives a complete basis set of localized Wannier functions (see
Appendix A 1 for more details). Therefore, since by rotational
symmetry eiγβ = (eiγ ′

β )3, we find for the phase winding over
the entire loop lβ

γβ =
{

π (mod 6π ) if ξ�
2 ξM

2 = −1,

−2π (mod 6π ) if ξ�
2 ξM

2 = +1.
(4)

from which we define the winding number WI = γβ/π .
WI is the topological invariant that classifies all symmetry-

protected topological semimetallic phases of the spinless
graphene model with a single orbital per site. We illustrated
this with the numerical examples of Fig. 3 that realize WI =
+1, −2, +4, and −5. For each case, we show the band
structure, the noncyclic Berry phase over the loop segment
l ′
β , and the schematic configuration of NPs within the HBZ

patch Sβ . Starting from a band structure with a single NP at K
for which WI = +1 shown in Fig. 3(a), the other topological
sectors are reached through successive band inversions at �

and M triggered by tight-binding parameters of increasing
range.2 For instance, restricting the tight-binding model to
the nearest-neighbor parameters, only the single NP at K
can be formed, while we included up to the seventh layer of
neighbors in order to generate the higher winding of Fig. 3(d).
Each band inversion leads to a jump of the winding number
by ±3, as predicted by Eq. (4). We conclude that the two-band
model of the honeycomb lattice at half-filling is classified by

π
(lβ )
1

(
H1+1

AI+L80(2b)

) ∼= 1 + 3Z � WI = γβ

π
, (5)

where π
(lβ )
1 means the first homotopy group restricted to

the C3-symmetric base loops lβ connecting � and the three
inequivalent M points, H1+1

AI+L80(2b) is the classifying space
(Grassmannian) of the two-band Hamiltonian at half-filling (1
occupied state + 1 unoccupied state) for the symmetry class

2We also find a topological transition with no band inversion
at � or M happening through the closing of a whole nodal line
encircling � (or similarly three nodal lines encircling the M points).
However, such a nodal line is realized only at fine-tuned values of the
microscopic parameters.
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K M

E

K M

E

K M

E

K M

E

0 0.5 1
−1

−2/3
−1/3
0

1/3
2/3
1

t

'
(t

)/

0 0.5 1
−1

−2/3
−1/3
0

1/3
2/3
1

t

'
(t

)/

0 0.5 1
−1

−2/3
−1/3
0

1/3
2/3
1

t

'
(t

)/

0 0.5 1
−1

−2/3
−1/3
0

1/3
2/3
1

t

'
(t

)/

γβ = π/3 γβ = −2π/3 γβ = 4π/3 γβ = −5π/3

(a) WI = +1 (b) WI = −2 (c) WI = +4 (d) WI = −5

FIG. 3. Spinless topological semimetallic phases of the honeycomb lattice reached through band inversions at � and M triggered by tight-
binding parameters of increasing range. Columns (a)–(d) correspond to an increasing number of simple nodal points protected by crystalline
symmetries. First row: band structures along the high-symmetry lines of the BZ. Second row: noncyclic Berry phase along one third of the
C3-symmetric loop lβ encircling K . Third row: schematic configuration of symmetry-protected nodal points within the HBZ Sβ bounded by lβ
(nodal points in red have WI = +1, and in blue WI = −1). Crystalline winding numbers are (a) WI = γβ/π = +1, (b) WI = −2, (c) WI = +4,
and (d) WI = −5.

AI + L80(2b). The offset 1 marks the obstruction due to the
essential NP at K that forbids the trivial phase.

It is important to note that the topological content of
Eqs. (4) and (5) is relative and not absolute [58]. This means
that they hold under the following relative assumptions. (i)
A reference trivialization of the total Bloch bundle has been
fixed. Practically this is done through the choice of a complete
basis set of Bloch functions, here obtained from a complete
basis set of localized Wannier functions [59]. (ii) The eigen-
states are defined within the same smooth reference gauge.
This is done in the Appendix through the choice of the global
analytical ansatz for the wave function (see also the discussion
on gauge transformation in Appendix A 5). (iii) Large gauge
transformations are excluded.3 (iv) The HSP K1 has been
chosen as a representative (choosing K2 instead, while keeping
fixed the origin of the Bravais lattice, reverses the winding
numbers with the offset −1). We also note that for a given
winding number WI of the occupied subspace we find the
reversed winding −WI for the unoccupied subspace. It is also
worth noting that our approach is global in the sense that the
results (4) and (5) are derived from a wave function that is
smooth over the whole BZ (discarding the singularities at the

3While large gauge transformations are allowed within equivalence
classes defined up to bundle isomorphisms, they carry their own
nontrivial windings and hence permit to jump between different
homotopy equivalence classes (see Ref. [58]).

NPs)4 (see the details in Appendix A 2), hence allowing us to
go significantly beyond the local k · p approach [60].

Finally, we note that the Z-type structure of Eq. (5)
can be understood as inherited from the few-band result
π1(H1+1

AI+I ) = Z [61]. In our case, the crystalline symmetries
act as an obstruction within the classifying superspace H1+1

AI+I
such that only a subset of the topological sectors are allowed
(1 + 3Z ⊂ Z) excluding the trivial phase. In general, for
a two-dimensional spinless system (or a two-dimensional
momentum subspace) with no inversion symmetry, we can
instead use the symmetry class AI + C2⊥T (with the C2⊥ axis
perpendicular to the system, here C2z) since C2⊥T similarly
imposes a reality condition on the classifying space within
the σh mirror invariant plane (σh = C2⊥I) leading again to
π1(H1+1

AI+C2⊥T ) = Z [62,63].

III. SPINFUL CASE WITH INVERSION SYMMETRY

Having shown that the noncyclic Berry phase is able to
characterize the extra structure from the impact of crystalline
symmetries in the case of spinless semimetallic phases, we
now move to the spinful AZ symmetry class AII that is
relevant when SOC is turned on [9]. Due to the spin degree
of freedom, the Hamiltonian is now 4 × 4 and we concentrate
on the fully gapped phase at half-filling.

4A global smooth gauge is allowed by the vanishing of the first
Chern class in the gapless phase [90].
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K 7

K 8
K M

9
+

11
-

M6
-

M5
+

K 6
K 5

K 4

K M
9

8

M5

M5

(a () b)

FIG. 4. EBRs for (a) spinful symmetry class AII + L80(2b) and
(b) spinful symmetry class AII + L77(2b), when restricted to the
Wyckoff’s position 2b. Notations from the Bilbao Crystallographic
Server [57] for the IRREPs of the space groups.

In this section we focus on the case with inversion symme-
try, i.e., we characterize the topology of the symmetry class
AII + L80(2b). Basal mirror symmetry (σh = C2zI) forbids
spin-flip terms in the four-band Hamiltonian such that it can
be separated into spin-up and -down sectors leading to the
decomposition H2+2

AII+L80(2b) = H1+1
↑ ⊕ H1+1

↓ which makes the
expectation value of the z-spin component sz a good quantum
number over the whole BZ. Practically, the generic tight-
binding Hamiltonian of this symmetry class corresponds to a
generalized Kane-Mele model, i.e., including arbitrary many
neighbors, with zero Rashba SOC and no staggered potential
(as to preserve inversion and C2z symmetry).

A direct consequence of the spin separation is that the
topological classification is reduced to that one of the spin-
polarized subspaces. Let us address the spinless symmetries
of each spin-polarized subspace, i.e., when we forget about
the spin. Contrary to the spinless case (AI + L80), the spin-
polarized subspaces H1+1

σ have no spinless TRS, i.e., the AZ
symmetry class is lowered as AI → A, nor spinless vertical
mirror symmetries, i.e., the lattice symmetry class is lowered
as L80(D6h) → L75(C6h) which is effectively similar to the
effect of an external magnetic field perpendicular to the basal
plane. As a consequence, the spin-polarized subspaces have
no essential degeneracy at K (see Appendix B for details) and
the band structure at half-filling is fully gapped [see Fig. 2(b)
showing the EBR of one spin subspace and Fig. 4(a) showing
the EBR of the parent spinful class].

It follows that the topology of each gapped spin-polarized
subspace can be characterized by a Chern number, or equiva-
lently by the flow of Berry phase over the BZ [64]. We write
this as 2πC1[BZ] = γ [∂BZ] − γ [∂0] = γ [∂BZ] where ∂BZ
is an oriented boundary of the BZ. Since the BZ is a closed
manifold, ∂BZ is equivalent to a point and in the previous
expression we assume that we have kept track of the Berry
phase as we deform the base point ∂0 into a loop that we then
sweep over the whole BZ into ∂BZ, that is (topologically) a
point again. It then follows that γ [∂BZ] = n2π (as a phase
is defined modulo 2π ) and the Chern number is given by the
integer n ∈ Z.

We now take advantage of the C6 symmetry of the system
and compute the Berry phase winding over the patch Sρ

that is one sixth of the whole BZ (a similar construction
has already been used in Ref. [41] giving the constraint due
to C6 symmetry on the Chern number of a single isolated
band). Sρ is bounded by the oriented loop lρ = l−1

�K ◦ l�M (see
Fig. 1), and by folding l�M with C2z and l�K with C3z we find

0

1

(a () b)

FIG. 5. (a) Symmetry decomposition of the HBZ patch
Sβ = Sρ,1 + Sρ,2 + Sρ,3 bounded by lβ ∼ lρ,3 ◦ lρ,2 ◦ lρ,1. (b) Loop
parametrization of the patch Sρ = ⋃

θ∈[0,1] lθ with l0 = l�M and
l1 = l�K .

(see the algebraic derivation using Wilson loop techniques in
Appendix B 2)

eiγρ = ξ�
2 ξK

3

(
ξM

2 ξ�
3

)−1 = ±e±iπ/3 (6)

or γρ = ±π/3 (mod π ), where all possible permutations of
the IRREPs composing the EBR [Fig. 2(b) and see also
Table I] have been taken into account. This result is consistent
with Ref. [41] with the difference that we also included
the phases with a trivial Fu-Kane-Mele index (see below).
Phase transitions between distinct topological sectors can be
engineered through band inversions at �, K , and M triggered
by tight-binding parameters of increasing range. Since all σh-
symmetric SOC terms vanish at � and M the energy ordering
of the IRREPs at these points is still determined by Eq. (3),
while the IRREP of the occupied eigenstate at K is now
dictated by sign{hAA,σ (K ) − hBB,σ (K )} (see Appendix B).

Combining the images of Sρ under successive rotations by
C3z we recover the HBZ patch Sβ introduced in the previous
section, i.e., Sβ = Sρ,1 + Sρ,2 + Sρ,3 as shown in Fig. 5(a)
with the boundary lβ ∼ lρ,3 ◦ lρ,2 ◦ lρ,1 where lρ,2 ∼ C3zlρ,1

and lρ,3 ∼ C2
3zlρ,1 (∼ here means equal up to a translation by

a reciprocal lattice vector). The symmetry of the Berry curva-
ture under C3z rotation gives eiγβ = (eiγρ )3 and we conclude

π2
(
H2+2

AII+L80(2b)

) ∼= ±1 + 3Z � W I
II = γβ

π
, (7)

where the second homotopy group π2 refers to the continuous
maps from the whole BZ to the classifying space H2+2

AII+L80(2b)

with the approximation BZ ∼= T 2 → S2. Therefore, the
winding number W I

II classifies all symmetry-protected
topological insulating phases of the honeycomb lattice with
SOC and inversion symmetry for a single orbital per site at
Wyckoff’s position 2b. For instance, the Fu-Kane-Mele Z2

invariant is readily obtained as the parity νFKM = W I
II mod 2.

Concretely, the value of the winding number depends
on the (spinless) IRREPs of the spin-polarized occupied
eigenstate according to Eq. (6) and the winding increases
with an increasing range of the tight-binding parameters. In
particular, we can switch the sign of the winding number by
switching the sign of {hAA,σ (K ) − hBB,σ (K )} that is nonzero
only with SOC. Reintroducing the spin degrees of freedom,
we have ξ k̄

2,↓ = (ξ k̄
2,↑)∗ and ξ k̄

3,↓ = (ξ k̄
3,↑)∗ from which follows

γρ,↓ = −γρ,↑ and W I
II,↓ = −W I

II,↑. Similarly to Eq. (5), the
classification of Eq. (7) has been derived under the assumption
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that large gauge transformations are discarded, however, the
explicit use of a smooth reference gauge is not needed in the
algebraic computation of Appendix B 2. Nevertheless, Eq. (6)
should still be interpreted in a relative sense, i.e., it gives the
actual quantity obtained from the surface integral of the Berry
connection derived from a smooth reference gauge over the
patch Sρ . Using the analytical ansatz of the spin-polarized
eigenstate given in Appendix B we have verified numerically
that both computations give the same results.

Importantly, we conclude from Eq. (7) that the classifica-
tion of the spinless system (5) is lifted into the classification
of inversion-symmetric spinful gapped phases with a doubling
that is due to the spin grading, i.e., WI ∈ 1 + 3Z → W I

II ∈
{1 + 3Z,−1 + 3Z}. We stress that the band structure is now
gapped and that the winding number W I

II captures a flow of
Berry phase over the BZ, which then gives the Chern number
of the two-dimensional gapped phase. Therefore, even though
the form of Eq. (7) closely resembles Eq. (5) of the gapless
phase, the interpretation of the winding number is different.
It is also important to note that W I

II = +1 + 3n and W I
II =

−1 − 3n do refer to two distinct topological classes in our
classification. For instance, a reversal of W I

II happens when
the bands K4 and K6 are inverted in Fig. 2(b) that requires
a closing of the band gap and thus constitutes a topological
phase transition.

