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Strongly correlated electrons: Analytic mean-field theories with two-particle self-consistency
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A two-particle self-consistency is rarely part of mean-field theories. It is, however, essential for avoiding
spurious critical transitions and unphysical behavior. We present a general scheme for constructing analytically
controllable approximations with self-consistent equations for the two-particle vertices based on the parquet
equations. We explain in detail how to reduce the full set of parquet equations so as not to miss quantum criticality
in strong coupling. We further introduce a decoupling of convolutions of the dynamical variables in the Bethe-
Salpeter equations to make them analytically solvable. We connect the self-energy with the two-particle vertices
to satisfy the Ward identity and the Schwinger-Dyson equation and discuss the role of the one-particle self-
consistency in making the approximations reliable in the whole spectrum of the input parameters. Finally, we
demonstrate the general construction on the simplest static approximation that we apply to the Kondo behavior
of the single-impurity Anderson model.
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I. INTRODUCTION

Many-body systems are those in which particle interactions
cannot be neglected. In particular, when they are strong, they
cause critical fluctuations and may lead to qualitative changes
and phase transitions in extended systems. The critical behav-
ior must be treated self-consistently. Even simple models of
correlated elementary objects are, however, unsolvable. We
hence must resort to approximations, apart from a few limiting
cases where exact partial solutions exist. The approximations
are either numerical or semianalytic. The numerical approach
tends to offer unbiased approximations with all degrees of
freedom left in play, while the analytic approximations are
based on a reduction of complexity of interaction effects.
The numerical calculations offer good quantitative predictions
that can set trends in the dependence of the solution on the
model input parameters. The latter schemes aspire to repro-
duce qualitative features of the exact solution. They, unlike
the numerical methods, can address and control singularities
directly.

The first successful effort to tame the nonanalytic behavior
at the critical point of the continuous-phase transitions in
classical statistical models is the Landau mean-field theory in
which the free energy is expanded in the small order parameter
around the critical point [1]. This simplest local and static self-
consistent approximation inspired further attempts to improve
upon it by including dynamical corrections [2–4]. But these
attempts failed to match consistently ordered and disordered
phases at the critical point [5]. These inconsistencies were
removed later with a quite different improvement of the mean
field by using scaling arguments and the renormalization
group [6,7]. A mean-field approximation, nevertheless, also
remains the starting point for the renormalization-group con-
struction in analytic treatments.

*janis@fzu.cz

The concept of a local, comprehensive mean-field theory
was revitalized by realizing that it can be obtained as an exact
solution in the limit of high spatial dimensions for classical
spin models [3,8–10], as well as for quantum itinerant models
[11–14]. In particular, the limit to high spatial dimensions
in models of correlated and disordered electrons initiated a
boom in the applications of the dynamical mean-field theory
(DMFT) [15,16]. The major asset of the DMFT is its unbiased
inclusion of quantum fluctuations missed in classical static,
weak-coupling theories. It hence offers a reliable way to in-
vestigate the strong-coupling limit of correlated electron sys-
tems at low temperatures. Since the single-impurity Anderson
model (SIAM) is contained as the first, non-self-consistent
iteration to the DMFT, the advanced methods of SIAM have
been used to derive impurity solvers for the the dynamical
mean-field approximations.

The standard mean-field theories, including DMFT, intro-
duce renormalizations only for one-particle quantities repre-
sented by order parameters or the self-energy. They contain
no renormalizations of vertex functions and, hence, there is no
direct control of the singularities in the Bethe-Salpeter equa-
tions for the two-particle response functions. The attempts to
include two-particle and vertex renormalizations in the per-
turbation expansion are presently mostly made via nonlocal
corrections to the DMFT [17] or loop corrections with the
functional renormalization-group approach [18]. Recently, a
two-particle self-consistency resulting from the parquet ap-
proach was used to construct an analytic mean-field theory
for strong coupling [19–22]. The solution was shown to re-
produce qualitatively correctly the Kondo effect in the strong-
coupling limit of SIAM at zero temperature. It can be viewed
as a consistent generalization of the Hartree approximation
to strong coupling which is free of the spurious transition to
an ordered phase of the weak-coupling solution. An effective
interaction, as the only two-particle object determined self-
consistently, is a static approximation to the irreducible vertex
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in the electron-hole scattering channel which resembles the
GW construction [23,24].

Although the popularity of two-particle approaches has
increased in recent years [25–36], the complexity of two-
particle vertices demands the application of heavy numerics
to reach quantitative results unless further approximations
are used [37–39]. The numerical solutions do not allow for
the identification of the relevant degrees of freedom and
for the control of the nonanalytic behavior in the critical
regions of vertex functions offered by mean-field theories.
One has to introduce specific simplifications that make the
use of two-particle functions in the construction of mean-field
approximations effective.

