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Hybridization fluctuations in the half-filled periodic Anderson model
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Motivated by recent photoemission and pump-probe experiments, we report determinant quantum Monte
Carlo simulations of hybridization fluctuations in the half-filled periodic Anderson model. A tentative phase
diagram is constructed based solely on hybridization fluctuation spectra and reveals a crossover regime between
an unhybridized selective Mott state and a fully hybridized Kondo insulating state. This intermediate phase
exhibits quantum hybridization fluctuations and consequentially the so-called “band bending” and a direct
hybridization gap as observed in angle-resolved photoemission spectroscopy and optical conductivity. This
connects the band bending with the hybridization fluctuations as proposed in a recent ultrafast optical pump-
probe experiment. The Kondo insulating state is only established at lower temperatures with the development of
sufficiently strong intersite hybridization correlations. Our work suggests a unified picture for interpreting recent
photoemission, pump-probe, and optical observations and provides numerical evidences for the importance of
hybridization fluctuations in heavy fermion physics.
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Heavy fermion materials, mostly rare-earth or actinide
intermetallics, provide a model system for studying the
localized-to-itinerant transition of strongly correlated elec-
trons [1–4]. Theoretically, this transition is attributed to
collective hybridizations between localized and conduction
electrons [5–8]. A mean-field approximation has often been
assumed with a static and uniform hybridization [9–13], lead-
ing to many interesting predictions [14–18] and the identifica-
tion of a characteristic coherence temperature separating the
hybridized and unhybridized states [19–21]. The hybridiza-
tion is manifested by a bending of the conduction bands
that also marks the emergence of heavy electrons. However,
this simple understanding was questioned by recent angled-
resolved photoemission spectroscopy (ARPES) [22], which
revealed a “band bending” well above the coherence temper-
ature. Although transport and band properties may not have
an exact microscopic correspondence, this separation between
coherence and hybridization still caused some confusion on
the conventional picture.

Fortunately, some light was shed on this issue lately by
ultrafast optical pump-probe experiment [23], in which a
two-stage hybridization scenario was proposed based on the
analysis of anomalous quasiparticle relaxation. While the low-
temperature stage starts at the coherence temperature and
results in a fluent-dependent relaxation associated with an
indirect hybridization gap on the density of states as predicted
by the mean-field theory, a precursor ungapped stage was
also revealed to exhibit hybridization fluctuations whose onset
temperature coincides with that of the “band bending” in
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ARPES. Such a precursor stage is beyond the mean-field
description and has not been sufficiently explored. Although
it has been argued that hybridization fluctuations might play
an important role in heavy fermion physics [24–26], further
studies have been largely hindered by difficulties in analytical
treatment. This is unfortunate because hybridization fluctu-
ations might be the basis of many important heavy fermion
phenomena [27–32].

To avoid the analytical difficulties, we propose in this
work to study hybridization fluctuations numerically using
determinant quantum Monte Carlo (DQMC) [33–35]. DQMC
has led to many useful insights on heavy fermion physics
[36–42], but this issue has not been well discussed. Although
the calculations are often limited at half filling to avoid the
sign problem [43], the exact numerical results will still allow
us to extract some generic properties beyond the mean-field
approximation. In particular, one may want to know if there
are indeed multiple stages of hybridization as proposed in
pump-probe experiment and how they might be connected
with the band bending in ARPES and the lattice coherence
(here referring to the Kondo insulating state with a fully
opened indirect hybridization gap as predicted in the mean-
field theory). To this end, we constructed a tentative phase
diagram based solely on hybridization fluctuation spectra. A
partially hybridized precursor state was then revealed that
exhibits low-energy hybridization fluctuations with the so-
called band bending in the dispersion, while the Kondo in-
sulating state is only established at lower temperatures with
sufficiently strong intersite hybridization correlations. This
confirms the two-stage hybridization scenario and suggests a
consistent interpretation for the photoemission, pump-probe,
and optical spectroscopies.
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We start with the periodic Anderson model on a two-
dimensional square lattice,
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where c†
iσ (ciσ ) and f †

iσ ( fiσ ) are the creation (annihilation) op-
erators of conduction and localized f electrons, respectively.
t is the hopping integral of conduction electrons between
nearest-neighbor sites, and V is the bare hybridization. We set
t = 1 for the energy unit, U = 6 for the Coulomb interaction
of f electrons, and E f = 0 for the particle-hole symmetry to
avoid the sign problem in the Monte Carlo simulations.

