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Rashba splitting of Dirac points and symmetry breaking in strained artificial graphene
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The effect of Rashba spin-orbit interaction and anisotropic elastic strain on the electronic, optical, and
thermodynamic properties of an artificial graphenelike superlattice composed of InAs/GaAs quantum dots has
been theoretically considered. The electronic energy dispersions have been obtained using Green’s function
formalism in combination with the Fourier transformation to the reciprocal space and an exact diagonalization
technique. We have observed a splitting of Dirac points and the appearance of additional Dirac-like points due to
the Rashba spin-orbit interaction. Furthermore, a breaking of the hexagonal symmetry of the dispersion surfaces
caused by the strain anisotropy is observed as well. It is shown that both the spin-orbit interaction and strain
anisotropy have a qualitative impact on the measurable characteristics of the considered structure and can be
used as effective tools to control the performance of devices based on artificial graphene.
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I. INTRODUCTION

Dirac materials are foreseen to be of paramount importance
because of their universal behavior and the robustness of their
properties which are linked to symmetry [1,2]. Their band
structure is similar to one of relativistic massless particles
where the energy dependence on the momentum is linear
in the vicinity of touching (Dirac) points of the electronic
bands. Graphene is an innate example of a one-atom-thick 2D
electron system composed by carbon atoms on a honeycomb
lattice with two inequivalent sites in the unit cell. Due to
its unique electronic spectrum, graphene makes possible the
observation and test of table-top quantum relativistic phenom-
ena in experiments, which are unobservable in high-energy
physics [3]. The preference of graphene for spin logic appli-
cations instead of other metals and semiconductors has been
recently experimentally tested [4,5]. The main features which
make graphene an advantageous option for these applications
are the large spin signal, the long spin diffusion length, and
the relatively long spin lifetime [6,7].

In principle, Dirac-type singularities may exist in any 2D
lattice with the similar underlying symmetry as graphene.
Advanced methods such as atom-by-atom assembling [8],
nanopatterning of 2D electron gas in semiconductors [9], and
optical trapping of ultracold atoms in crystals of light [10]
make it possible to design and fabricate artificial honeycomb
lattices or artificial graphene (AG), which is a unique structure
for the investigation and manipulation of several systems
displaying massless Dirac quasiparticles, topological phases,
and strong correlations. One of the reasons for pursuing the
study of AG is the opportunity for regimes difficult to achieve
in these systems, such as high magnetic fluxes, tunable lattice
constants, and precise manipulation of defects, edges, and
strain [11]. These studies enable tests of several predictions
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for massless Dirac fermions. For future experiments based on
AG, the availability of semiconductors and metals with large
spin-orbit coupling opens new exciting potential features to
investigate topological phases of artificial matter.

It has been shown that two-dimensional electron gas in a
periodic potential of the honeycomb array of GaAs/GaAlAs
quantum dots (QDs) can result in isolated massless Dirac
points with controlable Fermi velocity (FV) [12]. The control-
lable FV, in turn, can lead to bound states of Dirac fermions
[13], which is crucial for building practical digital devices
with well-defined on/off logical states [14]. The realization
of massless Dirac fermions in standard semiconductors opens
interesting possibilities regarding the impact of the spin-orbit
interaction (SOI), especially when using InAs-based materials
such as honeycomb lattice of InAs/GaAs QDs [15].

Although the growth of homogeneous and spatially or-
dered arrays of InAs/GaAs QDs is a technological challenge
[15,16], recent studies point to the possibility of controlling
the size and shape, as well as the electron concentration in
them, using strain engineering and selective area epitaxy.
In this regard, there is a good prospect to achieve uniform,
position-controlled InAs QDs in the near future [17–22].

It is known that the elastic strains at the InAs/GaAs
heterojunction due to the lattice mismatch dramatically alters
the electronic band structure [23–26]. It has been shown that
the strain anisotropy in InAs/GaAs AG leads to the shift of the
Dirac points from the K and the K ′ points of the first Brillouin
zone (FBZ) resulting in anisotropy in the FV and qualitative
changes in the density of states (DOS) [27].

The optical properties of transistors [28], optical switches
[29–31], midinfrared photodetectors [32,33], photovoltaic de-
vices [34], ultrafast lasers [35], etc., significantly rest on the
light-matter interaction, limited in graphene (optical absorp-
tion is less than 2.5%). One of the advantages of AG is the
possibility to overcome this limitation and tune the absorption
coefficient (AC) by means of external factors such as Rashba
SOI. The possibility to study the collective optical response
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of modulated nearly 2D electrons [36,37] and holes [38] in
semiconductors is another advantage of AGs based on QDs.