A few attempts were made to simplify approximations for
two-particle functions and to derive a set of static effective
interactions determined self-consistently [40,41]. The former
approach determines effective interactions in the charge and
magnetic channels from local sum rules, while the latter
determines the irreducible vertices in all two-particle channels
from the crossing symmetry. Neither of these approaches was
able to determine the Kondo scale in SIAM analytically.

The approximate scheme developed in Refs. [19–22]
used three leading principles of simplifying the equations
for the two-particle vertices to end up with an analytic,
mean-field-like theory of quantum criticality: (1) The full
scheme of the parquet equations was replaced by a re-
duced set, (2) the dependence of the irreducible vertex on
its dynamical variables was suppressed, and (3) the stan-
dard construction of approximate theories of Baym and
Kadanoff with generating Luttinger-Ward functional [42,43]
had to be abandoned to comply with the Ward identity and
to keep the approximation conserving whereby two self-
energies were introduced. These steps were performed prag-
matically, goal directed without fully clarifying their gen-
eral meaning for the construction of analytic approximations
with the self-consistent determination of two-particle vertex
functions.

The aim of this paper is to present a systematic derivation
of mean-field theories with a two-particle self-consistency
based on the parquet equations with the necessary simplifi-
cations leading to semianalytic conserving approximations.
The resulting approximations are free of unphysical behavior
and spurious phase transitions and are applicable in strong
coupling, both in disordered as well as in ordered phases of
models of correlated electrons. In particular, we explain why
a reduction of the full set of parquet equations with the bare in-
teraction as the fully two-particle irreducible vertex is needed
to reach the quantum critical behavior in the Bethe-Salpeter
equations. We further explain how to separate the relevant
from irrelevant dynamical fluctuations near the singularities
in the two-particle vertex and how to decouple convolutions
of fermionic Matsubara frequencies in the Bethe-Salpeter
equations to make them analytically solvable. But, most im-
portantly, we give the proper meaning to two self-energies
understood now as parts of a single self-energy with even and
odd symmetry with respect to the symmetry-breaking field
controlling the critical behavior. The former self-energy is
determined from the dynamical Schwinger-Dyson equation.
The latter is coupled with the electron-hole irreducible vertex
via the Ward identity linearized in the symmetry-breaking

field. It plays the role of the order parameter. The full
self-energy is then compatible with both the Ward identity
and the Schwinger-Dyson equation. We thus set a framework
for systematic improvements of the impurity solver from
Refs. [19–22] to dynamical mean-field-like approximations
with a two-particle self-consistency offering a reliable de-
scription of thermodynamic and spectral properties in the
strong-coupling limit in different settings of impurity and bulk
models of correlated electrons.

II. TWO-PARTICLE SELF-CONSISTENCY: REDUCED
PARQUET EQUATIONS

A controlled and reliable way to suppress spurious tran-
sitions of the weak-coupling mean-field approximation is to
introduce a two-particle self-consistency where two-particle
vertices are determined self-consistently from nonlinear
equations. Only integrable singularities survive there as real
phase transitions. One possibility to reach a two-particle
self-consistency is to replace the bare interaction in response
functions by effective ones determined self-consistently [40].
A more systematic way to do this is to use the parquet
equations introduced to condensed matter by De Dominicis
and Martin [44,45]. The full set of parquet equations was
used to solve the soft x-ray problem [46], to understand
the local-moment formation [47,48], and was also applied
to the SIAM [49,50]. Unfortunately, the parquet equations
simultaneously self-consistent at the one- and two-particle
level have not brought much progress beyond the fluctuation
exchange, where only one-particle self-consistency is kept
[51]. Although the spurious phase transition of the Hartree
theory was suppressed with the one-particle self-consistency,
no Kondo limit was reproduced with it [52,53]. There is a
general problem with the full set of parquet equations with
the bare interaction as the completely irreducible vertex.
Quantum criticality and the Kondo effect in SIAM are
completely missed [54]. One must either replace the bare
interaction by a more complex vertex or appropriately reduce
the parquet equations to be able to reach the Kondo limit. Our
aim is to find an analytically tractable mean-field theory for
strongly correlated electron systems, for which purpose we
reduce the parquet equations and simplify their complexity.

A. Reduction scheme of the parquet equations

1. Two-channel parquet equations

The full parquet scheme contains three scattering channels
represented by three different Bethe-Salpeter equations for
the full two-particle vertex. They contain sums of multi-
ple scatterings of singlet electron-hole (eh) pairs, electron-
electron pairs (ee), and triplet electron-hole pairs (eh) [55].
It is, however, sufficient to use only the singlet electron-
electron and electron-hole multiple scatterings since the third,
eh channel shares the critical fluctuations with either of the
two fundamental channels [25]. We use the Hubbard model
and SIAM to study the strong-coupling limit in correlated
electron systems. The critical behavior in strong coupling is
not by this specification qualitatively affected.