To study hybridization fluctuations, we first introduce the
hybridization field, Oi = ∑

σ (c†
iσ fiσ + f †

iσ ciσ ), and define its
correlation function,

Li j (τ ) = −〈Tτ [Oi(τ ) − 〈Oi〉][Oj (0) − 〈Oj〉]〉, (2)

where Tτ is the ordering operator for the imaginary time τ .
Unlike the Kondo lattice model, where a static hybridization is
nothing but a mean-field artefact, the thermodynamic average
〈Oi〉 here is always finite and thus not a good quantity to
distinguish the physically unhybridized and hybridized states
[44]. It is therefore subtracted to highlight the dynamical hy-
bridization fluctuations. The model is then evaluated numeri-
cally with DQMC [33–35]. The imaginary time is discretized
into M slices with the inverse temperature β = M�τ . At
each site and time slice, the interaction is decoupled using
the Hubbard-Stratonovich transformation by introducing an
auxiliary Ising field. The resulting bilinear Hamiltonian can
be treated exactly and the correlation function can be calcu-
lated with the help of Wick’s theorem before averaging over
all sampled field configurations. All presented results were
obtained on an 8 × 8 square lattice with M = 80 but examined
to be convergent with larger lattice size and time slices.
The weak finite-size effect originates from the rapid decay
of the hybridization correlation with distance in the studied
parameter range as will be discussed later. The hybridization
spectral function, Aq(ω) = − 1

π
Im Lq(ω), was solved using

the maximum entropy method for

Lq(τ ) =
∫ ∞

−∞
dω

e−τω

e−βω − 1
Aq(ω), (3)

where Lq(τ ) = 1
N

∑
i j e−iq·(ri−r j )Li j (τ ). The derived spectra

were carefully verified for consistency by other methods. The
real part of Lq(ω) was then calculated using the Kramers-
Kronig relation. To the best of our knowledge, these quan-
tities have not been well explored in previous studies. The
fermionic spectral functions were also calculated following
similar standard procedures for comparison.

Figure 1 plots the real and imaginary parts of Lq=0(ω)
for varying V at different temperatures. We first consider the
high-temperature regime. For T = 2.0, L0(ω) changes only
slightly with V and shows two peaks at ω ≈ ±U due to
excitations between two f electron Hubbard bands. The finite
slope in Im L0(ω) around ω = 0 persists for small V and
must result from thermal excitations of unhybridized f and

FIG. 1. The real and imaginary parts of the hybridization corre-
lation function L0(ω) with the bare hybridization parameter V and
temperature T . The insets are enlarged plots of the imaginary part
around ω = 0, showing the variation of the low-energy slope in
Im L0(ω) with different parameters.

conduction electrons. For T = 1.0 and small V , the single
valley in Re L0(ω) evolves into a small hump with two valleys
at ω ≈ ±U/2, indicating the suppression of thermal excita-
tions with lowering temperature. The two-valley features can
be understood from the V = 0 limit, where the correlation
function has an analytical form,

L0(ω) = 2

N

∑
k,α=±

[ f (αU/2) − f (εk )](εk − αU/2)

(ω + i η)2 − (εk − αU/2)2
, (4)

where f (x) is the Fermi distribution function and η = 0+ is an
infinitesimal cutoff. For a flat band with a half bandwidth D,
the summation over k can be evaluated exactly at zero temper-
ature and yields, L0(ω) = D−1 ln (ω+i η)2−(U/2)2

(ω+i η)2−(D+U/2)2 , which ex-
plains the calculated minima and maxima around ω = ±U/2
and ±(D + U/2). For large V , however, the single-valley
shape is recovered.

