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We argue that static nonlinear Hall conductivity can always be represented as a vector in two dimensions
and as a pseudotensor in three dimensions independent of its microscopic origin. In a single-band model with a
constant relaxation rate, this vector or tensor is proportional to the Berry curvature dipole I. Sodemann and L.
Fu, Phys. Rev. Lett 115, 216806 (2015). Here, we develop a quantum Boltzmann formalism to second order in
electric fields. We find that in addition to the Berry curvature dipole term, there exist additional disorder-mediated
corrections to the nonlinear Hall tensor that have the same scaling in the impurity scattering rate. These can be
thought of as the nonlinear counterparts to the side-jump and skew-scattering corrections to the Hall conductivity
in the linear regime. We illustrate our formalism by computing the different contributions to the nonlinear Hall
conductivity of two-dimensional tilted Dirac fermions.
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I. INTRODUCTION

Two independent experimental studies have recently re-
ported the discovery [1,2] of the time-reversal-invariant
nonlinear Hall effect (NLHE) in layered transition-metal
dichalcogenides. Unlike the ordinary Hall effect, the NLHE
can occur in time-reversal-invariant metals lacking inversion
symmetry [3–6]. Building upon previous studies [3,4], a
simple semiclassical theory of this effect was developed in
Ref. [5] based on the notion of the Berry curvature dipole
(BCD): a tensorial object measuring the average gradient
of the Berry curvature over the occupied states. In a single
band model with a constant relaxation rate, the nonlinear
conductivity of a time-reversal invariant metal was found
to be proportional to the BCD. Several subsequent studies
have addressed the NLHE and related effects in a variety of
contexts and material platforms [7–17].

In this paper, we elaborate further on the theory of the
NLHE. We argue that the nonlinear Hall conductivities can
always be described by a pseudotensor in three dimensions
and a pseudovector in two dimensions independent of their
microscopic origin. This implies that constraints imposed by
crystal symmetry on the nonlinear Hall pseudotensors/vectors
follow from generic principles and in particular they are
identical to the constraints imposed by crystal symmetry
on the BCD pseudotensor/vector identified in Ref. [5]. We
study the NLHE within the quantum Boltzmann approach
developed in Ref. [18], which is able to capture a vari-
ety of phenomena in multiband systems [19]. We have en-
countered several contributions to the NLHE beyond the
BCD contribution. Notably, we have found nonlinear side-
jump (NLSJ) and skew-scattering (NLSK) terms, analo-
gous to the corrections of the linear Hall conductivity [20],
which have the same scaling with the scattering rate as the
BCD contribution. Our approach also captures the intrinsic
NLHE allowed in time-reversal broken metals identified in
Ref. [21].

II. SYMMETRY CONSTRAINTS ON
THE NONLINEAR HALL EFFECT

Let us consider a metal in a steady-state flow of electric
current in the presence of dc electric fields. To second order
in electric fields, the linear and nonlinear conductivity tensors
capture the electric current response:

jα = σαβEβ + χαβγ EβEγ + · · ·. (1)

Here α refers to space indices, and the sum over repeated
indices is understood. The power supplied by the electric field
on the electronic fluid is the scalar p = jαEα . We wish to
separate the conductivity tensors into the components that
contribute to the power and dissipationless or Hall com-
ponents. All the transformation properties discussed in this
section follow from the elementary fact that the current and
electric fields transform as vectors under coordinate changes.
Before considering the nonlinear response, we briefly review
the case of the linear conductivity σαβ , where the decompo-
sition amounts to separating the tensor into symmetric and
antisymmetric components. In two dimensions there is a sin-
gle independent component characterizing the antisymmetric
conductivity, which is the Hall conductivity, and transforms as
a pseudoscalar under a spatial symmetry coordinate change:

2D : σ H ≡ εαβσαβ

2
, σ H = det(O)σ H , (2)

where εαβ is the 2D Levi-Civita symbol and O is an orthog-
onal matrix describing a symmetry transformation. Equation
(2) implies the well-known constraint that the Hall conduc-
tivity vanishes when the system has a left-handed symmetry
[det(O) = −1] such as a mirror plane. In three dimensions,
there are three independent components of the Hall conduc-
tivity that transform as a pseudovector:

3D : σ H
γ ≡ εγαβσαβ

2
, σ H

α = det(O)Oαβσ H
β . (3)
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Here εαβγ is the 3D Levi-Civita symbol. Equation (3) leads to
useful constraints, such as that the Hall vector must be normal
to any mirror plane, and that the presence of two independent
mirror planes would force all its components to vanish.

