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Generative modeling with machine learning has provided a new perspective on the data-driven task of
reconstructing quantum states from a set of qubit measurements. As increasingly large experimental quantum
devices are built in laboratories, the question of how these machine learning techniques scale with the number of
qubits is becoming crucial. We empirically study the scaling of restricted Boltzmann machines (RBMs) applied
to reconstruct ground-state wave functions of the one-dimensional transverse-field Ising model from projective
measurement data. We define a learning criterion via a threshold on the relative error in the energy estimator of
the machine. With this criterion, we observe that the number of RBM weight parameters required for accurate
representation of the ground state in the worst case – near criticality – scales quadratically with the number of
qubits. By pruning small parameters of the trained model, we find that the number of weights can be significantly
reduced while still retaining an accurate reconstruction. This provides evidence that overparametrization of the
RBM is required to facilitate the learning process.
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I. INTRODUCTION

Generative models are a powerful class of machine learn-
ing algorithms that seek to reconstruct an unknown probabil-
ity distribution p(x) from a set of data x. After training, gen-
erative models can be used to estimate the likelihood of new
data not contained in the original set or to produce new data
samples for various purposes. Recently, industry-standard
generative models were repurposed by the physics community
with the goal of reconstructing a quantum wave function from
projective measurement data [1–3]. The question of scalability
is of paramount importance for the reconstruction of quantum
states prepared by near-term hardware which comprises tens
or hundreds of qubits.

While several generative modeling techniques are available
for quantum state reconstruction, by far the most well studied
involves restricted Boltzmann machines (RBMs) [1,2,4–6].
RBMs can be used to explicitly parametrize a probability
distribution p(x) and, through a suitable complex generaliza-
tion, a quantum wave function [2,7]. One main application of
RBMs is the data-driven reconstruction of experimental states,
which was recently demonstrated for a Rydberg-atom quan-
tum simulator [8]. These and other uses have been covered
extensively in the literature, including several recent reviews
[9–11].

With the steady increase in the size of experimental quan-
tum devices, an important question is how data-driven quan-
tum state reconstruction scales with the number of qubits.
While many results have been reported for fixed finite-size
reconstructions, less work has been done in the way of scal-
ing analyses [12]. Particularly important is the difference in
scaling complexity of approximate machine learning methods
for practical reconstructions, compared to full quantum state
tomography that, in general, scales exponentially [13].

In this paper, we present a systematic study of the scal-
ing of the computational resources required for accurate re-
construction of a quantum state. In particular, we focus on
RBMs used to reconstruct the ground-state wave function of
a one-dimensional transverse-field Ising model, which has
a positive-real representation. Our training data are a set
of projective measurements sampled independently from a
simulated tensor-network wave function. We define a learning
criterion based on the accuracy of the energy estimator of
the RBM. The state reconstruction is considered successful
when the relative error of the energy estimator is smaller than
a fixed threshold. We target in particular two contributions
to the asymptotic scaling behavior in the many-qubit limit:
the representational power of the neural network, i.e., the
expressiveness of the parametrization of the state, and the
amount of data required to train the model, also known
as the sample complexity.

We find that deep within the ferromagnetic and paramag-
netic phases, the number of RBM parameters required for
accurate representation of the ground state is O(1). As the
transverse field is varied to approach the quantum critical
point between these two phases, the state becomes more
challenging to reconstruct, as expected due to long-range
quantum correlations that arise there. At the critical point,
we observe that under standard RBM training procedures
the number of parameters grows quadratically in the number
of qubits, O(N2). The minimum number of measurements
required to train this number of parameters scales linearly with
the number of qubits, O(N ). Interestingly, we find that the
number of parameters required for an accurate reconstruction
can be significantly reduced posttraining by pruning small
weights and fine-tuning the RBM by a small number of
additional training iterations. We argue that an RBM requires
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overparameterization to facilitate the optimization procedure
associated with learning.

II. DEFINING A SCALING STUDY

We are interested in probing the asymptotic scaling of
the computational resources required to reconstruct a quan-
tum state using an RBM. The training set comprises projec-
tive measurement data produced from the ground-state wave
function of the one-dimensional transverse-field Ising model
(TFIM) defined by the Hamiltonian

H = −J
∑
〈i j〉

σ z
i σ z

j − h
∑

i

σ x
i , (1)

where σ x,y,z are Pauli operators, defined over N sites (or
qubits), and 〈i j〉 denotes nearest-neighbor pairs on a one-
dimensional lattice with open boundary conditions. This
model is thoroughly studied in the condensed-matter and
quantum information literature and serves as a standard
benchmark for many numerical methods, such as quantum
Monte Carlo [14,15], tensor networks (TNs) [16], and more
recent quantum optimization algorithms [17–19]. We generate
training data from a density matrix renormalization group
(DMRG) simulation [20] for various values of h/J using the
ITENSOR library [21]. The measurements of the ground-state
wave function are produced in the σ z basis.