We note that the Z-type classification is robust in the many-
band case. This is the case when the system is symmetric
under C2 spin rotation along the z axis guaranteeing the
separation of the spin sectors and leading to a classification
of the topology in terms of the spin Chern number [22,65]. A
more physical symmetry, however, is the basal mirror which
also leads to a Z classification in the many-band case [22,66].
We here readily obtain the (spinful) mirror Chern number as
C+

1 = 2W I
II π/(2π ) = W I

II = ±1 mod 3 for the even-mirror
subspace, and C−

1 = −C+
1 for the odd-mirror subspace. It is

the special case of the 4 × 4 Hamiltonian with AII + L80
symmetry that the spin Chern number here matches with
the mirror Chern number, i.e., there are not enough bands
to break the spin-rotation symmetry without breaking the
symmetries of L80.

IV. WILSON LOOP WINDING

Breaking inversion (equivalently basal mirror) symmetry
allows spin-flip Rashba SOC terms that forbid the spin de-
composition of Sec. III. Nevertheless, the topological classifi-
cation must be preserved when inversion symmetry is broken
adiabatically, i.e., without closing the band gap [67]. However
the question remains of a direct verification that goes beyond
the previous derivation of the Berry phase based on sz being a
good quantum number over the whole BZ. Because of the spin
grading, we must switch from a U(1) Berry phase to a U(2)
Wilson loop [16,20,24–27,39] description of the two-band
occupied subspace.5

5The U(2) Berry-Wilczek-Zee connection matrix is defined as
Amn

μ = 〈um, k|∂kμ un, k〉 with |un, k〉 the nth occupied cell-periodic
Bloch eigenstate and the Wilson loop over a base loop l is given
as W[l] = exp {− ∮

l dk · A(k)}.

In this section we first review known properties of the
Wilson loop that follow from TRS and C2zT symmetry [25],
from which we motivate the existence of nontrivial windings
of the Wilson loop over the BZ. Wilson loop winding has been
used in a gauge-invariant computation of the Fu-Kane-Mele
Z2 invariant [39]. It has also been shown to capture a crys-
talline invariant of systems with inversion symmetry [24], and
Ref. [42] has recently shown one example of a spinless Wilson
loop winding protected by C2 symmetry. We derive here the
expression of the spinful Wilson loop winding over one patch
of the BZ that captures the effect of crystalline symmetries,
i.e., here the point group D6h or C6h. The Wilson loop charac-
terization of the topological sectors will then allow us to treat
the cases when sz is not a good quantum number leading to a
complete classification of the symmetry class AII + L77(2b),
i.e., including the inversion-symmetry-breaking topological
phases that are not adiabatically connected to the phases
classified by Eq. (7).

Let us first introduce some notations. We write the Wilson
loop computed over a momentum base loop l as Wl ≡ W[l].
The Wilson loop spectrum is gauge invariant due to the
invariance of the eigenvalues under unitary transformations.
Writing it as eig{Wl} = [eiϕl,1 , eiϕl,2 ], this defines the Wilso-
nian phases ϕl,1 and ϕl,2.

Whenever a loop satisfies the symmetry Il = l−1, we have
WIl = W−1

l and spinful TRS (T 2 = −1) gives AW∗
l A−1 =

WIl = W−1
l where AK is the antiunitary representation of

TRS in the occupied band basis (A is unitary and K is the
complex conjugation) and (AK)2 = −I. Such base loops must
connect time-reversal-invariant momenta (TRIMPs) leading
to a Wilson loop spectrum that is composed of Kramers pairs,
i.e., pairs of mutually orthogonal eigenstates with the same
Wilsonian eigenvalue [25]. This is true for the loops l�M and
lMM (Fig. 1). A formulation of the Fu-Kane-Mele Z2 invariant
[2,7] then follows from the spectral flow of Wilson loop over
the HBZ patch Sα bounded by l−1

MM ◦ l�M [39]. We note that the
edges l�M2 and l−1

�−b1,M2−b1
of lα can be neglected when large

gauge transformations are excluded. Practically this is done
by imposing the periodic gauge (see Appendix A 1). Also,
the HBZ patch must be chosen such that the composition of
the oriented boundary (e.g., lα for Sα) with its image under
inversion (Ilα) gives an oriented boundary of the whole BZ,
i.e., lα ◦ Ilα ∼= ∂ BZ.

Considering now the combined symmetry C2zT = σhK,
the Wilson loop satisfies UσhW∗

l U †
σh

= Wl where UσhK is the
antiunitary representation of σhK in the occupied band basis
[25]. It follows that the eigenstates of the Wilson loop are
composed of mutually orthogonal pairs with their eigenvalues
being partners under complex conjugation, i.e., eig{Wl} =
[eiϕl , e−iϕl ].6 This feature has an important consequence for
the topological classification of the flows of Wilson loop
over the BZ. In order to see this, let us parametrize the
BZ through loop sections as

⋃
θ∈S1 lθ ∼= S1 × S1 ∼= T 2 as

follows naturally from the parametrization of the 2-torus T 2

6If Vl is an eigenvector of Wl with the Wilsonian eigenvalue eiϕl ,
then U T

σh
V ∗

l is also an eigenvector with the Wilsonian eigenvalue
e−iϕl .
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by two circles S1, where each θ labels one loop lθ ∼= S1

of the BZ. By choosing one representative Wilsonian phase
ϕ(θ ), we can then classify the spectral flow of Wilson loop
from the parameter base space S1 � θ into the classifying
space U(1) � eiϕ(θ ) by a winding number since π1(U(1)) = Z
[indeed, eig{Wl} ∈ SO(2) ∼= U(1)]. Note here that the choice
of ϕ(θ ) instead of −ϕ(θ ) is arbitrary.7

An important consequence of C2zT symmetry is the double
degeneracy of 0 and ±π Wilsonian phases. Another important
feature that comes from the combined constraints of TRS and
C2zT symmetry is that for any loop connecting two TRIMPs
and satisfying l−1 = Il , the Wilson loop spectrum must be
both doubly degenerated and symmetric under complex con-
jugation. Therefore, the two-band Wilson loop spectrum over
l�M and lMM must either be [+1,+1] or [−1,−1]. It is worth
noting that while we expect the Z-type Wilson loop winding
to be present in two-band subspaces with TRS and C2zT
symmetry, we do not expect that it is robust in subspaces with
more bands. Indeed, the homotopy classification of flows of
Wilson loop over the BZ, i.e., eig{Wlθ } ∈ SO(2n) with θ ∈
S1, for n > 1 gives π1(SO(2n)) = Z2 [61]. This is confirmed
in Secs. VII and VIII where we analyze six-band models and
find a fragile topology of split EBRs.

Let us now consider the effect of the other crystalline
symmetries. This is again revealed by considering the patch
Sρ bounded by lρ = l−1

�K ◦ l�M (Fig. 1). Similarly to the above
parametrization of the whole BZ, we parametrize the patch Sρ

through loop sections as lθ : [0, 1] → Sρ : θ �→ lθ with l0 =
l�M and l1 = l�K [see Fig. 5(b)]. Therefore, for each loop lθ
we can define a representative Wilsonian phase ϕ(θ ) = ϕ[lθ ]
such that the winding of the Wilson loop is captured by the
winding of ϕ(θ ) over the patch Sρ , i.e.,

W [Sρ] =
∫ 1

0

dθ

π

dϕ(θ )

dθ
∈ 1

π
[ϕ(1) − ϕ(0)](mod 2),

ϕ(0) = ϕ(0) ∈ [−π, π ), (8)

ϕ(1) = (ϕ(1) modulo 2π ) ∈ [−π, π ),

with ϕ(0) = ϕ[l�M] and ϕ(1) = ϕ[l�K ], and where we have
defined reference Wilsonian phases ϕ(0) and ϕ(1) with re-
spect to which we compute the winding of the Wilson loop
and where “modulo” here refers to the operation of taking the
remainder as opposed to “mod” used to define a set.8 Similarly
to the computation of the Fu-Kane-Mele Z2 invariant from
the spectral flow of the Wilson loop [39], TRS makes it
sufficient to consider the Wilsonian flow over one HBZ. From
the decomposition of the HBZ Sβ into Sρ patches as shown
in Fig. 5(a), we find that the Wilson loop winding over Sβ is
given as W [Sβ] = 3W [Sρ]. Now, by conservation of the total

7This arbitrariness is related to the fact that the real IRREP of
a positive rotation within SO(2) is equivalent to the irreducible
representation of a negative rotation. Similarly, UσhW∗

l U †
σh

= Wl is
a relation of equivalence between two Wilson loops with opposite
phases.

8While the representative phase is smooth and takes value in a
unbounded domain, i.e., ϕ(θ )/π ∈ R, the reference phases ϕ(0) and
ϕ(1) are fixed constants within [−π, π ).

flow over the BZ, the flow over the HBZ patch Sα must match
with the flow over the HBZ patch Sβ (note also that, as for
the HBZ patch Sα , Ilβ ◦ lβ ∼= ∂BZ) and we define the Wilson
loop winding number

WII ≡ 3W [Sρ] = W [Sβ] = W [Sα]. (9)

The Fu-Kane-Mele Z2 invariant is then obtained by taking the
parity of this winding number, i.e., νFKM = WII mod 2.

We importantly note that the Wilson loop winding is sup-
ported by the homotopy of the flow of Wilson loop protected
by C2T symmetry [π1(SO(2)) = Z]. It follows that while
we use special cuts of the BZ to derive the constraints from
crystalline symmetries on the Wilson loop, the total Wilson
loop winding (protected by C2T symmetry) is independent of
the parametrization of the flow over the BZ, as shown explicitly
in Fig. 6.

V. SPINFUL CASE WITH ADIABATIC BREAKING
OF INVERSION SYMMETRY

We are now ready to address in detail the spinful case
where inversion symmetry is only broken adiabatically. In-
version symmetry together with C2z gives the basal mirror
symmetry σh that makes sz a good quantum number over the
whole BZ, as we have seen in Sec. III. It then follows that
with σh symmetry the Wilson loop spectrum takes the form
eig{Wl} = [eiγl,↑ , eiγl,↓ ] = [eiγl,↑ , e−iγl,↑ ] in the spin basis and
we readily find the Wilson loop winding WII = W I

II with the
winding number defined in Eq. (7).

When Rashba SOC is switched on adiabatically, the
symmetry-protected windings of the spin-polarized Berry
phase (7) are lifted into the spectral flow of the Wilson
loop through an adiabatic mapping γl,σ �→ ϕl , leading again
to WII = W I

II [67]. We verify this with several numerical
examples in Fig. 6 with Wilson loop windings up to −5 (in
Fig. 11 in Appendix B 3 we show one example of topological
phase with a Wilson loop winding of +7). Starting from
the spinless cases of Fig. 3, Fig. 6 shows the effect of first
switching on sz-preserving SOC (which opens a band gap over
the whole BZ) and then switching on adiabatically Rashba
SOC. The first row shows the band structures. The second row
shows the flow of Wilsonian phases over the patch Sρ as we
smoothly sweep the base loop from l�M (θ = 0) to l�K (θ = 1)
as illustrated in Fig. 5(b). The third row shows the flow of
Wilsonian phases over the whole BZ as we sweep a base loop
lg2 parallel to the primitive reciprocal vector b2 over the whole
BZ, i.e., we parametrize the BZ as BZ ∼= ∪g2∈[0,1]lg2 with lg2

∼=
{g1b1 + g2b2|g1 ∈ [0, 1]}. The flow then connects the Wilson
loop over l�M (g2 = 0), lMM (g2 = 0.5), and l�M + b1 ∼ l�M

(g2 = 1) (see Fig. 1). We have used the periodic gauge in
the numerical computation of the Wilson loop which prevents
large gauge transformations (see Appendix A 1). The only
two allowed values ϕ(0) = 0 and ϕ(0) = −π follow from
the combined constraints of TRS and C2zT symmetry that
enforce the Wilson loop spectrum on l�M (and lMM) to be
[+1,+1] or [−1,−1]. The other lattice symmetries enforce
the reference Wilsonian phase on l�K to be ϕ(1) = ±2π/3
(see derivation in the next section). In each case, we have
written in the bottom of Fig. 6 the Wilson loop winding over
the patch Sρ (W [Sρ]) for the choice ϕ(1) = −2π/3 as the
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(a) WII = +1, νFKM = 1 (b) WII = −2, νFKM = 0 (c) WII = +4, νFKM = 0 (d) WII = −5,νFKM = 1

FIG. 6. Spinful topological phases obtained for SOC that break inversion symmetry only adiabatically. Columns (a)–(d) correspond to
those of Fig. 3. First row: band structures along the high-symmetry lines of the BZ. Second row: spectral flow of the Wilson loop over one
patch Sρ parametrized by loop sections lθ from l�M (θ = 0) to l�K (θ = 1). Third row: spectral flow of the Wilson loop over the whole BZ
parametrized by loop sections {lg2 }g2∈[0,1] with lg2=0,1 = l�M and lg2=0.5 = lMM . Blue (red) dashed lines give the Wilson loop of the two-band
occupied (unoccupied) subspace. For each case, the Wilson loop winding over a sixth BZ patch W [Sρ] (computed with respect to reference
Wilsonian phase marked by a thick black line), the Wilson loop winding WII , and the Fu-Kane-Mele Z2 invariant are given. Importantly, the
agreement between the second and the third rows confirms that the total winding of the Wilson loop over the BZ (protected by C2T symmetry)
does not depend on the parametrization of the flow.

reference Wilsonian phase, the winding of the Wilson loop
over one HBZ (WII ), and the Fu-Kane-Mele Z2 invariant.
We see a perfect confirmation of WII = 3W [Sρ] = W I

II = WI

and νFKM = W [Sα] mod 2 = WII mod 2. We note that the
robustness of higher Wilson loop windings comes from the
C2zT -symmetry protection of the crossings of Wilson loop
branches (of Wilsonian phases) at 0 and ±π . Furthermore,
the agreement in Fig. 6 between the winding obtained from a
symmetric flow over the patch Sρ and from a nonsymmetric
flow over the whole Brillouin zone confirms our claim that
the Wilson loop winding protected by C2T symmetry is
independent of the parametrization of the flow.