Let us now consider the case of the nonlinear Hall con-
ductivity tensor χαβγ . To isolate the components that do not
contribute to dissipation, it suffices to antisymmetrize the first
index with either the second or third. These two choices of
antisymmetrization are equivalent because, by construction,
this tensor is symmetric under the last two indices χαβγ =
χαγβ . Thus, one obtains that in two dimensions the second-
order Hall response has two independent components that
transform as a pseudovector [22] under space symmetries:

2D : χH
γ ≡ εαβχαβγ

2
, χH

α = det(O)OαβχH
β . (4)

We will refer to χH
γ as the nonlinear Hall vector. This

transformation rule implies that the nonlinear Hall vector in
two dimensions is always orthogonal to the mirror planes, and
that two or more mirrors would force it to identically vanish.
In three dimensions, one finds that there are nine independent
components of the nonlinear Hall conductivity that transform
as a rank-2 pseudotensor:

3D : χH
γ η ≡ εαβγ χαβη

2
, (5)

χH
αβ = det(O)Oαα′Oββ ′χH

α′β ′ . (6)

We will refer to χH
γ η as the nonlinear Hall tensor. The

constraints imposed by different space groups on the nonlin-
ear Hall vector and tensor follow from these transformation
laws and are identical to those of the BCD described in
Ref. [5]. In fact, in the case of the single-band model with
a constant relaxation rate of Ref. [5], there is a simple relation
between the nonlinear Hall and the BCD tensors, which, after
symmetrizing the dc conductivities from Ref. [5], reads as

2D : χH
α = 3e3τ

4
Dα, (7)

3D : χH
αβ = 3e3τ

4

(
Dβα − 1

3
Tr(D)δαβ

)
. (8)

Thus the nonlinear Hall vector is proportional to the BCD
vector in two dimensions, while in three dimensions it is
proportional to the traceless part of the BCD pseudotensor.
As we will see, there are further terms contributing to the
nonlinear Hall tensor beyond the BCD. Importantly, some of
them can also be linear in the scattering rate τ .

III. QUANTUM KINETIC FRAMEWORK

We consider electrons moving in a periodic crystal with
Bloch states |un

k〉 and energy εn
k , where k is the crystal mo-

mentum and n is the band index. Electrons also experience
a static disorder potential, U (r), and an external constant
electric field, E . As described in Ref. [18], the disorder av-
eraged density matrix or equal-time Green’s function satisfies
a quantum Boltzmann equation of the form

dρ

dt
+ i

h̄
[H0, ρ] + I (ρ) = − i

h̄
[HE , ρ], (9)

where ρ = 〈c†
nkcn′k〉. We employ the gauge in which the

electric field is coupled linearly to the position operator, and
we use the representation of this operator in the Bloch basis
[23,24]:

rmm′ = i∂k + Amm′ (k), (10)

where Amm′ (k) = i〈um
k |∂k|um′

k 〉 is the non-Abelian Berry con-
nection matrix. The collision operator is given by

I (ρ)mm′′′
k = πni

h̄

∑
m′m′′k′

{
U mm′

kk′ U m′m′′
k′k δ

(
εm′

k′ − εm′′
k

)
ρm′′m′′′

k

−U mm′
kk′ U m′′m′′′

k′k ρm′m′′
k′ δ

(
εm′′

k′ − εm′′′
k

)
−U mm′

kk′ U m′′m′′′
k′k δ

(
εm

k − εm′
k′

)
ρm′m′′

k′

+U m′m′′
kk′ U m′′m′′′

k′k ρmm′
k δ

(
εm′

k − εm′′
k′

)}
. (11)

Here ni is the impurity density and U mm′
kk′ = 〈ψm′

k′ |U (r)|ψm
k 〉,

where ψm
k (r) = eikrum

k (r). Notice that the collision operator
is a linear functional of the density matrix and satisfies the
fundamental property that it vanishes when evaluated in any
diagonal density matrix that is a function of the energy ρmm′

k =
δmm′ρ0(εm

k ). This guarantees that the equilibrium Fermi-Dirac
distribution is a solution of the quantum Boltzmann equation
(QBE) in the absence of an external electric field.