The heat capacity (HC) is a measurable thermodynamic
quantity that can be considered as a sensitive tool to bring
out the modifications in the electron energy spectrum in
QD, as well as in graphene structures due to internal and
external factors [36,39–41]. The study of HC in AG is of
great interest due to the possibility to observe the combined
effects originated by the quantum confinement in QDs and the
underlying honeycomb symmetry.

In this regard, the consideration of the Rashba SOI and the
elastic strain field in AG opens perspectives for the control of
the optical and thermal properties of Dirac fermions.

In the present paper, the effect of Rashba SOI on the
electronic band structure and DOS, as well as optical and
thermodynamic properties of AG composed of highly strained
InAs/GaAs QDs has been considered. The paper is organized
as follows: In Sec. II, the model and the method are presented.
In Sec. III, the results are displayed and the corresponding
discussion is given. The conclusions are presented in Sec. IV.

II. THEORETICAL MODEL

Our theoretical model is based on the following assump-
tions. In the view of strong quantization in the direction
perpendicular to the plane of the superlattice (SL), we will
assume that electron makes a two-dimensional motion in the
plane of the SL. Further, due to very weak dependence of the
hydrostatic strain on the coordinate in the transverse direction,
only the in-plane variations of the strain will influence the
motion of the electron [42].

The method developed in Ref. [43] allows one to derive
an analytic expression for the Fourier components of the
strain tensor for a single QD of arbitrary shape in a material
with a lattice of cubic symmetry (see the Appendix). In the
framework of the mentioned approach, the hydrostatic strain
in a two-dimensional SL of honeycomb symmetry, composed
of cylindrical QDs of the height hd and the radius rd is as
follows [27]:

ε̃h(ξ1, ξ2) =
3∑

i=1

∫
dξ3ε̃ii(ξ1, ξ2, ξ3) = ε0χ̃QD(n1, n2)

×
(

3 − C11 + 2C12

π

∫ ∞

−∞

ξ−1
3 sin(ξ3hd/2)dξ3

C12 + C44 + �−1
ξ

)
,

(1)

where

�ξ =
3∑

p=1

ξ 2
p

C44ξ 2 + Canξ 2
p

(2)

and

χ̃QD(n1, n2) = 2πrd J1(rd | �G|)
s0| �G| A(n1, n2)(1 − A(n1, n2)) (3)

is the Fourier component of the SL’s shape function [42,44],
J1(t ) is the first kind of Bessel function of the first order,
�G = n1�g1 + n2�g2 is the 2D lattice vector in reciprocal space,
�g1 = (2π/3a)(1;

√
3) and �g2 = (2π/3a)(1; −√

3) are the

elementary vectors of the reciprocal lattice, a is the smallest
distance between the centers of QDs in the SL, A(n1, n2) =
exp (−i2π (n1 + n2)/3), n1,2 are integers, s0 is the area of
the SL’s unite cell, ε̃ii(�ξ ) is the 3D Fourier transform of the
diagonal element of the strain tensor in SL, ξ1 = Gx, ξ2 = Gy,
ξ 2 = ∑3

i=1 ξ 2
i , C11, C12, and C44 are the elastic moduli of

the matrix material (GaAs), Can = C11 − C12 − 2C44 is the
parameter of anisotropy, ε0 = (a1 − a2)/a2 is the initial strain
[45], and a1 and a2 are the lattice constants of the GaAs and
InAs lattices, respectively.

It should be noted that when the condition hd � rd is satis-
fied, the dependence of hydrostatic strain on the z coordinate
is weak [42] and Eq. (1) can be used for the calculation of the
hydrostatic strain in 2D space:

εh(�r) =
∑

�G
ε̃h( �G)ei �G�r . (4)