The Perron-Frobenius theorem guarantees that when the
Hamiltonian (1) has negative off-diagonal matrix elements in
the σ z (computational) basis, the ground-state wave function
is positive real. Thus, there is a direct mapping between
the wave function and a probability distribution, ψ (σ) =√

p(σ ). This allows for a significant simplification in the
RBM network structure since complex phases or signs need
not be parametrized. In addition, the computational basis is
trivially informationally complete, enabling training from data
produced only in the σ z basis [2].

A. Restricted Boltzmann machine

The RBM consists of two layers of binary variables vi, h j ∈
{0, 1}. The energy associated with each configuration is
given by

Eλ(v, h) = −
∑

i j

Wi jvih j −
N∑
i

bivi −
Nh∑
j

c jh j, (2)

where N is the number of visible units, representing the qubits
or spins, and Nh is the number of hidden units parametrizing
the interactions. The two layers are fully connected via the
weight matrix W that, along with the bias terms bi and
c j , forms the set of learnable parameters λ = (W , b, c). The
energy function (2) defines the joint probability distribution

pλ(v, h) = 1

Zλ

e−Eλ(v,h), (3)

where Zλ is the partition function of the machine. The
marginal distribution is obtained by tracing out the hidden
units,

pλ(v) =
∑

h

pλ(v, h) = 1

Zλ

∑
h

e−Eλ(v,h). (4)

It is this marginal distribution that forms the approximate
representation of the ground state, ψλ(v) = √

pλ(v). In other
words, because of the assumed positive-real form of the wave
function, the training procedure is equivalent to conventional
unsupervised learning of an RBM [22]. In particular, the ob-
jective of the training procedure is to minimize the Kullback-
Leibler (KL) divergence, which defines the discrepancy be-
tween the distribution of projective measurements and the
probability distribution parameterized by the RBM, through
a method known as contrastive divergence [23]. In the present
work, we use the QUCUMBER software package to implement
and train a positive-real RBM [24].

B. Learning criterion

In order to quantify the resources required for the data-
driven reconstruction of the ground-state wave function for
the TFIM, one must be able to assess when the learning is
“complete.” Generally, the fidelity is considered a standard
measure of the closeness of two quantum states, such as a tar-
get state and an approximate reconstructed state. However, in
more generic situations than ours, where a TN representation
of the target quantum state may not be available, calculations
of the fidelity typically scale exponentially, which renders
them intractable for even moderate numbers of qubits. An
alternative method for defining the accuracy of a reconstruc-
tion is to measure expectation values of local observables.
Such expectation values can be efficiently calculated through
standard estimators from samples produced by the RBM.
Importantly, these can be compared with the exact values mea-
sured from our DMRG simulations or through other methods
such as quantum Monte Carlo that do not admit an explicit
representation of the ground state.

The relative error between an RBM estimator and an exact
DMRG expectation value will be referred to as the relative
observable error (ROE). For the current study, we define the
learning criterion through the ROE in the expectation value
of the energy, which can be calculated from the RBM using
standard Markov chain Monte Carlo techniques. Take Ū =
〈H〉RBM to be the average of the energy estimator calculated
from n samples generated by the RBM. Since n is finite,
a statistical error exists in the estimator, quantified by the
standard deviation σ . To account for this in a relative error
measure, we compute the Gaussian confidence interval given
by Ū ± C σ√

n
. The value of C = 2.576 corresponding to 99%

confidence will be used throughout this paper. If U = 〈H〉exact

is the exact value of the energy estimator (calculated, e.g.,
with DMRG), then we can upper bound the ROE by the larger
relative error value of the confidence interval:

ε = max

∣∣∣∣U − (Ū ± Cσ
√

n)

U

∣∣∣∣. (5)