We solve the QBE perturbatively by performing a double
expansion on the impurity density ni, which controls the
disorder strength, and the driving electric field E . To do so,
we write the density matrix as ρ = ∑

q,p ρq,p, where ρq,p

is understood to vanish as Eqnp
i . The series must start at

q = 0, namely ρq<0,p = 0, for any p. Moreover, the E0 term
must coincide with the equilibrium distribution, which is
independent of the impurity strength. Therefore, ρ0,0 = ρ0

and ρ0,p�=0 = 0. We expect that for any q, ρq,p will have
the strongest singularity of the form 1/nq. This singularity
encodes the fact that in the clean limit, the distribution is
unable to reach a steady state in the absence of collisions. The
largest power of this divergence follows from the expectation
that the distribution has a leading correction at order q of the
form Eqτ q, where τ ∼ 1/ni is the relaxation time. Therefore,
the expansion takes the form

ρ = ρ0 +
∑
q�1

∑
p�−q

ρq,p. (12)

The QBE can be solved recursively. The detailed recursive
solution is described in Supplemental Material [25]. We
present here expressions for density matrices to second order
in an electric field, {ρ2,−2, ρ2,−1, ρ2,0}, in terms of the density
matrices linear in electric field {ρ1,−1, ρ1,0}. Expressions for
the latter are derived in Refs. [18,25]. Our results can be used
for any band structure with quenched disorder. The leading
term in the scattering rate is a diagonal matrix and is given by

ρ2,−2 = ρD2,−2 = − i

h̄
I−1
D ([eE · r̂, ρ1,−1]D), (13)

where I−1
D is the inverse of the collision operator viewed as

an ordinary matrix acting on the diagonal part of the density
matrix viewed as a vector [18]. This term is the leading
semiclassical term from Boltzmann theory that scales as τ 2

[5]. The next correction is ρ2,−1, which scales as τ , and it
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contains several effects that are the focus of our study. First,
its band off-diagonal part (m �= m′) is the sum of two matrices
that give rise to the BCD and NLSJ terms:

(ρBCD)mm′
k = − [eE · r̂, ρ1,−1]mm′

k

εmk − εm′k
, (14)

(ρNLSJ)mm′
k = ih̄

I (ρ2,−2)mm′
k

εmk − εm′k
, (15)

where we assume no band degeneracies at the Fermi surface.
Second, its band diagonal part (m = m′) is the term giving rise
to the NLSK:

ρNLSK = −I−1
D

(
i

h̄
[eE · r̂, ρ1,0]D + ID(ρOD2,−1)

)
, (16)

where ρOD2,−1 = ρBCD + ρNLSJ. Equations (14)–(16) contain
all contributions up to order τ . One can continue the ex-
pansion with the subleading matrix ρ2,0, and several terms
independent of τ would appear. Among these, one encounters
an intrinsic band-off-diagonal term that depends only on band
properties and not on collisions, given by

(ρINT)mm′
k = −

[
eE · r̂, ρ int

1,0

]mm′

k

εmk − εm′k
. (17)

As we will see, this term gives rise to the intrinsic NLHE
in time-reversal broken metals first identified in Ref. [21].
Given the density matrix, one can compute any observable.
In particular, the electric current will be given by the average
of the velocity, and thus the nonlinear conductivity will be

χαβγ = −e
∂2tr[vαρ]

∂Eβ∂Eγ

∣∣∣∣
Eα→0

. (18)

IV. NONLINEAR HALL CONDUCTIVITY
OF 2D DIRAC FERMIONS

To apply our formalism, we consider a model of tilted
2D Dirac cones, which captures the low-energy properties
of various Dirac materials such as the surface of topological
crystalline insulators [26,27] and strained transition-metal
dichalcogenides. Their effective Hamiltonian is [5]

H (k) = vkxσy − vkyσx + αky + βσz, (19)

where v is the Fermi velocity, β is the gap, and α is the tilt.
The dispersion is ε±

k = αky ± εk , εk =
√

v2k2 + β2. Using the
following gauge for the Bloch states:

|uk〉± = 1√
2

⎛
⎝

√
1 ± β

εk
e−iθ

±i
√

1 ∓ β

εk

⎞
⎠, (20)

the non-Abelian Berry connection vector is found to be

[Ak]x = − sin θ

2k
σ0 − β sin θ

2εkk
σz − v sin θ

2εk
σx − βv cos θ

2ε2
k

σy,

[Ak]y = cos θ

2k
σ0 + β cos θ

2εkk
σz + v cos θ

2εk
σx − βv sin θ

2ε2
k

σy.