The Hamiltonian of the considered system is

H = 1

2
p̂

1

m(�r)
p̂ + HSO + V (�r), (5)

where

HSO = α

h̄
(�σ × �p)z (6)

is the Rashba SOI Hamiltonian which arises in 2D electron
systems due to an inversion of asymmetry of the confinement
potential perpendicular to the 2D plain direction. The SOI
constant α can be tuned by an external electric field in that
direction [46,47]. In Eq. (5), V (�r) = v0(�r) + acεh(�r) is the
periodic potential of QD SL, v0(�r) = Q(Eg,GaAs − Eg,InAs)
is the potential of unstrained structure, Eg,GaAs(InAs) is the
band gap of GaAs(InAs) material, Q is the conduction band
offset, ac is the hydrostatic potential constant, and m(�r) is
the electron effective mass. Due to the periodicity of the
Hamiltonian Eq. (5), one can make a Fourier transformation
to the momentum space [44,48]:

ψ↑(↓)(�r) = 1

S
ei�k�ru�k↑(↓)(�r) = 1

S

∑
�G

u�k, �G↑(↓)e
i(�k+ �G)�r, (7)

V (�r) =
∑

�G
V�Gei �G�r, (8)

1

m(�r)
=

∑
�G

m−1
�G ei �G�r . (9)

Note that in Eq. (7), u�k↑(↓)(�r) and u�k, �G↑(↓) are the Bloch
amplitude and its Fourier transform for the spin-up (spin-
down) component of the spinor ψ̂ , respectively. Also, V�G and
m−1

�G are the Fourier transforms of the SL potential and inverse

effective mass, respectively. Finally, �k is quasimomentum and
S is the effective area of the AG. Substituting the expressions
Eq. (7)–(9) to the Ben Daniel-Duke’s equation H ψ̂ = Eψ̂ ,
one can arrive at the following set of linear equations in
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reciprocal space:∑
�G′

([
h̄2

2
m−1

�G− �G′ (�k + �G)(�k + �G′) + V�G− �G′ − Eδ �G, �G′

]
u�k, �G′↑

+ αδ �G, �G′ [i(kx + G′
x ) + (ky + G′

y)]u�k, �G′↓

)
= 0, (10)

∑
�G′

([
h̄2

2
m−1

�G− �G′ (�k + �G)(�k + �G′) + V�G− �G′ − Eδ �G, �G′

]
u�k, �G′↓

− αδ �G, �G′ [i(kx + G′
x ) − (ky + G′

y)]u�k, �G′↑

)
= 0, (11)

where m−1
�G = δ �G,0m−1

GaAs + (m−1
InAs − m−1

GaAs)χ̃QD( �G) and V�G =
(v0/s0)χ̃QD( �G) are the Fourier transforms of the electron’s
inverse mass and the SL potential, respectively. The electronic
dispersions are obtained by means of diagonalization of the set
of Eqs. (10) and (11) for each value of the quasimomentum �k.

The DOS of the considered structure can be expressed as
follows:

ρ(E ) = 1

(2π )2

∑
j

∫
FBZ

δ(E − Ej (�k))d2k, (12)

where the integration is carried out over the FBZ and j denotes
the number of the miniband.

Assuming that the Fermi energy EF is on the touching point
between two couples of splitted minibands, the AC caused by
the allowed direct transitions is

α(ω) = α0

2∑
i=1

4∑
j=3

∫
FBZ

d2k|Mi, j (�k)|2

× δ(h̄ω − (Ej (�k) − Ei(�k)), (13)

where

Mi, j (�k) = h̄
∑

�G

(
u(i)

�k, �G↑u( j)
�k, �G↑ + u(i)

�k, �G↓u( j)
�k, �G↓

)
( �G�η) (14)

is the dipole matrix element of the transitions from the ith
to the jth miniband, α0 = e2(m2

0chdω
√

ε)−1, ω and �η are the
frequency and the polarization vector of the incident photon,
ε is the dielectric constant, m0 and e are the free mass and the
electron charge, respectively, and c is speed of light.

We have also calculated the electronic HC of the system
using the following expression [41,49]:

cV =
∫

Eρ(E )
∂ f (E , T )

∂T
dE , (15)

where integration is carried out over all the conduction bands,
f (E , T ) = (eβ(E−μ(T )) + 1)−1 is the Fermi-Dirac distribution
function, and β = 1/kBT and μ(T ) is the chemical potential.
One can obtain the dependence of the chemical potential on
the temperature by solving the following equation:

n =
∫

ρ(E ) f (E , T )dE , (16)

where it is assumed that the electron 2D concentration n in
the conduction band is constant and the Fermi energy EF =
μ(T = 0) is on the touching point between two couples of
split minibands.