The Bethe-Salpeter equation for the full singlet two-
particle vertex �σσ̄ with the irreducible vertex �eh

σ σ̄ and
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σ̄ = −σ in the electron-hole channel is

�σσ̄ (k, iωn, k′, iωn′ ; q, iνm) = �eh
σ σ̄ (k, iωn, k′, iωn′ ; q, iνm) − 1

N

∑
k′′

1

β

∑
ωl

�eh
σ σ̄ (k, iωn, k′′, iωl ; q, iνm)

× Gσ (k′′, iωl )Gσ̄ (k′′ + q, iωm+l )�σσ̄ (k′′, iωl , k′, iωn′ ; q, iνm), (1)

where N is the number of lattice sites, β = 1/kBT , and Gσ is the propagator of the electron with spin σ .
Analogously the Bethe-Salpeter equation for the same vertex in the electron-electron channel is

�σσ̄ (k, iωn, k′, iωn′ ; q, iνm) = �ee
σ σ̄ (k, iωn, k′, iωn′ ; q, iνm) − 1

N

∑
k′′

1

β

∑
ωl

�ee
σ σ̄ (k, iωn, k′′, iωl ; q + k′ − k′′, iνm+n′−l )

× Gσ (k′′, iωl )Gσ̄ (q + k + k′ − k′′, iωm+n+n′−l )�σσ̄ (k′′, iωl , k′, iωn′ ; q + k − k′′, iνm+n−l ).

(2)

If we introduce a fully two-particle irreducible vertex Iσ σ̄ , we can use the parquet decomposition of the full vertex,

�σσ̄ (k, iωn, k′, iωn′ ; q, iνm) = �eh
σ σ̄ (k, iωn, k′, iωn′ ; q, iνm) + �ee

σ σ̄ (k, iωn, k′, iωn′ ; q, iνm) − Iσ σ̄ (k, iωn, k′, iωn′ ; q, iνm). (3)

The parquet decomposition holds if the set of reducible dia-
grams in the electron-hole channel has no overlap with the set
of reducible diagrams in the electron-electron channel [56].
The two-particle self-consistency is then obtained by replac-
ing the full vertex �σσ̄ by the above parquet decomposition in
the Bethe-Salpeter equations (1) and (2) to obtain a set of self-
consistent equations for the irreducible vertices �eh and �ee.
One standardly chooses the bare Hubbard interaction U as the
vertex irreducible in both two-particle scattering channels. We
kept notation � for the full vertex and used symbol �α for
the irreducible vertex in the channel α. Recent publications
on the parquet equations as reviewed in Ref. [17] used a
slightly different notation. We related these two notations in
Table I and also compared them with that in a seminal paper
on the parquet equations, Ref. [55], and with that in an early
application of the parquet equations in condensed matter [46].

2. Critical region of the two-particle vertex

One of the Bethe-Salpeter equations approaches a sin-
gularity, i.e., a divergence in the full vertex at the critical
point, when we increase the particle interaction. It is Eq. (1)
for the magnetic systems (repulsive interaction) and Eq. (2)
for the superconducting systems (attractive interaction). This
can be seen from the weak-coupling approximation in the
Bethe-Salpeter equation where the irreducible vertex � is

TABLE I. Notation for 2P vertices used here and in our preceding
papers compared to that used in recent papers on parquet equations
as in review [17], Ref. [55], and one of the first papers on parquet
equations in condensed matter [46]. We skipped the spin indices, but
kept the channel index α = eh, ee, eh.

Completely Channel Channel Full
Source irreducible irreducible reducible vertex

This paper I �α Kα �

Ref. [17] � �α 	α F
Ref. [55] �irr �α �

Ref. [46] R Iα γ α �

replaced by the bare interaction. We assume that this critical
behavior can analytically be continued to strong coupling
where the bare interaction must be renormalized and replaced
by vertex �. It means that the divergence in the two-particle
vertex emerges in the limit q → q0 and νm → 0 and the irre-
ducible vertex in the singular Bethe-Salpeter equation remains
bounded and nonsingular in the low-energy limit q → q0 and
νm → 0 [57]. We will explicitly consider the magnetic case
with the repulsive interaction and criticality in Bethe-Salpeter
equation (1).