(21)

Assuming a simple model of disorder with a random distribu-
tion of δ-function impurities of the form U (r) = ∑

i U0δ(r −

ri ), the scattering time τ is found to be 1
τ

= niU 2
0

4h̄
μ

v2 (1 + 3 β2

μ2 ),
where μ = εkF is the chemical potential taken to be in the
conduction band.

Before discussing the nonlinear transport, we briefly reca-
pitulate the linear-response regime. We take the tilt in this case
to be zero, α = 0, because the mass term β alone is enough
to produce the linear Hall effect. The intrinsic part of the off-
diagonal density matrix and its associated Hall conductivity
are found to be (E = Exx̂) [25]

(ρOD1,0)int
k = −eEx

2εk

[
v sin θ

2εk
σx + βv cos θ

2ε2
k

σy

]

× [ f0(ε+
k ) − f0(ε−

k )], (22)

σ int
yx = e2

4π

β

μ
. (23)

The above is equivalent to the well-known result from
the integral of the Berry curvature. The extrinsic parts of
the off-diagonal and diagonal density matrices are found
to be [25]

(ρOD1,0)ext
k = eExε

2
k

ε2
k + 3β2

[
3
βv3k2 cos θ

4ε4
k

σy + k2v3 sin θ

4ε3
k

σx

]

× δ(εk − μ), (24)

(ρD1,0)ext
k = −eEx

2εk

βv2k sin θ
(
ε2

k − β2
)

(
ε2

k + 3β2
)2 δ(εk − μ)σz. (25)

From these one obtains, respectively, the side-jump and skew-
scattering contributions to the Hall conductivity [25]:

σ sj
yx = e2

2π

β

μ

(μ2 − β2)

(μ2 + 3β2)
, σ sk

yx = e2

2π

β

2μ

(μ2 − β2)2

(μ2 + 3β2)2
.

(26)

We observe that the side-jump contribution arises from the
band off-diagonal part of ρ1,0 while the skew-scattering con-
tribution arises from the diagonal part of ρ1,0. Our skew-
scattering term differs by a factor of 3 with respect to that ob-
tained in a diagrammatic noncrossing approximation [28,29]
although it has the same dependence on the mass and chemical
potential. We note in passing that there is a debate on the full
form of the linear Hall conductivity of massive Dirac fermions
in the presence of disorder, as recent studies have advocated
that diagrams beyond the noncrossing approximation have the
same scaling in τ [29,30]. Our formalism can be viewed as
a reasonable compromise between simpler phenomenological
approaches and fully microscopic descriptions of disorder.
We expect additional corrections to be present in such fully
microscopic descriptions, and we hope that future studies will
systematically study all leading disorder-mediated corrections
to the nonlinear Hall conductivity.

We now turn our attention to the NLHE. We begin by con-
sidering the contribution arising from the band off-diagonal
density matrix in Eq. (14) that gives rise to the BCD term.
From this matrix we find the following BCD contribution to
the nonlinear Hall vector defined in Eq. (4) to leading order in
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FIG. 1. (a) Linear in τ contributions to the nonlinear Hall
conductivity: Berry curvature dipole (BCD), nonlinear side-jump
(NLSJ), and nonlinear skew-scattering (NLSK) as a function of
chemical potential for a tilted Dirac cone. (b) Intrinsic contribution
of the NLHC. Here, we have taken h̄ = 1, v = 1 eV Å, β = 0.6 eV,
and α = 0.3 eV Å.

the tilt α [25]:

[
χH

y

]BCD = −e3τ (μ)

4π

αβ

μ4(μ2 + 3β2)
(2μ4 + μ2β2 − 3β4).

= −e3τ

4π

3αβ

2μ4
(μ2 − β2). (27)

The x-component vanishes, [χH
x ]BCD = 0, and the second

line follows after approximating the scattering rate to be
energy-independent and recovers the result from Ref. [5]. We
now consider the off-diagonal density matrix ρ2,−1 arising
from the collision operator, which is given in Eq. (15), and
which by analogy with the linear case can be identified as the
NLSJ contribution. The y-component is ([χH

x ]NLSJ = 0)

[
χH

y

]NLSJ = e3τ (μ)

4π

αβ(μ2 − β2)

μ4(μ2 + 3β2)3
(9β6 + 12μ2β4

+ 21μ4β2 − 2μ6). (28)

From the diagonal correction to the density matrix
ρ2,−1 given in Eq. (16), we obtain the NLSK contribu-
tion to the nonlinear Hall vector, whose y-component reads
([χH

x ]NLSK = 0)

[
χH

y

]NLSK =−e3τ (μ)

4π

αβ(μ2 − β2)

μ2(μ2 + 3β2)3
[(μ2 − 7β2)2 − 52β4].