III. DISCUSSION

The numerical calculations are carried out for the fol-
lowing values of the parameters: a = 22 nm, rd = 10 nm,
hd = 2 nm, mInAs = 0.023m0, mGaAs = 0.067m0, Eg,GaAs =
1518 meV, Eg,InAs = 413 meV, and Q = 0.6 [50]. Taking into
account that the electron is mostly localized in the QD regions,
we use the value of the dielectric constant in InAs material
(ε = 12.3) for the AC Eq. (13). The energy level broadening is
taken into account, replacing the Dirac δ function in Eq. (13)
by the Lorentzian function with the value of the broadening
parameter � = 0.2 meV [51].

Figure 1 represents the electronic dispersion surfaces with-
out (a) and with [(b) and (c)] Rashba SOI for isotropically
strained AG. The vicinity of the K ′ point is mentioned by
a dashed rectangle in Fig. 1(b), while the zoom of the cor-
responding region is shown in Fig. 1(c). It is obvious from
the comparison of Figs. 1(a) and 1(b) that each surface splits
in two due to SOI. Moreover, in the zoom of the vicinity of
the K ′ point one can observe an obvious multiplication of
Dirac points [see Fig. 1(c)]. Namely, around each Dirac point
which is in the corner of the FBZ [the red line in Fig. 1(c)],
three extra Dirac-like points appear where the minibands are
attached. These points are shifted from the corner of the FBZ
along the diagonals of the three hexagons with the same

FIG. 1. Dispersion surfaces for the splitted by SOI electronic minibands of isotropically strained AG. (a) The entire picture, (b) the first
four minibands in the vicinity of the K ′ point, and (c) two touching minibands in the vicinity of K ′ point (the position of the K ′ point is
indicated by a red line).
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FIG. 2. Dispersion surfaces for the splitted by SOI electronic minibands of anisotropically strained AG. (a) The entire picture, (b) two
touching minibands in the vicinity of K ′ point (the position of the K ′ point is indicated by a red line), and (c) the top view of the first miniband
dispersion surface (the red dashed lines indicate the diagonals of three hexagons with the same corner in reciprocal space and their crossing
point coincides with the K ′ point).

corner and compose an equilateral triangle K1K2K3 [Fig. 1(c)].
There are also three Dirac-like points of touching for each
couple of the splitted surfaces which we refer as points S1, S2,
and S3. These points compose two equilateral triangles which
are rotated by 180o with respect to the triangle K1K2K3 around
the energy axis passing through the K ′ point [the red line in
Fig. 1(c)].

Figure 2 represents the electronic dispersion surfaces in
the presence of Rashba SOI for anisotropically strained AG.
Figure 2(b) shows the zoom of the region mentioned by the
dashed rectangle in Fig. 2(a), while Fig. 2(c) represents the
top view of the dispersion surface of the first miniband. From
Fig. 2(b), the effect of the strain anisotropy on the symmetry
of the dispersion surfaces is obvious. One can observe that
the dispersion surfaces in the vicinity of K points coincide
with those in the vicinity of K ′ points when rotated by 180o

[Fig. 2(a)]. Importantly, both the Dirac points and the Dirac-
like points are shifted from the corners of the FBZ [Figs. 2(b)
and 2(c)]. A more detailed examination shows that the shift
of K1 is along one of the axes of the FBZ, while the shifts
of K2 and K3 are no longer along corresponding diagonals. In
addition, the shift of K1 is significantly larger than the shifts
of the two other Dirac-like points [Fig. 2(c)]. As a result, the
dispersion surfaces are neither of hexagonal nor of square

FIG. 3. Dependence of the FV on the angle between the x
axis and the �k − �kD in the vicinity of 1: K ′ point for isotropically
strained AG, 2: K1 point for isotropically strained AG, 3: Dirac point
near the K ′ point for the anisotropically strained AG, 4: K1 point
for anisotropically strained AG, 5: K3 point for anisotropically
strained AG.

symmetry and they keep only the symmetry of reflection
with respect to kx and ky axes. The accurate analysis of the
solutions of the set of Eqs. (10) and (11) in the vicinity of
Dirac and Dirac-like points indicate the linear dependence
of the energy on |�k − �kD|, where �kD stands for the position
of the Dirac or the Dirac-like point in the FBZ. Furthermore,
the proportionality coefficient, which is the analog of the FV,
depends on the orientation of the �k − �kD in contrast to the
case of the conventional honeycomb lattice. Based on the
above-mentioned regularities, one can introduce an effective
low-energy Hamiltonian in the vicinity of each Dirac and
Dirac-like point in the following way: Heff = h̄vF (ϕ)|�k − �kD|,
where vF (ϕ) is the projection of the energy gradient at point
�kD on the direction of �k − �kD and ϕ is the angle between the
�k − �kD and the x axis.