Importantly, the spinful insulating phases always split
an EBR [see the examples of Figs. 4(a) and 4(b) char-
acterized by their IRREPs at the HSPs �, K , and M].
We give in Table II the relevant IRREPs for the gen-
erators of the little cogroups at the HSPs.9 In the
case with inversion symmetry we have the split EBR
B1 + B2 where the allowed qBRs (quasiband representa-
tion [50]) B1,2 can be formed from all the permutations
among the IRREPs of Fig. 4(a). In the case without inver-
sion symmetry (AII + L77), we have the split EBR B1 + B2

where now the qBRs are constrained by the compatibility

9In this work we have chosen the convention C+
n |↑〉 = e−i2π/n|↑〉

and C+
n |↓〉 = e+i2π/n|↓〉.

relations among the IRREPs as B1 = (�9(8), K6, M5) and
B2 = (�8(9), K4, K5, M5), i.e., only �8 and �9 can now be
freely permuted. Furthermore, the Wilsonian phases can be
interpreted as the expectation values of the position operator

TABLE II. Spinful IRREPs for the generators of the little
cogroup [56] at the high-symmetry points �, K , and M, for L77 and
L80 with TRS. Retrieved from the Bilbao Crystallographic Server
[73]. We have marked as a superscript the parity eigenvalues (±) of
the IRREPs of L80.

� C6v D6h C+
6z mx

�9 �
(+)
9

(
e−iπ/6 0

0 eiπ/6

) (
i 0
0 −i

)
�8 �

(−)
11

(
ei5π/6 0

0 e−i5π/6

) (
i 0
0 −i

)
K C3v D3h C+

3z mx

K4

K5
K7

−1
−1

−i
i

K6 K8

(
eiπ/3 0

0 e−iπ/3

) (
i 0
0 −i

)
M C2v D2h C+

2z mx

M5 M
(+)
5

(
i 0
0 −i

) (
i 0
0 −i

)
M5 M

(−)
6

(
i 0
0 −i

) (
i 0
0 −i

)

195135-9



BOUHON, BLACK-SCHAFFER, AND SLAGER PHYSICAL REVIEW B 100, 195135 (2019)

within the basis of Wannier functions generated only by the
occupied Bloch eigenstates [24,25,39,41,68–72]. Therefore,
whenever the Wilson loop has a symmetry-protected non-
trivial winding there is an obstruction to the definition of
a basis set of localized and symmetric Wannier functions
since then the Wannier functions cannot have well-defined
Wyckoff’s positions. The symmetric condition means that the
set of Wannier must be closed under all the symmetries of
the system, otherwise some symmetry operations map some
of these Wannier functions to the Wannier functions obtained
from the Bloch functions of the unoccupied subspace. The
offset of Eq. (7) marks that all the insulating phases of these
symmetry classes must be topologically nontrivial. Hence, by
considering a band structure that is composed only of the
bands of a single EBR (here the four bands of the spinful
honeycomb lattice), we quantitatively corroborate with a con-
crete example the claim of “topological quantum chemistry”
[36,50] that whenever an EBR is split, the system must be
topologically nontrivial. In Sec. VII we analyze the effect of
adding (in the vector bundle sense) two EBRs and reveal the
fragile topology of split EBRs.

VI. SPINFUL CASE WITH NONADIABATIC BREAKING
OF INVERSION SYMMETRY

We now address the case beyond the adiabatic breaking
of inversion symmetry. Phases with adiabatically broken in-
version symmetry require Rashba SOC to be weak as com-
pared to sz-preserving SOC. When Rashba SOC is instead
strong enough, additional topological phase transitions can
occur. Putting aside the topological semimetallic phases at
half-filling, the insulating phases of AII + L77(2b) always
split the EBR into B1 (with the IRREP K6 at K) and B2

(with the IRREPs K4 and K5 at K). We thus continue the
characterization of TQC [36,42,50] relating the split of an
EBR and nontrivial topology.

Toward that aim, we use an alternative approach to the
symmetry-protected quantization of Wilson loop spectra over
l�K and l�M based on the (pseudo)spin locking at �, K , and
M. This not only provides a more direct proof that WII =
W I

II when inversion symmetry is broken adiabatically, but
further nicely leads to the interpretation of the topological
phases beyond the adiabatic breaking of inversion symmetry.
The ẑ axis of rotational symmetries at the HSPs �, K , and
M naturally defines a quantization axis for the pseudospin
degrees of freedom combining the orbital and the bare spin
structures. Fewer band models have the additional feature that
spin-flip terms vanish at some HSPs leading to a bare spin
composition of the eigenstates that diagonalize the matrix
representations of the rotation symmetries. For instance, all
the spin-dependent terms vanish at � such that each Kramers
doublet can be decomposed into pure spin components. By
inspection of the Hamiltonian at � we find that the Bloch
eigenstates form the doublets (|φ� j ,↑, �〉, |φ� j ,↓, �〉)T , with
j = 1 for the IRREP �9 (φ�1 ∝ ϕA + ϕB) and j = 4 for the
IRREP �8 (φ�4 ∝ ϕA − ϕB), written in the basis that makes
the matrix representation of the rotation symmetries at �

diagonal (this is the symmetry Bloch basis defined in Ap-
pendix A 1). We find diag(e−iπ/3, eiπ/3) as the representation
of C+

3z symmetry for both doublets. By inspection of the

Hamiltonian at K (say at K1), we find that the doublet for the
IRREP K6 can again be decomposed into pure spin compo-
nents as |ψK6

, K1〉 = (|ϕA,↑, K1〉, |ϕB,↓, K1〉)T which gives
diag(eiπ/3, e−iπ/3) as the representation of C+

3z symmetry. The
partner doublet at the inverted momentum −K1 can be taken as
|ψK6

,−K1〉 = (|ϕB,↑,−K1〉, |ϕA,↓,−K1〉)T such that it has
the same matrix representation of rotations. We also verify
that these two doublets are partners under TRS through

〈ψK6
,−K1|T |ψK6

, K1〉 =
(

0 −1
1 0

)
K. (10)

The most general rotations of the doublets that preserve this
form of the TRS correspond to a SU(2) transformation [74].
If we further want to preserve the diagonal form of the matrix
representation of rotations, then only transformations of the
form diag(eiθ , e−iθ ) are allowed. The Bloch eigenstates for
the IRREPs K4 and K5 have a mixed spin structure due to the
presence of spin-flip terms at K , i.e., we find

|ψK4
, K1〉 = (ω|ϕA,↓, K1〉 + |ϕB,↑, K1〉)/

√
2,

|ψK5
, K1〉 = (−ω|ϕA,↓, K1〉 + |ϕB,↑, K1〉)/

√
2, (11)

with ω = ei2π/3, and at the inverted momentum,

|ψK4
,−K1〉 = (−ω∗|ϕA,↑,−K1〉 + |ϕB,↓,−K1〉)/

√
2,

|ψK5
,−K1〉 = (ω∗|ϕA,↑,−K1〉 + |ϕB,↓,−K1〉)/

√
2. (12)

The C+
3z-symmetry eigenvalue of the eigenstates K4 and

K5 is −1. Allowing a rotation among the eigenstates, the
basis |ϕB,↑, K1〉 ∝ |ψK4

, K1〉 + |ψK5
, K1〉 and |ϕA,↓, K1〉 ∝

|ψK4
, K1〉 − |ψK5

, K1〉 has a pure spin composition and con-
serves the C+

3z-symmetry eigenvalue. Contrary to � and K ,
the eigenstates at M do not have a simple form and there
is not a direct relation between the pseudospin basis that
diagonalizes the representation of C2z symmetry and the bare
spin components.

In the spirit of Ref. [7], we characterize the topology of
the two-band occupied subspace through the construction of
a basis set of smooth (cell-periodic) Bloch functions |v, k〉 =
(|v1, k〉, |v2, k〉)T spanning the same Hilbert space. We call
it a smooth frame for the occupied subspace. Such a frame
always exists over one-dimensional loops in momentum space
(actually, it always exists over the BZ by the vanishing of
the first Chern class due to TRS) [75]. Furthermore, we
can make it periodic over a loop that threads the BZ, i.e.,
where the final point of the loop is given by a shift of
the base point by reciprocal lattice vector as for l�K and
l�M . Therefore, Wilson loops are diagonal and thus gauge
invariant within this frame. More precisely, the Wilson loop
operator takes the form W̃l = P1 + P2 with the product of
projection operators written in the smooth and periodic frame
Pi = ∏l

k |vi, k〉〈vi, k| for i = 1, 2. The Wilson loop over l�K ,
connecting �, K , and �′ = � + b1 + b2, is then given by
W̃l�K = 〈v, �′|W̃l�K |v, �〉 = diag(eiϕ1 , eiϕ2 ) where ϕ1,2 are the
Berry phases of each component of the frame. Similarly for
l�M that connects �, M, and �′ = � + b1 + b2.

In order to derive the symmetry-protected quantization
of the Wilson loop spectrum over l�K , we further require
that the matrix representation of rotations at �, K , and �′

195135-10



WILSON LOOP APPROACH TO FRAGILE TOPOLOGY OF … PHYSICAL REVIEW B 100, 195135 (2019)

be diagonal within the smooth and periodic frame. We call
this last condition the rotation-symmetric gauge. Following
the parallel transport method of Soluyanov and Vanderbilt in
Ref. [76], we have verified numerically that a smooth and
periodic frame that also satisfies the rotation-symmetric gauge
always exists in two-band subspaces.10 While this points to a
general proof of existence an analytical solution of the four-
band Hamiltonian is missing and we leave it as future work.
In the next section we argue that such a frame in general does
not exist for a four-band subspace of a six-band Hamiltonian.

Within the smooth, periodic, and rotation-symmetric frame
for the two-band occupied subspace, v = (v1, v2), the Wilson
loop over l�K = lb ◦ la, with the segments la = lK1←� and lb =
l�′←K1 , is given by

W̃l�K = 〈v, �′|W̃b|v, K1〉〈v, K1|W̃a|v, �〉
= W̃bW̃a = R̃�

3 W̃−1
a

(
R̃K

3

)−1W̃a

= R̃�
3

(
e−iϕa 0

0 eiϕa

)
R̃K

3̄

(
eiϕa 0

0 e−iϕa

)
,

where R̃k̄
3(3̄) is the diagonal matrix representation of the sym-

metry C+
3z (C−

3z) at the HSP k̄. Therefore,

W̃l�K =
(

ξ
�(1)
3 ξ

K (1)
3̄

0

0 ξ
�(2)
3 ξ

K (2)
3̄

)
, (13)

where ξ
k̄(n)
3(3̄)

are the C+
3z- (C−

3z-) symmetry eigenvalues of the

nth component of the doublets at k̄ = �, K , i.e., R̃k̄
3(3̄) =

diag(ξ k̄(1)
3(3̄)

, ξ
k̄(2)
3(3̄)

). Proceeding similarly for l�M , we find

W̃l�M =
(

ξ
�(1)
2 ξ

M(1)
2̄

0

0 ξ
�(2)
2 ξ

M(2)
2̄

)
, (14)

where ξ2(2̄) are the C+
2z- (C−

2z-) symmetry eigenvalues.
It is now straightforward to obtain the symmetry-protected

Wilson loop spectrum for all possible configurations of the
two-band occupied subspace of the insulating phases of AII +
L77(2b). For the qBR B1, i.e., connecting �9 or �8 to K6, and
assuming that within the smooth frame the spin components
of the doublets are aligned at � and K (which we write B1,↑↑),
we find

W̃B1,↑↑
l�K

=
(

e−i 2π
3 0

0 ei 2π
3

)
, (15)

i.e., the smooth frame connects a doublet (↑,↓) at � to a
doublet (↑,↓) at K . For the qBR B2, i.e., connecting �9 or
�8 to (K4, K5), either spin alignments give

W̃B2
l�K

=
(

−e−i π
3 0

0 −ei π
3

)
=

(
ei 2π

3 0
0 e−i 2π

3

)
, (16)

i.e., the smooth frame connects a doublet (↑,↓) at � to
a doublet (↑,↓) or (↓,↑) at K . When we compute the

10Alternatively to Ref. [76] that uses a singular value decomposi-
tion, we mention the early construction of Ref. [91] based on a polar
decomposition instead.

smooth and rotation-symmetric frame for B2 we find that it
is composed of pure spin components at K , i.e., (v1, v2) ∝
(ϕB,↑(K1), ϕA,↓(K1)), which have the same rotation eigenvalue
of −1 as the Bloch eigenstates under a C3z rotation. We note,
however, that the smooth frame is not really needed for B2

since with R̃K
3̄ = −I we have [41] W−1

a R̃K
3̄ Wa = −I which

readily leads to the quantization of the Wilson loop WB2
l�K

=
−R̃�

3 independently of the smoothness of the chosen Bloch
frame (although it must satisfy the rotation-symmetric gauge
in order for the rotation matrices to be diagonal). As for l�M ,
since there is a single IRREP at M (M5) and the IRREPs at �

(�8, �9) have identical C2z eigenvalues, we find

W̃l�M =
(−i(±i) 0

0 i(∓i)

)
=

(±1 0

0 ±1

)
, (17)

both allowed for B1 and B2. This result based on the con-
struction of a smooth (periodic) and rotation-symmetric Bloch
frame recovers the algebraic derivation of the quantization in
Sec. IV based on the combined constraints of TRS and C2zT
on the Wilson loop spectrum.