The two-valley feature can be seen more clearly at T =
0.2. Correspondingly, the low-energy slope in Im L0(ω) be-
comes almost zero, indicating diminishing thermal excita-
tions. However, for larger V , a small dip appears around ω = 0
on top of the hump in Re L0(ω). Accordingly, the imaginary
part exhibits a large slope in a small low-energy window
followed by a sharp kink before turning to a high-energy
plateau above |ω| ≈ 0.2. The finite slope must be a quantum
effect and indicates a regime with low-energy hybridization

195133-2



HYBRIDIZATION FLUCTUATIONS IN THE HALF-FILLED … PHYSICAL REVIEW B 100, 195133 (2019)

FIG. 2. (a),(b) Comparison of the different features of the real and imaginary parts of L0(ω) in four distinct regimes. (c) The corresponding
f electron local density of states. The parameters are T = 2.0, V = 0.5 for regime I; T = 0.6, V = 0.25 for regime II; T = 0.2, V = 1.2 for
regime III; and T = 0.05, V = 2.0 for regime IV. (d) Intensity plots of the fermionic spectral function at the Fermi energy in the Brillouin zone
evolving with temperature for fixed V = 1.0; (e) The corresponding plots of the dispersion along a chosen path in the Brillouin zone, showing
its evolution across the intermediate regime III.

fluctuations due to the coupling between conduction and f
electrons. Similar features can be found at T = 0.05 for V =
0.5, but are suppressed at larger V , where the dip in Re L0(ω)
is filled in and turns into a smooth maximum, and the slope in
Im L0(ω) is also suppressed.

The above distinct features of L0(ω) suggest four different
regimes of the periodic Anderson model. The results are sum-
marized in Figs. 2(a) and 2(b). Regimes I and II are governed
by background contributions of decoupled conduction and f
electrons. For regime I, thermal excitations are large such that
the real part of L0(ω) has only one valley and the imaginary
part has a finite slope; while for regime II, thermal effects are
suppressed, revealing two valleys at ω = ±U/2 in Re L0(ω)
due to the Hubbard bands, and the slope in Im L0(ω) is
consequentially reduced. The latter corresponds to a selective
Mott regime of f electrons that are effectively decoupled from
conduction electrons. To see this, we plot the f electron local
density of states (DOS) in Fig. 2(c). The spectra are governed
by two broad Hubbard peaks at ω = ±U/2. In regime I, the
valley in between is partially filled by thermal excitations, but
in regime II, it is depleted and reveals the Mott gap [45,46].

Deviation from the above Mott features defines two hy-
bridized regimes. The small dip on the hump of Re L0(ω)
and the large low-energy slope of Im L0(ω) in regime III
mark a genuine quantum effect due to low-energy hybridiza-
tion fluctuations. In regime IV, these features are again sup-
pressed, indicating the crossover into a different phase. This
is the Kondo insulating regime, where the slave-boson mean-
field theory predicts an artificial boson condensation. This

hybridization gap structure has also been obtained recently
in the density matrix renormalization-group (DMRG) calcula-
tions [47,48]. The hybridization correlation function can also
be evaluated analytically,

L0(ω) = 4

N

∑
k

f (Ek−) − f (Ek+)

(ω + iη)2 − �2
k

ε2
k

�k
, (5)

where Ek± = (εk ± �k )/2 denote two hybridization bands

and �k =
√

ε2
k + �2

0 is the direct hybridization gap at each
k with an effective hybridization strength �0 whose mag-
nitude separates the hybridized and unhybridized phases.
Thus Re L0(ω) has two minima around ω = ±�0. Since
�k � �0 for all k, we have the imaginary part, Im L0(ω) ∝∑

k,α=± αδ(ω + α�k )ε2
k/�

2
k, which is gapped for |ω| < �0.