(a)

(b)

FIG. 4. Density of states for isotropically (a) and anisotropically
(b) strained AG with (red lines) and without (black lines) Rashba
SOI. Arrows indicate the touching points of the first and the second
minibands.
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(a)

(b)

FIG. 5. Absorption coefficient for isotropically (a) and anisotrop-
ically (b) strained AG with Rashba SOI for different directions
of polarization vector of incident photon. The insets represent the
corresponding graphs in the absence of SOI.

Figure 3 illustrates the dependence of the FV on the angle ϕ

in the vicinity of the touching points (Dirac and Dirac-like) of
the second and the third minibands. For isotropically strained
AG, there is a third-order rotational symmetry around the K ′
point; that is why the results for only the K ′ and K1 points
are illustrated. At the K ′ point, the FV is almost constant
leading to a dispersion like in graphene. However, the FV
at the Dirac-like point K1 has an oscillatory dependence on
ϕ. For anisotropically strained AG, K1 and K2(3) represent
physically different points in the FBZ, which leads to different
dependencies of FV on ϕ. One can observe that the curve,
which corresponds to K3 point, is not symmetric regarding
the line ϕ = π/2 in contrast to all other curves. This fact is
connected with the shift of the point K3 from the diagonal
of corresponding hexagon and the breaking of the structure
hexagonal symmetry due to the strain anisotropy.

The DOS in the presence (red lines) and the absence (black
lines) of Rashba SOI is plotted in Fig. 4 for isotropically
[Fig. 4(a)] and anisotropically [Fig. 4(b)] strained AG (in the
figure, aB ≈ 3.57 nm is the effective Bohr radius in InAs).
The results for AG without SOI are taken from the Ref. [27]
for comparison. An obvious multiplication of the maxima of
DOS is observed. Namely, for an isotropically strained AG
[Fig. 4(a)], two peaks are replaced by eight. Each of these
peaks corresponds to the energy when the gradient of one of

(a)

(b)

FIG. 6. Heat capacity of isotropically (a) and anisotropically
(b) strained AG with (red solid lines) and without (black dashed
lines) Rashba SOI. The insets show the corresponding chemical
potential dependence on the temperature.

the splitted surfaces is zero. The comparison of Figs. 4(a) and
4(b) shows that each peak of the DOS is duplicated because
of the strain anisotropy. The splittings of the left and the
right peaks are very weak (less then 0.05 meV) because they
correspond to the zero gradient regions of dispersion surfaces
which are very close to the center of FBZ.

The effect of the miniband splitting and the symmetry
change of the dispersion surfaces on the AC of AG is pre-
sented in Fig. 5. The dependencies of the AC on incident pho-
ton energy for four different values of the angle ϕ between the
light polarization vector and the x axis are shown for isotrop-
ically [Fig. 5(a)] and anisotropically [Fig. 5(b)] strained AG.
The insets correspond to the absorption spectrum due to the
transitions between the first and the second minibands in the
absence of the Rashba SOI. It is noteworthy that when SOI
is absent, the absorption curves corresponding to different
light polarizations almost coincide for isotropically strained
AG [see the inset of Fig. 5(a)]. This effect is connected
with the hexagonal symmetry (symmetry of the SL) of the
section of dispersion surfaces by the plane of constant energy
corresponding to the allowed optical transitions in momentum
space. However, the strain anisotropy removes the above-
mentioned symmetry, leading to the significant splitting of
the curves which intersect at a fixed value of the incident
photon energy [see the inset of Fig. 5(b)]. Furthermore, one
can observe a pronounced maxima of AC in the presence of
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SOI [in both Figs. 5(a) and 5(b)], which is associated with the
corresponding peaks of the DOS.

An obvious splitting of the curves corresponding to dif-
ferent polarizations of incident photon caused by SOI is also
observed for both isotropically and anisotropically strained
AG. Like the anisotropically strained SL without SOI [the
inset of Fig. 5(b)], there is a certain value of the incident
photon energy [indicated by arrows in Figs. 5(a) and 5(b)] at
which the values of the AC for different light polarizations
coincide.