We conclude that B1,↑↑ and B2 give the same symmetry-
protected reference Wilsonian phases ϕ(1) = ±2π/3 [see
definition in Eq. (8)]. Also, W̃l�M = [±1,±1] leads to
the symmetry-protected reference Wilsonian phases ϕ(0) =
0,±π in Eq. (8). We hence readily find a classification of the
Wilson loop winding WII [Eq. (9)] equivalent to Eq. (7) but
here without assuming inversion symmetry. Having argued
earlier that the classification of Eq. (7) must be conserved
when inversion symmetry is broken only adiabatically (with-
out closing the band gap), we then conclude that the condition
of aligned spins at � and K (within the same smooth Bloch
branch) in B1 is equivalent to this adiabatic condition (i.e.,
adiabatic breaking of inversion symmetry) and WII = W I

II .
Instead, taking the smooth frame and assuming that the

spin components of the doublets of B1 are flipped between
� and K , which we write B1,↑↓, we get

W̃B1,↑↓
l�K

=
(+1 0

0 +1

)
, (18)

i.e., the symmetry-protected Wilsonian phase is now ϕ(1) =
0. Therefore, taking this together with the unchanged
ϕ(0) = 0,±π within Eq. (8) gives W B1,↑↓ [Sρ] ∈ [ϕ(1) −
ϕ(0)]/π (mod 2) = {0,±1}(mod 2) = 0 (mod 1) ∼=Z. Hence,
the set of symmetry-allowed Wilson loop windings (9) would
now be 3Z � W B1,↑↓

II . While this could suggest that many more
topological insulating sectors can be realized, we actually
find only one additional topological insulating phase that
is not contained in the classification of B1,↑↑. Indeed, after
exploring the phase diagram of the tight-binding model for the
symmetry class AII + L77(2b) including up to the 10th layer
of neighbors, we find that all the insulating phases beyond
those classified by Eq. (7) have a zero winding of the Wilson
loop for B1, i.e., W B1,↑↓

II = 0. We show below that this phase
exactly corresponds to the “fragile” topological phase that
has been very recently reported in Ref. [51]. A formal proof
that �-K spin-flip phases can only have a zero Wilson loop
winding of B1 is still missing and is kept for the future.
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Let us analyze in more detail the two cases allowed by
B1. The pure spin structure of the doublets at � and K (for
B1) is a result of the vanishing of spin-flip terms of the
four-band tight-binding Hamiltonian at � and K . On the one
hand, the �-K spin-aligned configuration (B1,↑↑) is naturally
adiabatically connected to the inversion-symmetric case for
which sz is a good quantum number over the whole BZ.
On the other hand, the �-K spin-flip configuration (B1,↑↓) is
allowed by Rashba spin-flip terms that unlock the quantization
axis of the spins between � and K . We naturally expect that
this is realized only when Rashba SOC is strong enough.
Actually, since the rotation-symmetric gauge can always be
satisfied by the smooth frame, any adiabatic transformation
of the Hamiltonian cannot induce a transition between the
spin-aligned and the spin-flipped configurations since it would
require the continuous rotation of the spin-quantization axis
for the doublet at K which is not supported by the four-band
Hamiltonian of AII + L77(2b). Therefore, we conclude that
the phase with zero Wilson loop winding of B1 can only
be realized when Rashba SOC is strong enough to close
and reopen the band gap. The classification of Wilson loop
windings obtained from Eqs. (15) and (16) is in one-to-one
correspondence with Eq. (7), which we have argued covers
all the topological sectors that are adiabatically connected to
the inversion-symmetric phases, i.e., with zero Rashba SOC.
Then, since Eq. (18) implies a classification of the Wilson
loop windings that is not contained in Eq. (7), it must relate
to different topological sectors than Eq. (15). Therefore, the
phase with a trivial B1 subspace and captured by Eq. (18) can-
not be adiabatically mapped to any of the inversion-symmetric
phases.

Figure 7(a) shows one numerical example where the EBR
is split into an occupied subspace with Ba

1 = (�9, K6, M5)
and an unoccupied subspace with Ba

2 = (�8, K4, K5, M5).
This example corresponds to the fragile topological phase of
Ref. [51] (we have used the same parameters for comparison).
Figure 7(b) shows one example where the EBR is split into
Bb

1 = (�8, K6, M5) and Bb
2 = (�9, K4, K5, M5). In both cases,

the Wilson loop spectrum of the B1 occupied subspace has
a zero winding (blue dashed lines), while the unoccupied
subspace with B2 conserves a nontrivial winding of WII = ±4
(red lines). Reference [51] has shown the triviality of Ba

1 in the
example of Fig. 7(a) by computing, from the two occupied
Bloch eigenstates, a set of two localized Wannier functions
that are both centered at the lattice site C, and are mapped
on each other under all the symmetries of the system (i.e.,
it is a closed basis set under symmetry). We arrive here
at the same conclusion by straightforwardly computing the
flow of Wilson loop revealing a zero Wilson loop winding
for B1. Furthermore, it is worth noting that these localized
Wannier functions [51] exhibit a strong spin mixture. This
nicely supports our spin-locking argument which predicts that
the trivialized B1 is characterized by a spin flip between � and
K within the Bloch functions composing the smooth frame.

VII. SIX-BAND CASE

Having extensively treated the spinless two-band and spin-
ful four-band cases, we now study the effect of including one
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W
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2
II = 4, νFKM = 0 W
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II = 4, νFKM = 0

FIG. 7. Spinful topological phases with Rashba SOC break-
ing inversion symmetry nonadiabatically. First, second, and third
rows are similar to Fig. 6. (a) EBR split as Ba

1 + Ba
2 with Ba

1 =
(�9, K6, M5) and Ba

2 = (�8, K4, K5, M5), with the parameters cho-
sen as in Ref. [51] for comparison. (b) EBR split as Bb

1 + Bb
2 with

Bb
i = Ba

i [�9 ↔ �8].

extra sublattice site (C) located at the center of the unit cell,
resulting in a total of six bands. The lattice sites C form a
triangular lattice that corresponds to the Wyckoff’s position
1a of L77.11 Assuming a single orbital per site (e.g., an s
orbital) the two spins on each site C give rise to the two-band
EBR Ba

1(1a) = (�9, K6, M5) [we could also form Bb
1(1a) =

(�8, K6, M5) for a different choice of orbital]. In this section
we restrict ourselves to the coupling of the split EBR of
the honeycomb lattice, i.e., B1 + B2 with B1 = Ba/b

1 (2b) and
B2 = Ba/b

2 (2b) (see Fig. 7), with the EBR for the triangular
lattice chosen as B′

1 = Ba
1(1a). Furthermore, we fix the oc-

cupied subspace as the two bands of B1 and the unoccupied
subspace as the four bands of B2 + B′

1. Therefore, depending
on the split of the EBR of the honeycomb lattice before the
coupling, the qBR of the four-band unoccupied subspace is
either compatible or incompatible with the set of IRREPs of a
BR, that is an EBR or a sum of EBRs, of the symmetry class
AII + L77. We write B ∼ BR (EBR) when the quasiband
representation B has a set of IRREPs that are compatible with

11We have derived our model using a generalization of Dressel-
haus method for expanding global tight-binding models from the
crystallographic space group [92]. Details of the method and the
model will be given elsewhere. When restricted to the seventh layer
of neighbors, our tight-binding model matches with the model given
in Ref. [51].
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FIG. 8. Six-band topological phases from the coupling of the split EBR B1 + B2 = Bb
1(2b) + Bb

2(2b) (Fig. 6) with B′
1 = Ba

1(1a). Each
six-band phase is generated from the corresponding four-band phase of Fig. 6. First row: band structures where all columns have the same
energy ordering of IRREPs as in column (a). Second row: Wilson loop flows over the BZ for the occupied subspace Bb

1 (blue dashed line) and
for the unoccupied subspace Ba

1 + Bb
2 (red line). For each case we give the Wilson loop winding (WII ) and the Fu-Kane-Mele invariant (νFKM)

of the two-band occupied subspace, as well as the four-band index ν21′ ∈ Z3 protected by TRS and C2zT .

a BR (EBR), and B �∼ BR when it is not. In the following
examples, we have B2 + B′

1 = Ba
2(2b) + Ba

1(1a) ∼ EBR and
B2 + B′

1 = Bb
2(2b) + Ba

1(1a) �∼ BR.

A. Numerical results

Figures 8 and 9 show six-band topological insulating
phases generated through the coupling of the honeycomb
lattice sites (Wyckoff’s position 2b of L77) with the triangular
lattice sites (Wyckoff’s position 1a of L77). In Figs. 8 and 9(b)
the split EBRs of the honeycomb lattice before coupling were
all chosen as Bb

1 + Bb
2. Since the results generated from the

other choice of split EBRs, i.e., Ba
1 + Ba

2, lead to qualitatively
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FIG. 9. Similar to Fig. 8, but here the six-band topological phases
are obtained from the four-band phases of Fig. 7 where inversion
symmetry is broken nonadiabatically through Rashba SOC. (a) Split
EBR Ba

1 + Ba
2, corresponding to the case discussed in Ref. [51].

(b) Split EBR Bb
1 + Bb

2.

identical conclusions, we give them in Appendix D (Fig. 12).
Figure 9(a) is the analog to Fig. 9(b) for the split EBR
Ba

1 + Ba
2.

The six-band phases of Fig. 8 are obtained column by
column [Figs. 8(a)–8(d)] from the respective four-band topo-
logical phases of Fig. 6 where inversion symmetry was broken
adiabatically. In Fig. 9 six-band phases are obtained from the
four-band topological phases of Fig. 7 where Rashba SOC had
broken inversion symmetry nonadiabatically. The first row
in Figs. 8 and 9 has band structures with the same energy
ordering of the IRREPs as shown in the first column. The
second row in Figs. 8 and 9 gives the flow of Wilsonian
phases over the whole BZ for the two-band occupied subspace
(blue dashed line) and the four-band unoccupied subspace
(red full line). In each case, we give the Wilson loop winding
WII [Eq. (9)] and the Fu-Kane-Mele invariant νFKM of the
occupied subspace.

Analyzing the results we find, on the one hand, when
comparing Fig. 8 with Fig. 6, and Fig. 9 with Fig. 7, that
the topology of the two-band occupied subspace is preserved
when two extra bands are included in the unoccupied sub-
space. On the other hand, the nontrivial Wilson loop winding
of the two-band unoccupied subspace is sometimes lost when
it is imbedded into the four-band Wilson loop of the six-band
system. In particular, we observe that every crossing between
Wilsonian branches is avoided away from the phases 0 and
±π where the degeneracies are protected by C2zT symmetry,
and away from the loops l�M (g2 = 0, 1) and lMM (g2 = 0.5)
where the degeneracies are protected by TRS. In total, we
count three distinct Wilson loop patterns of the four-band sub-
space: (i) each Wilsonian phase winds by ±π over the whole
BZ [Figs. 8(a) and 8(d)], (ii) each Wilsonian phase winds by
±2π over the whole BZ [Fig. 8(b)], (iii) zero winding of each
Wilsonian phase [Figs. 8(c), 9(a), and 9(b)]. This suggests a
ν21′ ∈ Z3 classification of the four-band subspaces protected
by TRS and C2zT symmetry, where the new index ν21′ refers
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to the magnetic point group 21′ = C2 × {E , T } that contains
TRS and C2zT symmetry.

For completeness, we show in Fig. 13(a) of Appendix D
one example with Ba

2 as the two-band occupied subspace with

W
Ba

2
II = 4. The result in this case is analog to Fig. 8(c) with a

nonzero Wilson loop winding of the occupied subspace and a
vanishing Wilson loop winding of the four-band unoccupied
subspace. We also show as a reference in Fig. 13(b) an
example with B′

1 = Ba
1(1a) (W B′

1
II = 0) chosen as the occupied

subspace. This case has no winding of the Wilson loops.
Importantly, in all the six-band results of Figs. 8, 9, and

13, we have included the two extra trivial bands B′
1 from

above in energy such that they had to cross the two bands B2

nonadiabatically, i.e., closing the band gap. However, we have
checked that in all the cases the two-band Wilson loop wind-
ing of B2 and the zero winding of B′

1 are conserved separately
whenever there is an energy gap between them. Therefore,
while there is no Z-type Wilson loop winding of the four-band
subspaces, the Wilson loop winding of two-band subspaces is
robust as long as the two bands are separated from the other
bands by an energy gap above and below.

VIII. DISCUSSION

Based on the six-band numerical results of the previous
section, we discuss here in detail the topology of two- and
four-band subspaces for the symmetry class AII + L77. We
introduce the distinction between stable, unstable, and fragile
topologies within vector bundle theory, and relate these to
the topology of split EBRs. We then conclude that in the
many-band limit the stable Wilson loop winding is determined
only by the Fu-Kane-Mele Z2 invariant implying that further
stable topological phases must belong to the class of higher-
order topological insulators [52,53]. For completeness, we
also briefly discuss the effect of breaking C2zT symmetry, and
TRS, from which Chern insulators with high Chern numbers
can be formed.