Obviously, the above formula fails in regime III, where we
have a large low-energy slope in Im L0(ω) due to the presence
of hybridization fluctuations. This has an immediate conse-
quence on the f electron spectra. As shown in Fig. 2(c),
instead of a Kondo insulating gap in the local DOS as in
regime IV, we find a broad peak around ω = 0, making
regime III a precursor ungapped state beyond the mean-field
approximation, while in regime IV, the two sharp peaks at
lower energies can be roughly understood from the band
hybridization in Ek±.

To gain further insight, we plot in Fig. 2(d) the momentum
distribution of the total fermionic ( f and conduction elec-
trons) spectral intensity at the Fermi energy evolving with
temperature for V = 1.0. We see a clear crossover from a
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FIG. 3. (a) Comparison of the local and nonlocal contributions
to Re L0(ω), showing the onset of nonlocal term in regime III and
development in regime IV. (b) The normalized hybridization spectral
function Ãq(ω), showing the growth of hybridization correlations at
(π, π ). The parameters are the same as in Fig. 2(a).

selective Mott regime with two Hubbard bands and a small
conduction electron Fermi surface to a Kondo insulating
regime where the hybridization gap is fully opened with no
discernible spectral weight at the Fermi energy in the whole
Brillouin zone. In between, regime III shows a finite spectral
weight (not the Fermi surface), albeit with a very different
pattern. For clarity, we plot the dispersion in Fig. 2(e), where
a slight band bending is already seen in regime III, but the gap
is only partially opened, leaving a finite spectral weight at the
Fermi energy and the broad peak in the local DOS. This agrees
with the ARPES observation [22] and supports the two-stage
scenario proposed by pump-probe experiment [23]. The band
bending is also an indication of the direct hybridization gap as
probed in optical conductivity [49]. This gives a consistent
interpretation of the high-temperature features in ARPES,
pump-probe, and optical measurements.

To understand how hybridization fluctuations can further
induce the f electron coherence (here the Kondo insulating
state) at lower temperature, we compare in Fig. 3(a) the
local and nonlocal contributions to Re L0(ω). Since L0(ω) =
N−1 ∑

i j Li j (ω), the nonlocal part is a sum of all intersite
correlations. We see for regimes I and II, the nonlocal con-
tribution is indiscernible. It only starts in regime III but,
quite surprisingly, becomes comparable with the local one
in regime IV. Its very existence is an indication of quantum
effect. Clearly, while the band bending already appears in
regime III, the lattice coherence can only be established later
with sufficiently strong intersite hybridization correlations. It
should be noted that the nonlocal correlation is dominantly
contributed by the nearest-neighbor term in our calculations.
Hence, the Kondo insulator should be viewed more like a
short-range-correlated insulator rather than a simple band
insulator described by the mean-field picture. This short-range

FIG. 4. A tentative phase diagram constructed based solely on
L0(ω). The background colors reflect the low-energy slope K of its
imaginary part. The points are estimated from the different features
of its real part and the lines are a guide to the eye. The vertical axis at
V = 0 should always belong to regime II at all temperatures, where
the f electrons are well localized with two separated Hubbard peaks
in their local density of states. The boundary between regimes I and
II at small V should in principle extend along the vertical line. From
the view of the bubble diagram, one may also consider to multiply
a prefactor V 2 for the hybridization correlations. The right panel
plots the values of K for V = 1.0, whose nonmonotonic temperature
dependence clearly demonstrates the separation of four regimes.

correlation is consistent with previous calculations as well as
nuclear magnetic resonance (NMR) observations on doped
Kondo lattice [40,50]. We further remark that the development
of nonlocal correlations is also manifested in the momentum
space. Figure 3(b) plots the normalized hybridization spectral
function Ãq(ω), along the path (0, 0)-(0, π )-(π, π )-(0, 0) in
the Brillouin zone. The spectra are basically featureless be-
sides the Hubbard bands in regimes I and II. A slight change
appears at (π, π ) in regime III, which grows rapidly in regime
IV and eventually intrudes into the Mott feature. This reflects
a competition between nonlocal hybridization correlations
and the local Mott physics. The fact that the former emerges
dominantly near (π, π ) seems to also indicate an interplay
between hybridization and magnetic fluctuations [26].