In Fig. 6, the temperature dependence of the HC on the
AG is presented with and without Rashba SOI for two con-
sidered different cases of strain. The insets of Fig. 6 show the
temperature dependence of the chemical potential, assuming
that the 2D concentration of electrons in the conduction band
is constant and defined by the Fermi level, which is on the
touching point between two couples of splitted minibands. An
obvious increase can be observed for the chemical potential
which has larger values when there is no SOI. As we can
see from the figures, HC has a nonmonotonic behavior. It is
zero at T = 0, because of the vanishing DOS at the Fermi
energy. With the increase of the temperature, the HC initially
increases as well due to the occupation of the states in the
energy regions where the DOS is maxima. However, with
further increase of the temperature, the states with higher
density in the energy scale become saturated, leading to a
smaller increase of the system’s mean energy. As a result, the
HC starts to decrease at some value of T . A comparison of
Figs. 6(a) and 6(b) shows that the strain anisotropy results in
the shift of the maximum of the HC to the region of lower
temperatures. On the other hand, the Rashba SOI always
increases the value of the HC because it removes the twofold
spin degeneracy of minibands, leading to a necessity of extra
energy for occupation of the splitted minibands.

IV. CONCLUSION

In summary, we have considered the effect of Rashba
SOI on the energy dispersion, DOS, AC, and the HC of the
AG composed by InAs/GaAs QDs, taking into account the
anisotropic elastic strain field due to the lattice mismatch
between the materials of QDs and the matrix. Splitting of
Dirac points due to the SOI have been observed. The Dirac-
like points K1, K2, and K3 are shifted from the K point
along the diagonals of adjacent hexagons in k-space when
an isotropic strain is considered. However, in the case of
anisotropic strain, only the K1 point is shifted along a diagonal
of the Brillouin zone. The detailed analysis of the dispersion
surfaces in the vicinity of touching points of minibands indi-
cate the oscillatory behavior of the FV as a function of the
rotation angle around the touching point. The oscillations are
not only observed for the rotation around the K ′ point in the
isotropically strained structure. The DOS in the presence of
SOI has eight characteristic peaks. Moreover, each of these
peaks is duplicated due to the strain anisotropy. Additionally,
it is shown that both the Rashba SOI and the strain anisotropy
have a qualitative effect on the measurable quantities of AG,
like AC and HC. In particular, the splitting of the absorption
spectra for different polarizations of incident photons, as well
as the significant change in the HC make the Rashba coupling

an effective tool for controlling the optical and thermal char-
acteristics of AG.
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APPENDIX: DERIVATION OF THE FOURIER
TRANSFORM OF HYDROSTATIC STRAIN IN

TWO-DIMENSIONAL SUPERLATTICE

It is well known that in an elastic media, the displacement
at position �r in the l direction due to the united point force
applied at the origin of coordinates in the n direction can
be expressed by Green’s tensor Gln(�r), which satisfies the
following equation [52]:∑

klm

λiklm
∂Gln(�r)

∂xk∂xm
= −δ(�r)δi,n, (A1)

where λiklm is the tensor of elastic moduli. Making the follow-
ing Fourier transformations in Eq. (A1):

Gln(�r) =
∫

G̃ln(�ξ ) exp(i�ξ�r)d3ξ,

δ(�r) = (2π )−3
∫

exp(i�ξ�r)d3ξ, (A2)

one arrives at the following equation for the Green’s function
Fourier transform:∑

klm

λiklmξkξmG̃ln(�ξ ) = (2π )−3δin. (A3)

In particular, for materials with cubic crystal structure λiklm =
C12δikδlm + C44(δilδmk + δimδkl ) + Can

∑3
p=1 δipδkpδl pδmp,

where Can = C11 − C12 − 2C44 is the parameter of anisotropy.
For this case, after simple mathematical manipulations, one
gets from Eq. (A3) the following expression:

(�ξ G̃)n ≡
3∑

l=1

ξl G̃ln(�ξ ) = 1

(2π )3

ξn

C44ξ 2 + Canξ 2
n

×
⎛⎝1 + (C12 + C44)

3∑
p=1

ξ 2
p

C44ξ 2 + Canξ 2
p

⎞⎠−1

. (A4)