A. Stable, unstable, and stably trivial or “fragile” topology

The topological classification of band structures, i.e., of
vector bundles, can be recast in terms of homotopy groups
of the classifying spaces of the Hamiltonian, i.e., the complex
Grassmannian Grm(Cn) where m is the number of occupied
bands and n is the total number of bands [23,77–79] The
homotopy groups of a space X generally depend on the di-
mension of X . The classical example is given by the homotopy
groups of the d-dimensional spheres, i.e., πk+d (Sd ). When
the dimension d is large enough (d � k + 2), the homotopy
groups are independent of d , i.e., one says that the homotopy
groups are stable [80]. On the contrary for small d , the ho-
motopy groups strongly depend on d and are called unstable.
For instance, π3(S2) = Z (unstable), while Z2 = π4(S3) =
π5(S4) . . . (stable) [80].

The prototypical example of stable topology in the physics
literature are the Chern insulators, i.e., their topology is
unaffected by adding a trivial band to the occupied or
the unoccupied subspaces, indeed we have π2(Gr1(C2)) =
π2(Grm(Cn)) = Z. Examples of unstable topology are three-
dimensional two-band systems, called Hopf insulators, i.e.,

the classifying space is Gr1(C2) ∼= S2 and π3(S2) = Z
[81,82]. By adding one band to a Hopf insulator, the dimen-
sion of the classifying space is increased and the Hopf topol-
ogy is lost, as π3(Gr1,2(C3)) = 0. Further physical example
of unstable topologies is discussed in Ref. [61].

The example of the tangent bundle (TSd ) and the normal
bundle (NSd ) of a d sphere give yet another possibility.
Whenever d �= 1, 3, 7, the tangent bundle is nontrivial, while
the normal bundle is always trivial [83]. It turns out that the
“addition” (the direct sum) of the tangent and the normal
bundles gives a trivial bundle, i.e., TSd ⊕ NSd ∼= Sd × Rd+1.
Therefore, a nontrivial bundle (TSd , d �= 1, 3, 7) can be com-
bined with a trivial one (NSd ) through a direct sum, resulting
in a trivial bundle. In this case, one says that the tangent
bundle is stably trivial, i.e., the (vector) bundle is trivialized by
adding one trivial bundle [83]. The above terminology can be
directly transferred to the characterization of the topology of
band structures, where the direct sum of two vector bundles
is interpreted as the grouping of two band subspaces, i.e.,
by discarding the energy gap between the two sets of bands
and treating them as a single higher-dimensional subspace.
Importantly, we call the topology of a band subspace “fragile”
when it is stably trivial in the sense of the above example from
vector bundle theory.

In the following, we distinguish between three kinds of
stability. We call it stable topology of an N-band occupied
subspace when it is robust under the addition of extra trivial
bands in the occupied or unoccupied subspace (e.g., Chern
insulators). We call it unstable topology of a system when
it is lost under the addition of extra trivial bands either
in the occupied or in the unoccupied subspace (e.g., Hopf
insulators). We call it fragile topology of an N-band subspace
when it is conserved under the inclusion of extra trivial bands
separated from the N-band subspace by a band gap but lost
if the extra bands are added nonadiabatically (i.e., closing the
band gap) with respect to the N-band subspace. We argue in
this section that, based on the numerical results of Sec. VII A,
the two-band topology of split EBRs of the honeycomb lattice
is fragile for most of the topological sectors identified in the
single EBR. In particular, we show that the topology of four-
band subspaces of the symmetry class AII + L77(2b + 1a) is
independent of whether or not their set of IRREPs is com-
patible with the set of IRREPs of an EBR or a sum of EBRs
of AII + L77(2b + 1a), while two-band subspaces originating
from a split EBR conserve their nonzero Wilson winding.

B. Two-band subspace

We start with a discussion of two-band subspaces, i.e., two
bands separated from all the other bands by an energy gap
above and below. Let us first characterize the bands of the
triangular lattice alone. Its band structure is made of the single
EBR Ba

1(1a) = (�9, K6, M5) that cannot be split because of
the Kramers degeneracies at the TRIMPs due to TRS. A basis
of smooth Bloch functions that spans the two-band Hilbert
space is readily given by {|ϕC,↑, k〉, |ϕC,↓, k〉} which is the
Fourier trivialization of the total Bloch bundle [59]. Hence,
the Berry phase of each component is vanishing over any
chosen loop and the two-band Wilson loop has zero
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winding.12 Similarly, the triviality of any unsplit EBR is
obvious as it is for any band structure where the number of
occupied bands equals the total number of bands.

Let us now characterize the two-band occupied subspace
of the six-band case introduced in Sec. VII. First of all, in
the case when the occupied subspace is spanned by B2, we
readily find a classification of the Wilson loop windings that
matches with Eq. (7) as is the case from Eq. (16). Indeed,
as explained below Eq. (16), B2 has R̃K

3̄ = −I which readily
leads to a symmetry-protected quantization of the Wilson loop
spectrum [41] over l�K given by Eq. (16) and leading to the
classification of Wilson loop windings of Sec. VI, i.e., W B2

II ∈
±1 + 3Z.

When the occupied subspace is spanned by B1, as chosen
in Sec. VII A in Figs. 8 and 9, we have to generalize the
discussion of Sec. VI that was based on the spin locking of
the doublets at � and K of a smooth, periodic, and rotation-
symmetric frame spanning the two-band occupied subspace
of the four-band system and over base loops of the BZ. In the
six-band case, this approach is straightforwardly generalized
by considering the pseudospin locking of the doublets at �

and K . Indeed, the axis of rotation symmetries at these HSPs
gives a favored quantization axis of the pseudospin degrees of
freedom, i.e., only in that spin basis is the matrix represen-
tation of rotations’ diagonal. Actually at �, as a result of the
fact that we only consider a single orbital per site, all spin-flip
terms still vanish, leading to a pure spin decomposition of
the doublets �8(9). At K , however, the six-band tight-binding
model has open spin-flip channels leading to a pseudospin
structure of the doublets K6. For completeness, we give in
Appendix C the exact expression of the Bloch eigenstates of
the six-band model at � and K .

Assuming the existence of a smooth, periodic, and rotation-
symmetric frame of (cell-periodic) Bloch functions that span
the two-band occupied subspace B1 over base loops (see
Sec. VI), we obtain the same classification as in the four-band
model derived in Sec. VI. The difference now is that the
smooth frame connects the spin components of the doublet
�8(9) at � to the pseudospin components of the doublets K6

at K , while the dichotomy of �-K spin to pseudospin aligned
or �-K spin to pseudospin flipped still holds. Again using the
parallel transport method of Ref. [76], we have verified that
such a smooth and rotation-symmetric frame always exists for
any two-band subspace of the six-band model. We then con-
clude that the symmetry-protected quantization of two-band
Wilson loop spectrum over l�K derived in Sec. VI is preserved
in the six-band case and thus leads to the same classification
of the occupied subspace B1, i.e., W B1

II ∈ {±1 + 3Z, 0}.

12It is important to note that Ba
1(1a) contains simple point nodes

at the TRIMPs that are characterized by nontrivial Berry phases.
Considering a two-band model for Ba

1(1a) (i.e., the triangular lattice
sites C with spins) at half-filling, the single occupied band has
the Bloch eigenstate |ψocc, k〉 ∝ −eiθ (k)|ϕC, ↑, k〉 + |ϕC, ↓, k〉, where
θ (k) = √

hC↑,C↓(k)/hC↑,C↓(k)∗ with hC↑,C↓ the off-diagonal matrix
element of the 2 × 2 tight-binding Hamiltonian. We readily find that
the phase θ (k) imposes a nontrivial Berry phase over any loop that
encircles the simple point nodes at the TRIMPs.

At this point, it is reasonable to postulate the existence of
a smooth, periodic, and rotation-symmetric frame for every
two-band occupied subspace of the symmetry class AII + L77
and over base loops of the BZ, thus leading to the same
and unique classification independently of the number of
unoccupied bands. The only difference in the most general
case is that spin-flip terms can also be nonzero at � (i.e., if
each lattice site is the host of multiple electronic orbitals with
opposite parities), thus leading to a pseudospin structure of
the Bloch eigenstates at � as well. This, however, does not
change the dichotomy between the phases with a pseudospin
aligned between � and K and the phases where the pseudospin
is flipped between � and K . The same result applies for any
two-band subspace that originates from a split EBR as long
as it remains separated from the other bands by an energy gap
above and below. We leave the formal proof of the existence
of a smooth, periodic, and rotation-symmetric frame of any
two-band subspace over a base loop for the future.

We conclude that the obstructed Z-type topological classi-
fication, i.e., WII ∈ {±1 + 3Z, 0}, of any two-band subspace
of the symmetry class AII + L77 is stable under the addition
of arbitrary many bands in the complement band subspace
and as long as a band gap around the two-band subspace is
preserved. This is schematically represented in Fig. 10 show-
ing that two-band occupied subspaces, with zero Wilson loop
winding marked in white and nonzero Wilson loop windings
marked in green, have their topology unchanged after the
coupling with extra bands separated by a band gap. This is
true for all six-band models computed in this work and shown
in Figs. 8 and 9 in Sec. VII A and Fig. 12 in Appendix D.

C. Four-band subspace

We now turn to the topology of the four-band subspaces in
the six-band case. Starting from a split EBR of the honeycomb
lattice B1 + B2 with a known topology, we couple it with
the trivial EBR of a triangular lattice B′

1 and characterize
the topology of the four-band unoccupied subspace B2/1 + B′

1
where we either choose B1 or B2 as the occupied subspace.
Depending on the way the EBR of the honeycomb lattice
splits, the four-band unoccupied subspace has a set of IRREPs
that either are compatible with an BR (i.e., an EBR or a sum
of EBRs) of AII + L77, or it is not. The combinatorial possi-
bilities for the four-band subspaces of the six-band case are

Ba
2(2b) + Ba

1(1a) = (�9 + �8, K4 + K5 + K6, 2M5)

∼ EBR = Ba(b)
1 (2b) + Ba(b)

2 (2b),

Bb
2(2b) + Ba

1(1a) = (2�9, K4 + K5 + K6, 2M5)

�∼ BR,

Ba
1(2b) + Ba

1(1a) = (2�9, 2K6, 2M5)

∼ BR = Ba
1(1a) + Ba

1(1a),

Bb
1(2b) + Ba

1(1a) = (�9 + �8, 2K6, 2M5)

∼ BR = Ba
1(1a) + Bb

1(1a).

(19)

The conclusions of this section are the same if we choose
the extra bands B′

1 as Bb
1(1a) = (�8, K6, M5) instead of

Ba
1(1a) = (�9, K6, M5).
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FIG. 10. Fragile topology of the split EBR of the honeycomb
lattice B1 + B2, with B1 = Ba/b

1 (2b) and B2 = Ba/b
2 (2b), under the

coupling with the trivial EBR of the triangular lattice B′
1 = Ba/b

1 (1a).
Two-band (four-band) subspaces with nonzero Wilson loop winding
are colored in green (yellow), otherwise in white. In (a) and (b) we
choose either B1 or B2 as the two-band occupied subspace of the
six-band insulating phases, in (c) it can only be B1. The band gaps
are drawn in brown. The blue ∼ marks that the coupling is adiabatic,
i.e., without closing the band gap, while the barred gray marks
a nonadiabatic coupling (i.e., closing the band gap). (a) Reveals
a stable topology of the split EBR (i.e., here for a nonzero Fu-
Kane-Mele invariant). (b), (c) Reveal a fragile topology of the split
EBR (i.e., nonzero two-band Wilson loop winding but with a zero
Fu-Kane-Mele invariant). (c) Corresponds to the example given in
Ref. [51], and here in Fig. 9.

We then ask how the topology of the four-band subspace,
given in terms of the winding of the four-band Wilson loop
over the BZ, is related to the known topology of split EBRs
(Sec. VI). From the numerical results of Sec. VII A in Figs. 8
and 9, and in Fig. 12 of Appendix D) we conclude that the
two-band topology is in general fragile when imbedded into a
four-band subspace irrespectively of whether or not the set of
IRREPs (of the four-band subspace) is compatible with a BR.

For clarity, let us summarize our findings in Fig. 10, where
nontrivial two-band (four-band) Wilson loop windings are
colored in green (yellow). In the left column, we show the
schematic EBRs and their topologies before the coupling. In
the middle column, we show the topology of the coupled
EBRs, after that the EBR B′

1 has crossed from above and
nonadiabatically13 the upper half of the split EBR B1 + B2.
In the right column we show the topology when there is no

13Any inversion in energy of two qBRs with distinct IRREPs must
close the energy gap between them.

gap between B′
1 and the upper half of B1 + B2, hence char-

acterizing the intrinsic four-band topology of the unoccupied
subspace.

Two possibilities are encountered after coupling a split
EBR with an extra EBR, as shown in Fig. 10: (a) both
occupied and unoccupied subspaces have stable topology, (b)
and (c) both occupied and unoccupied subspaces have fragile
topology [where (c) corresponds to the special case found by
Ref. [51]]. Only for special values of the two-band Wilson
loop winding before the coupling do we find a topological
four-band unoccupied subspace, e.g., Figs. 8(a), 8(b), and 8(d)
and Figs. 12(a), 12(b), and 12(d). Therefore, the obstructed
Z-type classification of two-band Wilson loop winding is lost
in general in four-band Wilson loops. We hence conclude
that the topology of split EBRs is generically fragile when
imbedded in many-band structures.