Putting together, we find it possible to construct a tentative
phase diagram of the periodic Anderson model based solely
on hybridization fluctuation spectra. The result is shown in
Fig. 4, where the points and dashed lines mark the phase
(crossover) boundaries extracted roughly from the features
of Re L0(ω), and the background colors reflect the magni-
tude of the slope, K = d Im L0(ω)/dω|ω=0. We see a rough
agreement between the two methods. The phase diagram thus
reveals clearly the four distinct regimes and their overall
relationship. This is best demonstrated in the right panel
of Fig. 4 for V = 1.0, where K undergoes a nonmonotonic
variation that separates the different regimes. Analogous to
the slave-boson approach [9–13], a finite value of K at low
temperatures indicates the presence of gapless hybridization
(or bosonic) excitations, while in both the Mott and Kondo
insulating regimes, K is predicted to be nearly zero at low
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temperatures in the mean-field approximation. This in some
sense provides a potential justification of the parameter K .
It is now evident that regime III (at small V ) bridges the
unhybridized selective Mott state (II) and the fully hybridized
Kondo insulating state (IV) and marks a crossover from
localized to itinerant f electrons. In previous analytical cal-
culations, it has been proposed that the localized-to-itinerant
transition at zero temperature may be viewed as a selective
Mott transition [51,52]. This seems to be consistent with
our results if regime III could in some way be associated
with the crossover regime above the Mott critical end point.
Unfortunately, at the moment our calculations are limited at
relatively higher temperatures and it is not clear if a straight-
forward connection can be made. We should note that the
presence of a precursor regime above the Kondo insulating
phase can also be seen in previous calculations [53–55], but
it has not been well discussed in the context of hybridization
fluctuations. It will be important if our study can be extended
to extremely low temperatures to provide numerical evidences
for previous analytical treatment. Recently, it has also been
proposed that non-Hermitian physics might lead to exotic
properties in a Kondo insulator [56–58]. The so-called excep-
tional points were argued to be around the high-temperature
boundary of the Kondo insulating phase [58]. In our case,
if we make the replacement η → �k in Eq. (5), we will be
able to get a finite slope, K ∝ −∑

k �kε
2
k/�k(�2

k + �2
k )2,

which approaches zero when �k → 0 or ∞. Thus the finite
K in regime III might be associated with the finite dissipation
(or lifetime) of hybridization or fermionic excitations in the
crossover phase. It would certainly be more intriguing if
regime III is a state that could potentially host some exotic
non-Hermitian physics.

To summarize, we studied hybridization fluctuations with
DQMC for the half-filled periodic Anderson model. This

allows us to extract some useful information beyond the mean-
field approximation and construct a tentative phase diagram
based solely on hybridization fluctuation spectra. We found a
crossover from an unhybridized selective Mott state to a fully
hybridized Kondo insulating state. In between, there exists an
intermediate phase with low-energy hybridization fluctuations
and evident band bending. The f electron coherence is only
established at lower temperatures with the development of
sufficiently strong intersite hybridization correlations. This
confirms the proposed two-stage hybridization scenario based
on recent ARPES and pump-probe experiments. The band
bending occurs first near the Fermi wave vector of conduction
electrons and gives rise to a direct hybridization gap as probed
in optical conductivity well above the coherence temperature.
We have thus a consistent picture for the high-temperature
features of photoemission, pump-probe, and optical spectro-
scopies. Possible connections with Mott and non-Hermitian
physics were also discussed briefly. Our work provides a
promising start for numerical studies of hybridization dynam-
ics in causing exotic correlated properties of heavy fermion
systems. In the future, we expect to see more insights if
our study could be extended to the quantum critical regime
or the metallic phase away from the half filling to make
a full comparison with previous analytical or experimental
conclusions.
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