(29)

Notice that the BCD, NLSJ, and NLSK are all Fermi surface
effects and hence vanish in the limit of zero carrier density.
The behavior of these different terms as a function of chemical
potential is shown in Fig. 1(a).

We have focused so far on the leading contributions to the
nonlinear Hall vector that have the same scaling as the BCD

term. To illustrate the generality of our formalism, we will
now consider a subleading density matrix that is independent
of τ and which is an intrinsic band-structure effect, described
in Eq. (17). This leads to a nonlinear Hall vector with the x-
component given by ([χH

y ]INT = 0)

[
χH

x

]INT = e3

4π

α

4μ4
(μ2 − β2). (30)

This intrinsic contribution coincides with that previously iden-
tified in Ref. [21] originating from the field-induced positional
shift of Bloch electrons. Unlike the terms that we discussed
before, this contribution is only present in a time-reversal
broken system, vanishing after adding pairs of Dirac cones
related by time-reversal symmetry. It is also a Fermi surface
effect that vanishes as the chemical goes into the gap, un-
like the intrinsic linear Hall effect. This contribution will be
subleading in clean systems (τ → ∞). It is notable that this
intrinsic contribution has a nonlinear Hall vector orthogonal to
the tilt of the Dirac cone, in contrast to the BCD, NLSJ, and
NLSK contributions. Its dependence on the chemical potential
is shown in Fig. 1(b).

V. SUMMARY

We have argued that static nonlinear Hall conductivity can
always be represented as a vector in two dimensions and
as a pseudotensor in three dimensions. Therefore, the effect
has a characteristic angular dependence that is dictated by
crystal symmetry and is independent of the microscopic origin
of the nonlinear Hall effect. Within a quantum Boltzmann
formalism, we have shown that in addition to the Berry
curvature dipole term identified in Ref. [5], there are two
generic additional disorder-mediated contributions that are
analogous to the side-jump and skew-scattering terms in the
linear case that we termed the nonlinear side-jump (NLSJ)
and nonlinear skew-scattering (NLSK) contributions, which
also scale linearly with the impurity scattering time. This
highlights the importance of taking into account these terms
in recent experiments [1,2]. We also recovered the subleading
intrinsic nonlinear Hall effect allowed in time-reversal broken
systems that was identified in Ref. [21].

Note added. During the completion of our work, other
manuscripts appeared discussing disorder effects in the non-
linear Hall effect with some overlap with our results [30–33].
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[23] E. Blount, Solid State Physics (Elsevier, Amsterdam, 1962),
Vol. 13, pp. 305–373.

[24] C. Aversa and J. E. Sipe, Phys. Rev. B 52, 14636 (1995).
[25] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.100.195117 for the detailed recursive
solution.

[26] T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nat.
Commun. 3, 982 (2012).

[27] Y. Ando and L. Fu, Annu. Rev. Condens. Matter Phys. 6, 361
(2015).

[28] N. A. Sinitsyn, A. H. MacDonald, T. Jungwirth, V. K. Dugaev,
and J. Sinova, Phys. Rev. B 75, 045315 (2007).

[29] I. A. Ado, I. A. Dmitriev, P. M. Ostrovsky, and M. Titov,
Europhys. Lett. 111, 37004 (2015).

[30] E. J. Konig, M. Dzero, A. Levchenko, and D. A. Pesin, Phys.
Rev. B 99, 155404 (2019).

[31] Z. Z. Du, C. M. Wang, H.-Z. Lu, and X. C. Xie, Nat. Commun.
10, 3047 (2019).

[32] H. Isobe, S.-Y. Xu, and L. Fu, arXiv:1812.08162.
[33] C. Xiao, Z. Z. Du, and Q. Niu, arXiv:1907.00577.