We further show that even when the unoccupied subspace
has a set of IRREPs incompatible with EBRs its topology can
be fragile with a vanishing four-band Wilson loop winding.
Let us first consider for instance the four-band unoccupied
subspace of Fig. 8(c) that has a zero Wilson loop winding.
Indeed, the crossings at 0 have been lifted and the crossings
at ±π can be removed two by two through an adiabatic de-
formation of the Wilson loop branches. This case corresponds
to Fig. 10(b) for the initial split EBR Bb

1 + Bb
2. Similarly, the

four-band unoccupied subspace of Fig. 9(b) has a zero Wilson
loop winding (here the crossings at 0 and at ±π can both be
removed two by two through an adiabatic deformation of the
Wilson loop branches). This case corresponds to Fig. 10(c)
for the same initial split EBR. Reversely, we also show that
when the unoccupied subspace has a set of IRREPs that is
compatible with EBRs its topology can be nontrivial, e.g.,
Figs. 12(a), 12(d), and 12(b) which have a nonzero Wilson
loop winding. These cases correspond to Fig. 10(a) for the
initial split EBR Ba

1 + Ba
2. These results greatly generalize the

recent observation of a “fragile topology” in Ref. [51].
We have checked numerically that the four-band Wilson

loop spectra in the six-band case are not quantized over l�K

contrary to the two-band Wilson loop spectra. Furthermore,
we have also checked numerically using the Soluyanov-
Vanderbilt’s smooth gauge construction [76] that the four-
band subspaces do not support a smooth and periodic frame
that, at the same time, also satisfies the rotation-symmetric
gauge (making rotation matrix representations diagonal).
Therefore, the Wilson loop spectrum of four-band subspaces
is generically not quantized by symmetry and we do not
expect the Z-type Wilson loop winding of the two-band sub-
spaces to be stable. This confirms the homotopy classification
of Wilson loop flows of Sec. IV. We give a more detailed
discussion in Appendix E.

We conclude with the characterization of the preserved
four-band topologies. We observed in Sec. VII A that the
crossings of Wilsonian branches that remain are those at 0 and
±π , as they are protected by C2zT symmetry, and the Kramers
degeneracies over l�M (g2 = 0, 1) and lMM (g2 = 0.5), as
they are protected by TRS. This readily leads to a ν21′ ∈
{0, 1, 2} ∼= Z3 classification of the four-band subspaces with
the index ν21′ being protected by the magnetic point group
21′ = C2 × {E , T } that contains TRS and C2zT symmetry. In
particular, we find that the two-band Wilson loop winding
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before the coupling directly determines the four-band index
ν21′ according to

W
B2/1

II mod 2 = 1 ⇒ ν21′ = 1,

W
B2/1

II mod 2 = 0 andW
B2/1

II mod 4 = 0 ⇒ ν21′ = 0,

W
B2/1

II mod 2 = 0 andW
B2/1

II mod 4 = 2 ⇒ ν21′ = 2.

(20)

The Fu-Kane-Mele Z2 invariant is then readily given through
νFKM = ν21′ mod 2.

D. Toward the many-band limit

If an extra trivial two-band subspace Ba/b
1 is added to the

occupied subspace, the topological features of the four-band
occupied subspace are similar to the four-band unoccupied
subspace described above. If instead the extra trivial two-band
subspace is added to the four-band unoccupied subspace, only
two types of Wilson loop flow are allowed for the six-band
subspace, namely, either a Wilson loop flow with zero winding
(gapped Wilson bands) or with a complete winding (no gap
in the Wilson bands). Hence, ν21′ ∈ Z3 should be understood
again as a fragile topology. We also conclude that only a
nontrivial Fu-Kane-Mele Z2 invariant guarantees a complete
winding of the Wilson loop in the many-band limit. As a
consequence, the further stable topological phases that have
been predicted heuristically in Ref. [43] must be characterized
by topological invariants that are not directly related to the
Wilson loop winding and fall in the class of the higher-order
topological insulators [52,53]. This falls beyond the scope of
this work and it will be explored in detail elsewhere.

E. Breaking C2zT symmetry, and TRS

It is now straightforward to address the breaking of the an-
tiunitary symmetries. When C2zT symmetry is broken while
conserving TRS the degeneracies of the Wilson loop at 0 and
±π are lifted and only two types of Wilson loop patterns sur-
vive which correspond to the two values of the Fu-Kane-Mele
Z2 invariant. When TRS is broken adiabatically, the Kramers
degeneracies of the Wilson loop over l�M and lMM are also
lifted and there is no winding of the Wilson loop left. This can
be easily understood from the fact that any two- or four-band
subspaces can be decomposed into pair(s) of Chern bands with
opposite Chern numbers [7], which cancel each other if the
number of occupied bands is unchanged when breaking TRS.
If TRS symmetry is broken nonadiabatically, nonzero Chern
numbers can be generated. In particular, let us start with a two-
band occupied subspace with a high winding of its Wilson
loop. Then, by breaking TRS and keeping a single occupied
band, we are guaranteed to generate a Chern insulator with a
correspondingly high Chern number. Therefore, the two-band
Wilson loop winding directly determines the one-band Chern
number under the breaking of TRS.

IX. CONCLUDING REMARKS

In this work we have studied the relation between Wil-
son loop flows and symmetry-protected topology of band
structures. Apart from elucidating nodal points by gener-
alizing Berry curvature arguments to include space-group

symmetries, thereby outlining a unifying and comprehensive
approach, we in particular utilize this procedure to character-
ize time-reversal-symmetric crystalline topological insulating
phases. Namely, the presented framework can be employed
to quantify and elucidate topological invariants that are stable
with regard to the addition of extra bands, usually described
in terms of K theories, as well as finer characterizations of
band topology coined fragile topology. Our setup allows us
to naturally lift spinless notions to spinful ones, extending
both homotopy and K theory. Amongst other things, we find
that there exists an obstructed Z-type classification protected
by crystalline symmetries and TRS beyond the standard
Fu-Kane-Mele Z2 classification. We have shown that this
accounts for all nontrivial Wilson loop windings of a split
elementary band representation (EBR). More importantly,
this viewpoint can then be adopted to evaluate the proposed
scheme of topological quantum chemistry [36,42,50] (TQC)
by examining the EBR content. In particular, we have shown
that while Wilson loop winding of split EBRs can unwind
when embedded in higher-dimensional band spaces, two-band
subspaces that remain separated by a band gap from the other
bands conserve their Wilson loop winding, thus pointing to
the fragile topology of split EBRs. This unifying perspective
finds natural use in analyzing the origin of the fragile topology
found in Ref. [51]. We then conclude with the observation
that the stable Wilson loop winding, i.e., in the many-band
limit, is only determined by the Fu-Kane-Mele Z2 invariant
implying that further topological phases predicted in Ref. [43]
must belong to the class of higher-order topological insulators
(i.e., characterized through the nested Wilson loop) [52,53].

On the most general level, our work thus sets the basis of
a systematic classification of topological crystalline phases
with TRS by rigorously positioning three main classes: (1)
unstable topologies that are only defined in few-band models
and are rooted in homotopy classes of finite-dimensional
Grassmannians, (2) stable topologies that persist upon the
addition of an arbitrary amount of trivial bands and are de-
scribed by K theories, (3) fragile topological phases bridging
the two former classes and described within the formalism of
vector bundle theory. It is expected that fragile topology leads
to phase-sensitive observables [41,42,84] (e.g., Berry phase
measurements) as opposed to the thermodynamical mani-
festations of stable topology (e.g., robust edge and surface
states). Furthermore, our work has important implications for
the characterization of obstructed atomic limits [50] which
will be discussed elsewhere. The general applicability and
effectiveness of our work is further underlined by potential
impact on yet other recently discovered phases. Indeed, due
to the similarity of codimension 1 and 2 defects [85–87], we
anticipate that this approach can shed new light on the recently
proposed higher-order topological insulators [52,53]. In fact,
we already possess some insights on this subject, which we
will report elsewhere. The above results should therefore be
considered in the general context as an effective illustration of
the versatility of the proposed framework.

Note added. Recently, we became aware of Ref. [88] that
rigorously proves that for any one-band ground state with
symmorphic magnetic space group G the vanishing of the
first Chern class is equivalent to being a band representation.
This is done through the analytical construction of a smooth,
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periodic, and symmetric one-band section of the Bloch bun-
dle. In our work we combine homotopy arguments and the
numerical construction of multiband smooth, periodic, and
rotation-symmetric Bloch frames (sections) with TRS in order
to characterize the topology of a split EBR in class AII,
leading to the complete classification of two-band subspaces
in the layer groups L80 and L77. We furthermore discuss
the effect of adding EBRs, thus revealing the fragile stability
of the topology of split EBRs. We also became aware of
Ref. [84] that appeared three months after our work and has
some overlap with our work.
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APPENDIX A: TWO-BAND SPINLESS TOPOLOGY

1. Tight-binding Hamiltonian and symmetries

We give here the generic structure of the spinless tight-
binding Hamiltonian based on the layer group L77 with the
point group C6v . The Bloch basis is built from a complete set
of localized Wannier functions through

|ϕA, k〉 = 1√
N

∑
Rν

eik·(Rν+rA )|wA, Rν〉,

|ϕB, k〉 = 1√
N

∑
Rν

eik·(Rν+rB )|wB, Rν〉, (A1)

from which we obtain the tight-binding Hamiltonian in the
sublattice site basis:

H =
∑

k

(
|ϕA, k〉
|ϕB, k〉

)T (
hAA(k) hAB(k)

hBA(k) hBB(k)

)(
〈ϕA, k|
〈ϕB, k|

)
. (A2)

We define the symmetry-Bloch basis [34,40] through(∣∣φ�1 , k
〉 ∣∣φ�4 , k

〉) = (|ϕA, k〉 |ϕB, k〉)ÛS, (A3)

with ÛS = 1√
2
(1 1
1 −1). We then have for the Hamiltonian

written in the Bloch-symmetry basis

H =
∑

k

|φ, k〉HS (k)〈φ, k|,

HS (k) =
(

h(�1 )
11 (k) h(�4 )

14 (k)

h(�4 )
41 (k) h(�1 )

44 (k)

)
, (A4)

|φ, k〉 = (∣∣φ�1 , k
〉 ∣∣φ�4 , k

〉)
,

where the superscript of matrix element h
(� j )
μν (k) marks that it

behaves as a basis function of the IRREP � j of C6v .

Real-space crystal symmetries act on the symmetry-Bloch
basis as

{g|0}∣∣φ� j , k
〉 = ∣∣φ� j , gk

〉
χ (� j )(g), (A5)

which leads to the following symmetry constraint of the
Hamiltonian:

Ûg · HS (k) · Û †
g = HS (gk), (A6)

where

Ûg =
⊕

j

χ (� j )(g). (A7)

Under a translation by a reciprocal lattice vector, the Bloch
functions satisfy∣∣φ� j , k + K

〉 = ∣∣φ� j , k
〉 · T̂ (K ),

T̂ (K ) = Û †
S ·

(
eiK·rA 0

0 eiK·rB

)
· ÛS,

HS (k) = T̂ (K ) · HS (k + K ) · T̂ †(K ). (A8)

Spinless TRS takes a particularly simple form

H∗
S (k) = HS (−k). (A9)

We define the Bloch eigenstates through

|ψ, k〉 = |φ, k〉 · Ŭ (k),

|ψn, k〉 = |φ, k〉 · Ŭn(k), (A10)

where Ŭ (k) = (Ŭ1(k) Ŭ2(k)) is the matrix formed by the
eigenvectors Ŭn(k) of HS (k). In the following, we write them
as [Ŭn(k)] ≡ |un, k〉.

General symmetry properties of the Bloch eigenstates

The symmetry properties of the Bloch eigenstates can
readily be derived from those of the symmetry-Bloch basis
introduced above, i.e.,

{g|0}|ψn, k〉 = |ψm, gk〉〈um, gk|Ûg|un, k〉. (A11)

We define the periodic gauge for the eigenstates by the
constraint ∣∣up

n, k + K
〉 = T̂ †(K )

∣∣up
n, k

〉
. (A12)

It readily follows for a high-symmetry momentum point that
contains g in its little cogroup [56], i.e., gk̄ = k̄ + Kg,

{g|0}∣∣ψ p
n , k̄

〉 = ∣∣ψ p
m, k̄

〉〈
up

m, k
∣∣T̂ (Kg)Ûg

∣∣up
n, k̄

〉
, (A13)

and the elements of a matrix representation of g with the
IRREP � j of the space group is then given by

Rk̄
� j ,mn = 〈

ψ p
m(� j ), gk̄

∣∣{g|0}∣∣ψ p
n (� j ), k̄〉

= 〈
up

m(� j ), k̄
∣∣T̂ (Kg)Ûg

∣∣up
n (� j ), k̄

〉
, (A14)

where |ψ p
n (� j ), k̄〉 is a basis function of the IRREP � j of

the little group at k̄. Also, the cell-periodic Bloch function
transforms as∣∣up

n (� j ), gk̄
〉 = Ûg

∣∣up
m(� j ), k̄

〉
Rk̄†

� j ,mn. (A15)
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2. Analytical ansatz of the occupied eigenstate

The tight-binding Hamiltonian written in the symmetry-
Bloch basis can be expanded with Pauli matrices as

HS (k) = h(�1 )
0 (k)1̂ + h(�1 )

z (k)σ̂z + h(�4 )
y (k)σ̂y, (A16)

with the component

h(�1 )
0 (k) = hAA(k) = hBB(k),

h(�1 )
z (k) = Re[hAB(k)],

h(�4 )
y (k) = −Im[hAB(k)]. (A17)

Crystalline symmetries impose h(�1 )
0 (k) and h(�1 )

z (k) to be real
and even under inversion, while h(�4 )

y (k) must be real and odd
under inversion. It is a special feature of the two-band model,
symmetric under the point group C6v , that inversion symmetry
(I) and spinless TRS (T = K, T 2 = +1) are also effectively
satisfied, leading to the effective point group D6h as the sym-
metry of the system (i.e., L80) and with the effective AZ class
AI. In other words, whenever C6v is assumed, the two-band
model is too restrictive to allow inversion symmetry and TRS
breaking terms. In the following, we drop the superscripts and
write h0, hz, and hy.