Essentially, this means that we consider the learning to be
complete when our desired upper bound on the ROE is satis-
fied 99% of the time on our sample size. We find empirically
that ε = 0.002 is a reasonable value that can be achieved by
RBMs trained on TFIM data with conventional algorithms for
N � 100 qubits. At smaller values (e.g., ε = 0.001) training
becomes impractical for N > 50, while for larger values we
observed that the results reported below remain qualitatively
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FIG. 1. The procedure used to determine the RBM expressive-
ness required to represent the TFIM wave function at h/J = 1 with
N = 50 qubits. The number of hidden units Nh is increased until the
desired ε is achieved. The inset illustrates the number of hidden units
required for convergence to ε � 0.002 for different values of h/J
near criticality. The position of the peak is discussed in the text.

the same; thus, we use ε = 0.002 in the remainder of the
paper.

With this learning criterion, we analyze the scaling be-
havior of the RBM by controlling two variables: the number
of model parameters per qubit and the number of training
measurements M, i.e., the sample complexity. However, we
note that, as is typical in machine learning studies, many
other variables exist that are related to network architecture,
learning rates, batch size, etc., referred to as hyperparameters.
Here these hyperparameters have been made consistent for all
values of h/J and all system sizes N .

III. RESULTS

In this section we present numerical results for the scaling
of computational resources for reconstruction of the TFIM
ground-state wave function for several values of h/J . In order
to systematically investigate scaling, we control variables
of interest in different ways, as described in the following
sections.

A. Scaling of the model parameters

To begin, we are interested in the minimal number of
RBM parameters per qubit required to faithfully reproduce the
ground-state energy. We parametrize this with the scaling of
the size of the hidden layer Nh. We consider the critical point,
corresponding to h/J = 1, as well as the ferromagnetic and
paramagnetic phases. For each value of N , we produce large
numbers of projective measurements of σ z values using the
DMRG simulation of the TFIM. Then, effectively assuming
that the number of available training samples M → ∞, we
increase the number of hidden units Nh until the learning
criterion is uniquely satisfied for each value of N .

Our procedure is illustrated in Fig. 1 for a fixed system
size of N = 50. In the main plot, corresponding to h/J = 1,
we observe that the specified learning criterion ε = 0.002
cannot be achieved for Nh < 25. The minimum number of
parameters required to accurately represent the ground-state
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FIG. 2. Minimum number of hidden units Nh required for ε �
0.002 for various values of h/J . Straight lines are fits to the data.

wave function is thus Nh = 25. The inset illustrates the de-
pendence of Nh on field values near h/J = 1, where the
quantum wave function is most entangled. One would expect
that in the limit N → ∞ the number of parameters required to
accurately parametrize the wave function would be maximal
at h/J = 1. Curiously, we find that this peak occurs around
h/J ≈ 0.8, slightly on the ferromagnetic side from the critical
point. We hypothesize that this feature might be tied to the
magnetization of the underlying data set used for training,
which was produced by our DMRG simulations in ITENSOR.
For the maximum bond dimension that we employ (2000), the
expected Z2 symmetry is not realized below certain values of
the transverse field strength h when the number of qubits is
large. Furthermore, a similar phenomenon has been observed
previously in studies of the relative energy in diffusion Monte
Carlo [15] and a recent variational imaginary time ansatz [19].
It would be an interesting topic of future study.

The result of repeating the above procedure for various
numbers of qubits N is illustrated in Fig. 2. For values of
h/J deep within the ferromagnetic or the paramagnetic phase,
the required minimum number of hidden units scales as Nh ∼
O(1) in the asymptotic limit of large N . This reflects the
informational simplicity of the data set close to the ferro-
magnetic or paramagnetic limits. Near h/J ≈ 1, the scaling is
clearly linear, Nh ∼ N , meaning that the leading-order scaling
of the number of parameters is O(N2), as each additional
hidden unit quadratically scales the number of elements in
the weight matrix W . Due to the presence of the bias terms
in Eq. (2), we would also expect a subleading term that scales
proportionally to N ; however, as noted in the Appendix, for
data sets with an underlying Z2 symmetry, these bias terms do
not represent independent parameters for the purpose of wave
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FIG. 3. Weight magnitudes, sorted in descending order from left
to right, for various transverse field values and N = 60. Converged
RBM models from the parameter study shown in Fig. 2 are used here.

function reconstruction. Finally, we note that for larger ROE
thresholds ε > 0.002 the prefactors and slopes are different,
but the asymptotic scaling of the number of hidden units still
remains linear near criticality.