195117-5

https://doi.org/10.1103/PhysRevB.92.235447
https://doi.org/10.1103/PhysRevB.92.235447
https://doi.org/10.1103/PhysRevB.92.235447
https://doi.org/10.1103/PhysRevB.92.235447
https://doi.org/10.1103/PhysRevLett.117.146603
https://doi.org/10.1103/PhysRevLett.117.146603
https://doi.org/10.1103/PhysRevLett.117.146603
https://doi.org/10.1103/PhysRevLett.117.146603
https://doi.org/10.1038/s41567-018-0189-6
https://doi.org/10.1038/s41567-018-0189-6
https://doi.org/10.1038/s41567-018-0189-6
https://doi.org/10.1038/s41567-018-0189-6
https://doi.org/10.1103/PhysRevB.97.041101
https://doi.org/10.1103/PhysRevB.97.041101
https://doi.org/10.1103/PhysRevB.97.041101
https://doi.org/10.1103/PhysRevB.97.041101
https://doi.org/10.1103/PhysRevB.97.035158
https://doi.org/10.1103/PhysRevB.97.035158
https://doi.org/10.1103/PhysRevB.97.035158
https://doi.org/10.1103/PhysRevB.97.035158
https://doi.org/10.1088/2053-1583/aad1ae
https://doi.org/10.1088/2053-1583/aad1ae
https://doi.org/10.1088/2053-1583/aad1ae
https://doi.org/10.1088/2053-1583/aad1ae
https://doi.org/10.1103/PhysRevB.98.121109
https://doi.org/10.1103/PhysRevB.98.121109
https://doi.org/10.1103/PhysRevB.98.121109
https://doi.org/10.1103/PhysRevB.98.121109
https://doi.org/10.1103/PhysRevB.99.035403
https://doi.org/10.1103/PhysRevB.99.035403
https://doi.org/10.1103/PhysRevB.99.035403
https://doi.org/10.1103/PhysRevB.99.035403
https://doi.org/10.1103/PhysRevLett.121.246403
https://doi.org/10.1103/PhysRevLett.121.246403
https://doi.org/10.1103/PhysRevLett.121.246403
https://doi.org/10.1103/PhysRevLett.121.246403
http://arxiv.org/abs/arXiv:1812.02191
https://doi.org/10.1103/PhysRevLett.121.266601
https://doi.org/10.1103/PhysRevLett.121.266601
https://doi.org/10.1103/PhysRevLett.121.266601
https://doi.org/10.1103/PhysRevLett.121.266601
https://doi.org/10.1103/PhysRevB.99.115201
https://doi.org/10.1103/PhysRevB.99.115201
https://doi.org/10.1103/PhysRevB.99.115201
https://doi.org/10.1103/PhysRevB.99.115201
https://doi.org/10.1103/PhysRevB.96.035106
https://doi.org/10.1103/PhysRevB.96.035106
https://doi.org/10.1103/PhysRevB.96.035106
https://doi.org/10.1103/PhysRevB.96.035106
https://doi.org/10.1103/PhysRevB.96.235134
https://doi.org/10.1103/PhysRevB.96.235134
https://doi.org/10.1103/PhysRevB.96.235134
https://doi.org/10.1103/PhysRevB.96.235134
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/PhysRevLett.112.166601
https://doi.org/10.1103/PhysRevLett.112.166601
https://doi.org/10.1103/PhysRevLett.112.166601
https://doi.org/10.1103/PhysRevLett.112.166601
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevB.52.14636
http://link.aps.org/supplemental/10.1103/PhysRevB.100.195117
https://doi.org/10.1038/ncomms1969
https://doi.org/10.1038/ncomms1969
https://doi.org/10.1038/ncomms1969
https://doi.org/10.1038/ncomms1969
https://doi.org/10.1146/annurev-conmatphys-031214-014501
https://doi.org/10.1146/annurev-conmatphys-031214-014501
https://doi.org/10.1146/annurev-conmatphys-031214-014501
https://doi.org/10.1146/annurev-conmatphys-031214-014501
https://doi.org/10.1103/PhysRevB.75.045315
https://doi.org/10.1103/PhysRevB.75.045315
https://doi.org/10.1103/PhysRevB.75.045315
https://doi.org/10.1103/PhysRevB.75.045315
https://doi.org/10.1209/0295-5075/111/37004
https://doi.org/10.1209/0295-5075/111/37004
https://doi.org/10.1209/0295-5075/111/37004
https://doi.org/10.1209/0295-5075/111/37004
https://doi.org/10.1103/PhysRevB.99.155404
https://doi.org/10.1103/PhysRevB.99.155404
https://doi.org/10.1103/PhysRevB.99.155404
https://doi.org/10.1103/PhysRevB.99.155404
https://doi.org/10.1038/s41467-019-10941-3
https://doi.org/10.1038/s41467-019-10941-3
https://doi.org/10.1038/s41467-019-10941-3
https://doi.org/10.1038/s41467-019-10941-3
http://arxiv.org/abs/arXiv:1812.08162
http://arxiv.org/abs/arXiv:1907.00577