Thanks to the simplicity of the Hamiltonian, the eigenval-
ues and eigenvectors take a simple form

E1(k) = h0(k) − ε0(k),

E2(k) = h0(k) + ε0(k) (A18)

with ε0(k) = √
hz(k)2 + hy(k)2, and

|u1, k〉 = 1

2

⎛⎝ 1 − ε0(k)
hz (k)−ihy (k)

−1 − ε0(k)
hz (k)−ihy (k)

⎞⎠, (A19)

|u2, k〉 = 1

2

⎛⎝ 1 + ε0(k)
hz (k)−ihy (k)

−1 + ε0(k)
hz (k)−ihy (k)

⎞⎠. (A20)

It is important to note that in this form the wave function is
single valued and smooth over almost all of the Brillouin zone.
These properties are necessary conditions for the noncyclic
Berry phase to be meaningful (see below in Appendix A 4).
Hence, the above ansatz implicitly defines a smooth reference
gauge. We discuss in Appendix A 5 the effect of small and
large gauge transformations.

In the following, we distinguish between the occupied
eigenstate with energy E1(k) and the unoccupied eigenstate
with energy E2(k), and E1(k) < E2(k).

Since by symmetry hy(�) = 0, the occupied eigenstate at
� is

|u1, �〉 = 1

2

(
1 + s�

−1 + s�

)
, (A21)

with s� = −sign{hz(�)}. At M1 (see Fig. 1), it is

|u1, M1〉 = 1

2

(
1 − ε0(M1 )

hz (M1 )−ihy (M1 )

−1 − ε0(M1 )
hz (M1 )−ihy (M1 )

)
. (A22)

By symmetry h(�4 )
y (gk) = −h(�4 )

y (k), therefore, the eigenvec-
tor at M2 is

|u1, M2〉 = |u1, M1〉∗ = 1

2

(
1 − ε0(M1 )

hz (M1 )+ihy (M1 )

−1 − ε0(M1 )
hz (M1 )+ihy (M1 )

)
. (A23)

The energy eigenstate must also be an eigenstate of the
symmetries of the system, therefore,
{C2z|0}|ψ1, M1〉 = |ψ1, M1〉〈u1, M1|T̂ (−b1 − b2)ÛC2z |u1, M1〉

= |ψ1, M1〉 hz(M1) − √
3hy(M1)

2
√

hz(M1)2 + hy(M1)2

!= |ψ1, M1〉sM, (A24)

where sM = ±1 determines the IRREP at M. This leads to the
equation

1 − √
3t

2
√

1 + t2
= sM

√
hz(M1)2

hz(M1)
(A25)

with t = hy(M1)/hz(M1). Since the left-hand side cannot be
−1, we set sM = sign{hz(M1)}, and we are left with the
equation

1 − √
3t

2
√

1 + t2
= 1, (A26)

from which we find t = hy(M1)/hz(M1) = −√
3. Hence, we

can rewrite the occupied eigenvector at M1 as

|u1, M1〉 = 1

2

(
1 − 2sM

1+i
√

3

−1 − 2sM

1+i
√

3

)
. (A27)

We readily have the C2z-symmetry eigenvalues at � and M1 of
the occupied eigenstate are given by

ξ�
2 = s� = −sign{hz(�)},

ξM
2 = sM = sign{hz(M1)}. (A28)

3. Real homotopy and topological invariant

Performing the change of basis corresponding to
(σy, σz ) → (σz, σx ), the Hamiltonian becomes real. Terms
with the third Pauli matrix must vanish as a consequence
of the C2T symmetry [indeed C2T with (C2T )2 = +1 can
be represented as the complex conjugation]. The classifying
space of the two-band Hamiltonian is then Gr1(R2) ∼=
RP 1 ∼= S1 [63]. Therefore, π1(Gr1(R2)) = π1(S1) = Z, i.e.,
the topology over any arbitrary one-dimensional base loop is
captured by an integer topological invariant.

The topological invariant for π1(Gr1(R2)) = Z can be
computed as the winding number of the noncyclic Berry
phase over a closed loop when the eigenvectors are defined
in a gauge that is smooth almost everywhere and is periodic
over the Brillouin zone (see also Appendix A 5 on the gauge
invariance). Each nodal point of the band structure induces a
vortex structure in the eigenvectors so that the winding of the
noncyclic Berry phase captures the vorticity [63] of the nodal
point. The above Z classification over base loops indicates
that the vorticities of multiple nodal points are additive for the
base loop that encircles them all.
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While this local result is not affected by the presence of
additional crystalline symmetries, we derive below that the
hexagonal symmetries act as an obstruction on the winding
of the noncyclic Berry phase. We do this by choosing a
symmetric base loop that crosses high-symmetry points and
encircles on half of the Brillouin zone, hence revealing the
global topology of the crystalline spinless semimetal.

4. Symmetry-constrained noncyclic Berry phase

Below, we derive the consequences for the noncyclic Berry
phase over a symmetric base loop that crosses high-symmetry
points, hence revealing the global topology of the crystalline
spinless semimetal.

An oriented base loop in momentum space can be
parametrized as l (t ) : [0, 1] → S1, t �→ l (t ) (l ∼= S1). As-
suming that the occupied eigenstate |u1, k〉 is defined
smoothly all along an oriented loop l (t ), the noncyclic Berry
phase is defined as

γ [l (t )] = i
∫

l (t )
dk(t ) · A(k(t )), (A29)

with the U(1) Berry connection Aμ(k) = 〈u1, k|∂kμu1, k〉 with
μ = x, y.

The geometric phase factor of the occupied state over the
closed loop lβ encircling K1 (see Fig. 1) is then given by

eiγ [lβ ] = (
eiγ [l ′β ])3

, (A30)

where the loop segment l ′
β = lM1� ◦ l�M2 is one third of

the total loop, starting at M2, crossing �, and ending
at M1 (see Fig. 1). Using the Wilson loop formalism
[16,20,24,25,34,39,40], we write

eiγ [l ′β ] = 〈u1, M1|ŴM1M2 |u1, M2〉 (A31)

with the Wilson loop operator Ŵk2k1 = ∏k2←k1
k |u1(k)〉〈u1(k)|.

We now project the occupied eigenvector at every k on the
eigenvector at �, i.e.,

|ũ1, k〉 = |u1, k〉〈u1, k|u1, �〉 (A32)

(note that |〈u1, k|u1, �〉| = 1), and rewrite

eiγ [l ′β ] = 〈u1, �|u1, M2〉
〈u1, �|u1, M1〉 〈ũ1, M1|˜̂W M1M2 |ũ1, M2〉

= 〈u1, �|u1, M2〉
〈u1, �|u1, M1〉 exp

{
−

∫
l ′β

dk · Ã(k)

}
. (A33)

Now, since |ũ1, �〉 is real, after projecting the eigenvectors
on it, we get the simplification Ã(k) = 〈ũ1, k|∂kũ1, k〉 =
Im (〈ũ1, k|∂kũ1, k〉) = 0. Therefore,

eiγ [l ′β ] = 〈u1, �|u1, M2〉
〈u1, �|u1, M1〉 . (A34)

Substituting with the expressions of the eigenvectors derived
above, we eventually find

eiγ [l ′β ] = 2 − (1 + i
√

3)ξ�
2 ξM

2

2 − (1 − i
√

3)ξ�
2 ξM

2

. (A35)

5. Gauge dependence

Equation (4) of the main text is derived from Eq. (A35).
Equation (A35) has been derived from the analytical expres-
sion of the occupied eigenstate (A21) that fixes the gauge
[also Eq. (A21) is defined in terms of a set of Bloch basis
functions (A1) that trivialize the total Bloch bundle [59]].
It is then relevant to ask whether the result (4) is invariant
under a gauge transformation |u1(k)〉 → |u1(k)〉eiθ (k), k ∈ lβ ,
that leads to the change of the Berry phase γ (0)[l] → γ (θ )[l].
Such a gauge transformation can originate for instance from
a different choice of trivialization of the total Bloch bundle,
e.g., for distinct choices of gauge of the set of Bloch (Fourier)
basis functions (A1) [59], or by using a different ansatz of the
eigenstate (A21).

Keeping track of the gauge phase as we travel along the
base loop lβ , which we parametrize as t ∈ [0, 1] �→ l (t ) with
l (0) = l (1), the single valuedness of the wave function re-
quires θ (k(t ))|t=1 = θ (k(t ))|t=0 + n2π . Let us decompose the
gauge phase into the part that winds, θn, and the part that goes
back to its original value after we run one time through the
loop, i.e., θ (t ) = θ0(t ) + θn(t ) with θ0(t = 1) = θ0(t = 0),
θn(t = 0) = 0, and θn(t = 1) = 2nπ . Then, the nonwinding
part of the gauge θ0(t ) can be smoothly mapped to zero
without changing the Berry phase, i.e., γ (θ0 )[l] = γ (0)[l]. On
the contrary, the winding part of the gauge θn defines a
large gauge transformation that shifts the Berry phase as
γ (θn )[l] = γ (0)[l] + n2π . While large gauge transformations
are allowed within equivalence classes defined up to bundle
isomorphisms, they lead to distinct homotopy equivalence
classes [58]. Therefore, Eq. (4) [obtained from Eq. (A35)]
makes only sense under the assumption that large gauge trans-
formations are excluded which is practically always possible
by (i) always using the same reference trivialization of the
total Bloch bundle [Eq. (A1)] [59], and (ii) using the same
smooth reference gauge of the eigenstate [Eq. (A21)].

APPENDIX B: FOUR-BAND SPINFUL CASE WITH
INVERSION SYMMETRY

Let us now consider the extension of tight-binding model
(A2) when the spin degrees of the freedom are taken
into account. The basis functions can then be taken as
(|φ�1 , σ, k〉, |φ�4 , σ, k〉) with σ = ↑,↓. Assuming TRS and
inversion symmetry (I), there is no spin-flip (Rashba) SOC
and we can split the four-band spinful Hamiltonian into spin-
up and -down sectors as

Hσ = (∣∣φ�1,σ , k
〉 ∣∣φ�4,σ , k

〉)
HS,σ (k)

(〈
φ�1,σ , k

∣∣〈
φ�4,σ , k

∣∣
)

, (B1)

where

Hσ (k) = h(�1 )
0 (k)1̂ + h(�1 )

z (k)σ̂z + h(�4 )
y (k)σ̂y

+ sσ h(�3 )
x (k)σ̂x (B2)

with σ = ↑,↓ and s↑ = +1, s↓ = −1. The term h(�3 )
x (k)

contains all the (non-Rashba) SOC terms. Comparing with
the Hamiltonian written in the sublattice site basis, we have
h(�3 )

x (k) = [hAA,↑(k) − hBB,↑(k)]/2.
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Each spin sector of the Hamiltonian Hσ (k) closely re-
sembles the two-band spinless Hamiltonian (A16). However,
now the term h(�3 )

x effectively breaks spinless vertical mirror
symmetries (the character for �3 of vertical mirror symmetries
are χ�3

mx,y
= −χ�4

mx,y
) and spinless TRS (T = K). Therefore,

each spin block only effectively conserves the symmetries of
the point group C6h ⊂ D6h, i.e., L80 (SG191)→ L75 (SG175),
and belongs to the AZ class A (instead of AI). The classifying
space of the four-band spinful inversion-symmetric model is
then composed as

H2+2
AII+L80 = H1+1

A+L75 ⊕ H1+1
A+L75. (B3)

Contrary to L77 (C6v) and L80 (D6h), L75 (C6h) has no essen-
tial degeneracy at K and the spectrum of each spin-polarized
subspace H1+1

A+L75 can be gapped. Furthermore, since there
is only a single orbital per site, the eigenstates of both spin
sectors are either all even or all odd under mirror symmetry
with respect to the basal plane σh. As a consequence, the
spectrum of each spin subspace must be gapped since no
symmetry-protected band crossing can be formed over the BZ.
It is important to notice that for this reason, HS,σ as obtained
above is not the most general Hamiltonian of the spinless two-
band symmetry class A + L75. See the schematic example
of a band structure in Fig. 2(b) where each band is labeled
according to their IRREPs at every HSP and away for the
HSPs (in this case, they are all odd under σh since we have
assumed the orbital pz at every site).

1. Analytical ansatz for the spin-polarized eigenstates

The eigenvalues and eigenstates of one spin-sector (B1)
take again a simple form (we have dropped the superscripts
for the components of the Hamiltonian)

E1,σ (k) = h0(k) − ε0(k),

E2,σ (k) = h0(k) + ε0(k), (B4)

where ε0(k) = √
hx(k)2 + hy(k)2 + hz(k)2, and

|u1, σ, k〉 = 1√
2N1

⎛⎝ 1 + sσ hx−ε0(k)
hz (k)−ihy (k)

−1 + sσ hx−ε0(k)
hz (k)−ihy (k)

⎞⎠, (B5)

|u2, σ, k〉 = 1√
2N2

⎛⎝ 1 + sσ hx+ε0(k)
hz (k)−ihy (k)

−1 + sσ hx+ε0(k)
hz (k)−ihy (k)

⎞⎠, (B6)

with the normalization factors Ni defined through the condi-
tions 〈ui, σ, k|ui, σ, k〉 = 1, i = 1, 2.

The above analytical ansatz of the occupied eigenstate,
|u1, σ, k〉, can be used to derive the spin-polarized Chern
number in a direct way. This is rather tedious though and we
instead use an alternative algebraic approach below. We have
checked numerically though that the direct computation of the
Chern number with the above ansatz gives the same results as
the algebraic results.