We draw a brief comparison between the above results and
naive expectations for the scaling of the number of parameters
in the simplest TN representation of a one-dimensional wave
function: the matrix product state (MPS). We refer the reader
to recent reviews on the topic, e.g., Refs. [25,26]. For a
finite-size MPS with N matrices, the simplest estimate for
the number of parameters required to store a wave function is
O(Nχ2), where χ is the bond dimension. The bond dimension
required for good representation accuracy depends on the
amount of entanglement in the system. In the presence of
a bipartition, the entanglement entropy S is upper bounded
by the logarithm of the rank of the reduced density matrix.
For an MPS, every bond that lies on the bipartition therefore
gives an entropy contribution of, at most, ln(χ ), leading to the
scaling rule of χ ∼ exp(S). For the one-dimensional TFIM,
we expect S ∼ O(1) in the ordered phases and S ∼ ln(N ) at
the quantum critical point. This yields a naive scaling of O(N )
in the ordered case and O(N3) at the critical point. We note
that our RBM scaling is more consistent with a translation-
ally invariant MPS encoding, where these asymptotic scaling
complexities are both reduced by a factor of N . This reduction
is expected in long one-dimensional chains, where tensors
sufficiently far from the edges are typically identical.

Further insight on the RBM result can be obtained by
examining the distribution of the absolute weight values |Wi j |
in a typical trained model. In Fig. 3 we plot the magnitude of
each individual weight, sorted in decreasing order from left to
right, on a logarithmic scale. One can see that near criticality,
the largest contribution is given by the first 10%–20% of
weights; then the weight values decrease exponentially in
magnitude, eventually falling off even more rapidly. We return
to this observation after the next section.

B. Scaling of sample complexity

Above, we studied the minimum number of RBM parame-
ters required to find an accurate ground-state energy, assuming
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FIG. 4. The minimum number of training examples M required
for ε � 0.002 for the TFIM at the critical point h/J = 1 for different
ratios of the number of hidden to visible units α = Nh/N .

access to an infinite amount of training data. We now deter-
mine the minimal sample complexity required to accurately
train this number of parameters. We focus on h/J = 1 and
fix the ratio α = Nh/N for several values near 1/2. Then,
repeating the procedure from the last section, we increment
the number of training examples M by 2500 until the ROE
learning criterion ε � 0.002 on the RBM energy estimator is
achieved. This procedure is repeated for a number of different
initial weight configurations, and the results are averaged. The
resulting scaling of the sample complexity is shown in Fig. 4.

The results suggest that for Nh/N near 1/2, the sample
complexity scales linearly in the number of qubits. Combining
the asymptotic scaling results from the previous two sections,
Nh ∼ N and M ∼ N , suggests that the number of samples per
parameter required to train a minimally expressive machine
scales as N/N2 ∼ 1/N . In other words, the relative “data cost”
required to train a new weight parameter decreases with an
increasing number of qubits. A linear scaling of the sample
complexity was also observed in a recent generative modeling
scheme based on positive operator-valued measurements [3].

We remark that a sample complexity linear in N is consis-
tent with observations on the probably approximately correct
(PAC) learnability of quantum states. In Ref. [27] Aaronson
argues that, if one is concerned only about learning a state
well enough to predict the outcomes of most measurements
drawn from it, the exponential cost usually associated with full
state tomography is reduced to a linear scaling in N . This is
what we find in Fig. 4. Indeed, a characteristic of the Aaronson
learning theorem is the assumption that the training samples
are drawn independently from the probability distribution.
This is exactly the setting that we employ in training the
RBM in the present work. Hence, it is reasonable to expect
the theorem to apply.

C. Reducing the number of model parameters posttraining

We now return to the results of Sec. III A, where it was
found that the minimal number of hidden units required to
satisfy our chosen ROE scales approximately as Nh ≈ 1

2 N
near the TFIM quantum critical point. Implicit in this result is
the RBM optimization procedure used to train the machine: a
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TABLE I. The number of weights required to achieve ε � 0.002
at the critical point h/J = 1. Results for the “original” RBM are
taken from Fig. 2.

N

10 20 30 40

Original 50 200 420 760
Pruned 20 50 79 119

stochastic gradient descent that minimizes the KL divergence
[9]. Since it is not obvious that the scaling behavior is inde-
pendent of this optimization procedure, it is fair to ask the
question: Is it possible to find more efficient representations—
with fewer model parameters—by modifying the learning
protocol? Indeed, it is known that the required number of
model parameters is intertwined with the specifics of the
training procedure. In particular, it has been found that the
overparameterization inherent in deep neural networks can
ease and accelerate their optimization by (stochastic) gradient
descent [28–32].