In the framework of the method of inclusions [53], the i
component of the displacement caused by the existence of a
single QD is as follows:

Ds
i (�r) = Ds

i χQD(�r) +
∑
n,k

∫
Gi,n(�r − �r′)σ s

nkdS′
k, (A5)

where σ s
nk = ∑

pr λnkprε
s
pr is the initial stress tensor, εs

pr and
Ds

i are the initial strain tensor component and the initial
displacement due to the lattice mismatch between the QD
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and the surrounded material, χQD(�r) is the so-called QD
shape function which is 1 inside the QD and is 0 outside it.
The superscript s indicates that the expression refers to a
single QD. The integration in Eq. (A5) is carried out over the
surface of the QD. Inserting Eq. (A5) in the definition of the
strain tensor,

εs
i j = 1

2

(
∂Ds

i (�r)

∂x j
+ ∂Ds

j (�r)

∂xi

)
, (A6)

and implying the Gauss’s theorem, one obtains

εs
i j (�r) = εs

i jχQD(�r) + 1

2

∑
nkpr

∫ [
∂2Gin(�r − �r′)

∂x j∂xk

+ ∂2Gjn(�r − �r′)
∂xi∂xk

]
λnkprε

s
prχQD(�r′)d3r′, (A7)

where integration is carried out over the whole 3D space.
Applying the operator F of the inverse Fourier transformation
to both sides of Eq. (A7) and taking into account the convo-
lution theorem according to which F(

∫
P(�r − �r′)Q(�r′)d �r′) =

(2π )3F(P(�r))F(Q(�r)) for the functions P(�r) and Q(�r), we
arrive at the following expression of the strain tensor Fourier
transform εs

i j (�ξ ) for a single QD in an elastic media:

ε̃s
i j (�ξ ) = εs

i j χ̃QD(�ξ ) − (2π )3

2

×
∑
nkpr

(ξiG̃ jn(�ξ ) + ξ j G̃in(�ξ ))χ̃QD(�ξ )λnkprξkε
s
pr, (A8)

where χ̃QD(�ξ ) is the Fourier transform of the shape function
and �ξ is the position vector in the inverse space. Taking
into account that for cubic crystals, the initial strain tensor
εs

i j = ε0δi j , it is not hard to obtain from Eq. (A8) the following
expression:

ε̃s
i j (�ξ ) = ε0χ̃QD(�ξ )

(
δi j − (2π )3

2
(C11 + 2C12)

× [ξi(�ξ G̃) j + ξ j (�ξ G̃)i]

)
. (A9)

Substituting the dot products (�ξ G̃) in Eq. (A9) by their cor-
responding expressions presented in Eq. (A4), we arrive at
an analytic expression for the Fourier transform of the strain
tensor:

ε̃s
i j = ε0χ̃QD(�ξ )

⎛⎝δi j − 1

2

(C11 + 2C12)ξiξ j/ξ
2

1 + (C12 + C44)
∑3

p=1
ξ 2

p

C44ξ 2+Canξ 2
p

×
[

1

C44 + Canξ
2
i /ξ 2

+ 1

C44 + Canξ
2
j /ξ

2

]⎞⎠. (A10)

Because of the linearity of the elasticity problem, the strain
tensor component for a one-layer QD SL is as follows:

εi j (�r) =
∑

�R
εs

i j (�r − �R) =
∑

�R

∫
ε̃s

i j exp (�ξ (�r − �R))d�ξ,

(A11)
where �R runs over the in-plane cite vectors of QDs. On the
other hand, the Fourier expansion of εi j (�r) for the 2D QD
lattice has the following form:

εi j (�r) =
∑

�G
exp(i �G�ρ)

∫ ∞

−∞
ε̃( �G, ξ3) exp(iξ3z)dξ3, (A12)

where �G runs over the vectors of the 2D reciprocal lattice and
�ρ is the in-plane position vector. Comparison of Eqs. (A11)
and (A12) leads to the expression for the strain tensor Fourier
transform for a one-layer QD SL:

ε̃i j ( �G, ξ3) = (2π )2

s0
ε̃s

i j ( �G, ξ3). (A13)

The hydrostatic strain is defined as the trace of the strain
tensor:

εh =
3∑

i=1

εii. (A14)

Finally, acting on the both sides of Eq. (A14) by the operator
F and applying Eqs. (A10) and (A13), we arrive at Eq. (1) of
Sec. II.
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