2. Derivation of Eq. (6)

We have argued in Sec. III that the Chern number is
obtained from the flow of Berry phase as we sweep a base
loop over the BZ. By symmetry it is enough to compute
the contribution to the Chern number from the patch Sρ

that covers one sixth of the BZ (Fig. 1). This is given by
eiγρ (γρ ≡ γ [lρ]). We here use the Wilson loop techniques
[16,20,24,25,34,39–41] in order to derive the spin-polarized
Berry phase (Chern number) algebraically.

We choose the occupied eigenstate as |u1, k〉 = |u1,↑, k〉
(see above). In the following derivation, we actually do not
need the explicit expression of the eigenstate. We only need
the eigenvalues of occupied eigenstate under the rotation C2z

at � and M1, and under C3z at � and K1. In the following, we
neglect the phase factor coming from the rotation of the spin
and we use the character table of the single-valued IRREPs.
We have argued that each spin-polarized sector can be seen
as belonging to the symmetry class A + L75 with point group
C6h. The eigenvalues under C2z and C3z of the relevant IRREPs
are then obtained from the compatibility relations from the
IRREPs of D6h to the IRREPs of C6h; these are given in
Table I.

Let us split the oriented boundary of Sρ , lρ (see
Fig. 1) into the successive segments that connect the HSPs
{�, M1, �

′, K1} (�′ = � + b1 + b2), i.e., lρ = ld ◦ lc ◦ lb ◦ la,
with ld = l�←K1 , lc = lK1←�′ , lb = l�′←M1 , and la = lM1←� .
We further choose lρ such that lb = C2z(l−1

a − b1 − b2) ∼
C2zl−1

a and lc = C3z(l−1
d − b2) ∼ C3zl

−1
d , where ∼ means

equal up to a translation by a reciprocal lattice vector. We
then write the contribution to the Berry phase factor from the
segment la as eiθa = 〈u1, M1|Ŵa|u1, �〉 where Ŵa is the Wilson
loop operator along the path la, i.e., Ŵa = ∏la

k |u1, k〉〈u1, k|,
and similarly for the other segments lb, lc, ld .

The Berry phase factor over the whole loop lρ is then given
by

eiγρ = eiθd 〈u1, K1|Ŵc|u1, �
′〉〈u1, �

′|Ŵb|u1, M1〉eiθa

= eiθd 〈u1,C3z(K1 − b2)|Ŵc|u1,C3z(� − b2)〉〈u1,C2z(� − b1 − b2)|Ŵb|u1,C2z(M1 − b1 − b2)〉eiθa

= eiθd RK
3 〈u1, K1|T̂ (−b2)Ĉ†

3zŴcĈ3zT̂
†(−b2)|u1, �〉(R�

3

)†
R�

2 〈u1, �|T̂ (−b1 − b2)Ĉ†
32zŴbĈ2zT̂

†(−b1 − b2)|u1, M1〉
(
RM

2

)†
eiθa

= eiθd RK
3 〈u1, K1|Ŵ −1

d |u1, �〉(R�
3

)†
R�

2 〈u1, �|Ŵ −1
a |u1, M1〉

(
RM

2

)†
eiθa

= eiθd
[
ξK

3 e−iθd
(
ξ�

3

)−1] [
ξ�

2 e−iθa
(
ξM

2

)−1]
eiθa

= ξK
3 ξ�

2

(
ξ�

3 ξM
2

)−1
, (B7)
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(a) W [Sρ] = +7π/3 (b) WII = +7

FIG. 11. Example of a split EBR with a Wilson loop winging
of WII = +7. (a) Flow of the Wilsonian phases over the patch Sρ .
(b) Flow of the Wilsonian phases over the BZ.

where we have used Eq. (A15) with the eigenvalues of the ro-
tation symmetries (one-dimensional representations) at HSP
k̄ written as ξ k̄

2 for C2z and ξ k̄
3 for C3z, and where we have

assumed the periodic gauge (A12). Now, taking into account
all combinatorial ways of ordering the IRREPs of the effective
spin-polarized EBR at the HSPs, one example is shown in
Fig. 2(b), we eventually arrive at Eq. (6) in the main text.

3. Split EBR with Wilson loop winding of WII = +7

We show in Fig. 11 a supplementary example of a four-
band spinful topological phase with a Wilson loop winding
of WII = +7 in each two-band subspace. This phase was
obtained for tight-binding parameters up to the 10th layer of
neighbors. This indicates that arbitrary higher Wilson loop
windings can be generated by increasing the range of the
tight-binding parameters in analogy to topological insulators
with high Chern numbers [89].

APPENDIX C: BLOCH EIGENSTATES OF
THE SIX-BAND CASE AT � and K

After coupling the honeycomb lattice (with the split EBR
Ba

1 + Ba
2) to the triangular lattice (with the EBR Ba

1
′), the

doublets for the IRREPs �9 of the six-band model at � have
the form∣∣ψB1

�9
, �

〉 =
[

cos ϑ |φ�1 ,↑, �〉 + sin ϑ |ϕC,↑, �〉
cos ϑ |φ�1 ,↓, �〉 + sin ϑ |ϕC,↓, �〉

]T

,

∣∣ψB′
1

�9
, �

〉 =
[

cos ϑ |ϕC,↑, �〉 − sin ϑ |φ�1 ,↑, �〉
cos ϑ |ϕC,↓, �〉 − sin ϑ |φ�1 ,↓, �〉

]T

, (C1)

and the doublets for the IRREPs K6 at K have now the form

∣∣ψB1

K6
, K1

〉 =
[

cos ϑ̄ |ϕA,↑, K1〉 + ω sin ϑ̄ |ϕC,↓, K1〉
cos ϑ̄ |ϕB,↓, K1〉 + ω∗ sin ϑ̄ |ϕC,↑, K1〉

]T

,

∣∣ψB′
1

K6
, K1

〉 =
[

cos ϑ̄ |ϕC,↓, K1〉 − ω∗ sin ϑ̄ |ϕA,↑, K1〉
cos ϑ̄ |ϕC,↑, K1〉 − ω sin ϑ̄ |ϕB,↓, K1〉

]T

,

(C2)

with ω = ei2π/3 and ϑ ∈ [0, π/2]. These forms are readily
obtained by inspection of the six-band Hamiltonian at � and K
(we work with the most general tight-binding model allowed
by symmetry including up to the 10th layer of neighbors). We
have ordered the doublets such that the matrix representations
of C+

3z are diagonal with the order [e−iπ/3, eiπ/3] for �9 with

the spin components ordered as (↑,↓), and with [eiπ/3, e−iπ/3]
for K6 with the pseudospin components ordered as (↑̃, ↓̃)
for B1 and as (↓̃, ↑̃) for B′

1. The doublets at the inverted
momentum −K are then chosen such they are the conjugate
partners under TRS, according to Eq. (10), with the doublets
at K , i.e.,

∣∣ψB1

K6
,−K1

〉 =
[

cos ϑ̄ |ϕB,↑,−K1〉−ω sin ϑ̄ |ϕC,↓,−K1〉
cos ϑ̄ |ϕA,↓,−K1〉−ω∗ sin ϑ̄ |ϕC,↑,−K1〉

]T

,

∣∣ψB′
1

K6
,−K1

〉 =
[

cos ϑ̄ |ϕC,↓,−K1〉+ω∗ sin ϑ̄ |ϕB,↑,−K1〉
cos ϑ̄ |ϕC,↑,−K1〉+ω sin ϑ̄ |ϕA,↓,−K1〉

]T

.

(C3)

A transformation of the Hamiltonian is here captured
through the change of the only remaining free parameter ϑ .
It is then straightforward to keep track of the effect at K of
the coupling between the four bands B1 + B2 (from Wyckoff’s
position 2b) with the extra B′

1 (from Wyckoff’s position 1a).
Starting with ϑ = 0, the triangular lattice (C) is completely
decoupled from the honeycomb lattice (A, B) and the K6

doublets both have a pure spin composition with the order
(↑,↓) in the basis that makes the matrix representation of C+

3z
diagonal (see Sec. VI). Switching on the coupling between the
two lattices, the doublets acquire the mixed spin structure of
Eq. (C1). Then eventually at ϑ = π/2, the two lattices are
again completely decoupled and the doublets recover their
pure spin composition but now in the reversed order (↓,↑)
while the ordering of the C+

3z-symmetry eigenvalues is kept
unchanged.

APPENDIX D: COMPLEMENTARY NUMERICAL
SIX-BAND RESULTS

We show in Fig. 12 the six-band results analog to Fig. 8 in
the main text but here generated from the other possible way
of splitting the EBR of the honeycomb lattice, i.e., Ba

1(2b) +
Ba

2(2b).
In Fig. 13(a) we show the flow of Wilsonian phases over the

BZ in the case where Ba
2 is chosen as the two-band occupied

subspace before the coupling with the extra bands Ba
1. This

configuration is analog to Figs. 8(c) and 12(c) with a trivial-
ized four-band unoccupied subspace [red line in Fig. 13(a)]
and a two-band occupied subspace that remains topological
with a Wilson loop winding of WII = ±4 [blue dashed line in
Fig. 13(a)].

In Fig. 13(b) we show the flow of Wilsonian phases over
the BZ in the case where the EBR of the triangular lattice
B′

1 = Ba
1(1a) has been chosen as the two-band occupied sub-

space before the coupling. In this case, the Wilson loops of
the occupied and the unoccupied subspaces have both zero
winding, indicating a fully trivial topology.

APPENDIX E: SMOOTH FRAME OF
FOUR-BAND SUBSPACES

We give here a more detailed discussion of the stability
of Wilson loop windings within a four-band subspace. Let us
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FIG. 12. Six-band topological phases obtained from the coupling of the split EBR Ba
1 + Ba

2 with B′
1 = Ba

1. The rest as for Fig. 8 of the main
text.

assume, as it is the case in all our six-band numerical examples
(given in Sec. VII and Appendix D), that after the coupling
between the split EBR of the honeycomb lattice (B1 + B2)
and the EBR of the triangular lattice (B′

1), a secondary band
gap remains within the unoccupied subspace between B2/1 and
B′

1. We can then follow the procedure of Sec. VI in order to
derive a smooth, periodic, and rotation-symmetric frame of
each two-band BR composing the four-band subspace, i.e.,
taken separately. We have argued in Secs. VI and VIII B that
such frame can always be found for a two-band subspace.
Therefore, the Wilson loop winding of each two-band BR
is quantized by symmetry and is classified by WII ∈ {±1 +
3Z, 0} (Sec. VI). According to Sec. VIII B, the two-band Wil-
son loop winding of each two-band BR is unaffected by the
coupling with other bands as long as the band gap separating
each two-band BR from the other bands is preserved, i.e., as
long as the coupling is adiabatic with respect to both the main
band gap (between occupied and unoccupied subspaces) and
the secondary band gap. Therefore, W

B′
1

II = 0 and W
B2/1

II keep
the value it had before the coupling. If the two-band topology
was stable, we would expect the Wilson loop winding of the
four-band subspace B′

1 + B2/1 to be given by W
B2/1

II + W
B′

1
II =

0 0.5 1
−1

0

1

g2

n
/

0 0.5 1
−1

0

1

g2

n[
C

]/

(a () b)

FIG. 13. Similar to Fig. 12. (a) Wilson loops for B2 = Ba
2(2b)

chosen as the two-band occupied subspace before coupling. (b) Wil-
son loops for B′

1 = Ba
1(1a) chosen as the two-band occupied sub-

space before coupling.

W
B2/1

II . We now argue that nothing guarantees a priori the
stability of the two-band topology once it is imbedded in a
four-band subspace.

In the following, we need the orthogonality of the compo-
nents of a Bloch frame. The smooth frame is obtained through
a unitary transformation of the cell-periodic Bloch eigenstates
at each k, i.e., |v, k〉 = (|u1, k〉, |u2, k〉)TU (k) with U (k) ∈
U(2). Then, given the orthogonality of the Bloch eigenstates,
〈u2, k|u1, k〉 = 0, the components of the smooth frame are
also orthogonal, i.e., 〈v2, k|v1, k〉 = 0, since the columns of
U (k) form themselves an orthonormal basis of C2.

Let us write the separate smooth, periodic, and rotation-
symmetric Bloch frames as |vν, k〉 = (|vν

1 , k〉, |vν
2 , k〉)T with

ν = 1 for B2/1 and ν = 2 for B′
1 (see notations in Sec. VI).

While each frame is orthogonal, they are not necessar-
ily orthogonal to each other, i.e., 〈vν

i , k|vν
j , k〉 = δi j but

〈v1
i , k|v2

j , k〉 �= 0. Therefore, the Wilson loop operator of
the four-band subspace written in the separate smooth
frames is given through W̃l�K = P11 + P22 + P12 + P21 with
the path-ordered products of projection operators Pνμ =∏l�K

k |vν, k〉〈vμ, k|, i.e., the cross-product terms P12(21) do
not vanish. It then follows that the Wilson loop of the four-
band subspace written in the separate smooth frames is in
general not diagonal, i.e., [W̃l�K ]νμ

i j = 〈vν
i , k|W̃l�K |vμ

j , k〉 �∼
δνμδi j . This prevents the symmetry-protected quantization
of the Wilson loop spectrum. Indeed, the separate two-
band smooth frames diagonalize the matrix representation
of rotations at � and K but do not diagonalize the four-
band Wilson loop. Conversely, if we compute the four-band
smooth frame that diagonalizes the four-band Wilson loop,
it is then not guaranteed to satisfy the rotation-symmetry
constraint.

We have verified this numerically using the Soluyanov-
Vanderbilt approach [76] and leave a formal proof for a future
work. Therefore, we expect that in general the two-band
subspace topology is unstable when it is imbedded within a
four-band subspace.
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