Figure 3 offers a clue that the RBM parametrization may
not be optimal (i.e., minimal) for the final trained wave
function by demonstrating that the distribution of the weight
magnitudes in a trained model is very nonuniform: 10% to
20% of the weights have values that are orders of magni-
tude larger than the rest. Recent machine learning literature
has studied the relative importance of these smaller weights
with a procedure called pruning. Following the ideas of
Refs. [33,34], we define a pruning procedure for our scaling
study in the following steps:

(1) Start from the original, converged trained model (e.g.,
Fig. 3, with Nh = 1

2 N for h/J = 1).
(2) Set a threshold δ for the weight magnitudes. If a given

|Wi j | < δ, set Wi j = 0, and freeze it for the following steps.
(3) Fine-tune the pruned model by running several more

training iterations until the desired accuracy (as defined by
the ROE learning criterion) is restored.

(4) Repeat steps 2–4, pruning additional weights until the
model fails to fulfill the learning criterion.

We choose the pruning threshold such that 40% of the
nonzero weights are pruned in the first iteration, and 5% of
the nonzero weights are pruned in each following iteration.
Note also that in this procedure we do not prune biases (see
the Appendix for further comments).

We apply weight pruning to our trained RBM focusing
on the critical point of the TFIM and find that a significant
reduction in the number of RBM parameters required to
correctly capture the critical TFIM ground-state energy can
be achieved for all system sizes. The results for several small
numbers of qubits are presented in Table I. We interpret this
to mean that the standard training of an RBM with contrastive
divergence benefits from an overparameterization, employing
more weights than is strictly required for accurate expression
of the TFIM wave function in order to make the optimization
more navigable. We note that in some rare cases, pruning a
very small number of weights seriously alters the ROE, high-
lighting that some paths through the optimization landscape
may depend on weight parameters that are not redundant. For

this reason, rigorous uncertainty intervals on our results are
difficult to estimate at present.

The success of the pruning procedure opens up the pos-
sibility of systematically searching for a change in scaling
behavior. However, due to the significant increase in method-
ological complexity introduced by the pruning procedure, this
analysis is out of scope for the current study and will be
presented in another work.

IV. DISCUSSION

In this paper, we have empirically studied the scaling of
computational resources required for the accurate reconstruc-
tion of positive-real wave functions using generative modeling
with a restricted Boltzmann machine. We obtained scaling
results by examining the energy estimator calculated from an
RBM after training on projective measurement data from the
one-dimensional transverse-field Ising model (TFIM) ground
state. An RBM reconstruction of the ground-state wave func-
tion was defined to be “accurate” when the relative error
between the RBM estimator and the exact energy value was
below a fixed threshold. Thus, scaling results in this paper are
subject to the caveat that they could change if other criteria
were to be considered, such as the convergence of fidelity or
correlation functions.

In the present case, convergence of the relative error in
the energy produces several interesting results. First, for a
standard optimization procedure with contrastive divergence,
the number of weights required for accurate reconstruction
is, at best, constant (deep in the ferromagnetic/paramagnetic
phases). At worst, this scaling is quadratic; this occurs near the
quantum critical point between the two phases. It is interesting
to note that such scaling is consistent with that expected
from a translationally invariant matrix product state encoding.
In addition, the minimum number of samples required to
converge the energy at the critical point is observed to scale
linearly with the number of qubits. This is consistent with a
theorem by Aaronson that predicts a linear scaling in a similar
setting for PAC learning [27].

Further, we present evidence that the number of parameters
required to represent the ground state is drastically affected
by the RBM learning procedure. By employing a pruning
technique that sets small weights to zero, then fine-tuning the
remaining model parameters through additional training, we
observe a very significant reduction in the number of param-
eters required to accurately reproduce the energy. It would be
interesting to examine whether the asymptotic scaling func-
tions identified here are affected by the pruning procedure.
Further, such a technique could provide a systematic way
of searching for the minimal model expressiveness required
for a given quantum state. It would then be interesting to
compare the obtained results to theoretical expectations for
the representational capacity of RBMs required for quantum
ground-state wave functions [4,35,36].

Indeed, numerous recent results have highlighted the ben-
efit that overparameterization provides for optimizing deep
learning models [28,31,32]. In this paper, we have discovered
that RBMs trained on measurement data for positive-real
wave functions may as well be aided by overparameterization
beyond what is needed for the theoretical representation of
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the quantum state as a means of assisting the standard op-
timization procedure of minimizing the KL divergence via
contrastive divergence. The question of how to systematically
mitigate this overparameterization while still maintaining the
ease of optimization is an active area of research [37–39],
one whose successes will be of great use for more efficiently
representing and studying quantum systems.

It is natural to wonder what the scaling of computational
resources is for reconstructing quantum states that are not real
or positive. To this end, the present results point towards a
rich field of similar scaling studies that should be pursued on
a variety of quantum many-body models in the future. The
question of scaling is also especially pertinent for state-of-the-
art experiments, such as fermionic quantum simulators [40],
wave functions generated by quantum dynamics [41,42], and
quantum chemistry calculations with superconducting circuits
[43]. In contrast to positive wave functions, the reconstruction
(with a suitably modified RBM) demands training data from
an extended set of measurement bases. The ability to theoret-
ically identify the minimal set, and how the size of this set
scales with the number of qubits, will ultimately determine
the feasibility of integrating this type of machine learning
technology into such near-term quantum devices.

In conclusion, we have proposed a systematic procedure to
evaluate the scaling of resources for reconstructing positive-
real wave functions with RBMs. A tighter threshold in the
reconstructed energy accuracy, or improved neural-network
parametrizations of nonpositive states, will likely require a
more powerful breed of generative model. Recurrent neural
networks, transformers, and other autoregressive models are
currently being considered in this context. In light of the fact
that current intermediate-scale quantum devices are already
capable of producing training data on tens and even hundreds
of qubits, we expect these and similar scaling studies will be
pursued in earnest in the near future.
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APPENDIX

Projective measurement data in the σ z basis for the TFIM
will generally obey Z2 symmetry in the absence of symmetry
breaking, which may occur due to a limited DMRG bond di-

mension (or can happen spontaneously in the thermodynamic
limit). Let us assign the measurement on a single qubit σ z

i =
σi = ±1. The probability of any given state over N qubits σ

is therefore the same as that of the corresponding spin-flipped
state σ̄; that is, the magnetization of the state will be zero. In
a typical RBM, the values of the visible and hidden units will
be 0 and 1, which can be mapped to an “occupation” number
rather than a spin magnetization. One can always consider
instead the spin language by working in the ±1 basis. In this
basis, when the underlying data set has zero magnetization,
we can assume that the energy of the RBM takes the form

Eλ(σv, σh) = −
∑

i j

W̃i jσ
v
i σ h

j , (A1)

where σ v
i (σ h

j ) is a single visible (hidden) unit in the spin
language. It can then be shown that this energy function, when
used to define a joint distribution, results in pλ(σv ) = pλ(σ̄v )
after marginalizing over the hidden units. In other words, the
RBM in the ±1 representation requires no biases (or magnetic
fields) to capture a Z2 invariance in the data distribution.

To see what this means in the occupation number rep-
resentation, one can map σ v

i = 2vi − 1 and σ h
j = 2h j − 1,

where vi and h j ∈ {0, 1}. By transforming the energy ex-
pression (A1) and setting Wi j = 4W̃i j , bi = −∑

j 2W̃i j , and
c j = −∑

i 2W̃i j , we obtain an expression identical to Eq. (2).
This allows us to interpret the presence of biases, which are
learned by the RBM even in TFIM data sets that are observed
to be Z2 invariant.

Let us examine the weight matrix of a typical converged
run of the RBM. From the above arguments, we can calculate
the ratios of the biases to the sums of weights along rows and
columns of the weight matrix:

αi =
∑

j

Wi j/bi = −
∑

j

4W̃i j

/ ∑
j

2W̃i j = −2, (A2)

β j =
∑

i

Wi j/c j = −
∑

i

4W̃i j

/ ∑
i

2W̃i j = −2. (A3)

FIG. 5. The left and right panels show the values of the weight
matrix from an RBM trained on N = 40 at the quantum critical point
to ε � 0.002, summed along its rows and columns, respectively. One
can see that the ratios of the summed weights to biases fluctuate
around −2, as predicted.
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Thus, one expects at least approximately that αi = β j = −2
for all i and j for any of the trained RBM models considered

in Fig. 2. We confirm this behavior for N = 40 and Nh = 20
in Fig. 5.
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