We can single out the relevant fluctuations in the crit-
ical region in Eq. (2) in the spirit of the renormalization
group. The relevant fluctuations are those that make the
dominant contribution to vertex �ee

σ σ̄ (k, iωn, k′′, iωl ; q + k′ −
k′′, iνm+n′−l ). They are controlled by the transfer momentum
q + k′ − k′′ → q0 and frequency iνm+n′−l → 0. For simplic-
ity, we assume a homogeneous order and choose q0 = 0. The
fluctuations in the fermionic variables remain irrelevant in
the critical region and can be neglected. Equation (2) in the
critical region then reduces to

�eh
σ σ̄ (k, iωn, k′, iωn′ ; q, iνm)

= U − 1

N

∑
Q

1

β

∑
νl

�ee
σ σ̄ (k, iωn, k′ + q + Q, iωn′+m+l ;

− Q−iνl )Gσ (k′+q+Q, iωn′+m+l )Gσ̄ (k−Q, iωn−l )

× �σσ̄ (k′+q+Q, iωn′+m+l , k′, iωn′ ; k−k′−Q, iνn−n′−l ),

(4)

where we used the parquet equation (3) with the bare interac-
tion as the completely irreducible vertex, Iσ σ̄ = U .

3. Reduction of parquet equations

The assumption about the possibility to continuously fol-
low the critical behavior from weak to strong coupling de-
mands that the irreducible vertex remains free of divergences
in the low-energy limit. However, Eq. (4) may lead to diver-
gences in �eh

σ σ̄ when k − k′ = 0 and ωn − ωn′ = 0. If there
is no correction to the bare interaction, the solution of this
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equation never reaches a critical behavior. The irreducible ver-
tex would also become divergent, which is incompatible with
the two-particle self-consistency in the parquet equations. The
critical behavior would be fully suppressed. To preserve the
critical behavior, one should extend the two-channel approx-
imation by including the third channel and by replacing the
bare interaction by a more complex, completely irreducible
vertex that would lead to the cancellation of the singular
contributions to �eh

σ σ̄ [54]. This is, however, a tremendous

task that would prevent reaching the desired objective of the
analytic control of the critical behavior.

Alternatively, one can resort to a “poor-man approach”
and keep the critical behavior of the nonrenormalized theory
by removing the superdivergent term from the convolution
of two divergent vertices in Eq. (4). This leads, then, to a
reduction of the parquet equations. This is achieved by the
following replacement of the convolution on the right-hand
side of Eq. (4):

�ee
σ σ̄ (k, iωn, k′′, iωl ; q′ − k − k′′, iνm′−n−l )Gσ (k′′, iωl )Gσ̄ (q′ − k′′, iωm′−l )�σσ̄ (k′′, iωl , k′, iωn′ ; q′ − k′ − k′′, iνm′−n′−l )

→ Kσ σ̄ (k, iωn, k′′, iωl ; q′ − k − k′′, iνm′−n−l )Gσ (k′′, iωl )Gσ̄ (q′ − k′′, iωm′−l )�σσ̄ (k′′, iωl , k′, iωn′ ; q′ − k′ − k′′, iνm′−n′−l ),

(5)

where we denoted Kσ σ̄ = �σσ̄ − �eh
σ σ̄ , the reducible vertex in the electron-hole channel with � = �eh and used k′′ = k′ + q +

Q, q′ = q + k + k′, m′ = m + n + n′.
Since the completely irreducible vertex is a static constant, the irreducible vertex �eh

σ σ̄ (k, iωn, k′, iωn′ ; q, iνm) depends
only on fermionic variables k′ + q, iωn′+m and k, iωn. We redefine the transfer momentum in the irreducible vertex
�σσ̄ (k, ωn; k′, iωn′ ; q, iνm) → �σσ̄ (k, iωn, q + k′, iωm+n′ ) to simplify the dependence of the dynamical variables.

The irreducible vertex is then determined from an integral equation,

�σσ̄ (k, iωn; k′, iωn′ ) = U − 1

N

∑
Q

1

β

∑
νl

Kσ σ̄ (k, iωn, k′ + Q, iωn′ + iνl ; −Q,−iνl )

× Gσ (k′ + Q, iωn′ + iνl )Gσ̄ (k − Q, iωn − iνl )�σσ̄ (k′ + Q, iωn′ + iνl , k − Q, iωn − iνl ). (6)

Its diagrammatic representation is plotted in Fig. 1. There is no change in the critical Bethe-Salpeter equation (1). The reducible
vertex then is

Kσ σ̄ (k, iωn, k′, iωn′ ; q, iνm) = − 1

N

∑
k′′

1

β

∑
ωl

�σσ̄ (k, iωn; q + k′′, iωm+l )Gσ̄ (k′′ + q, iωm+l )

× Gσ (k′′, iωl )[Kσ σ̄ (k′′, iωl , k′, iωn′ ; q, iνm) + �σσ̄ (k′′, iωl ; q + k′, iωm+n′ )], (7)

with its diagrammatic representation in Fig. 2.
Equations (6) and (7) form the set of the reduced par-

quet equations that introduce a two-particle self-consistency
allowing for the extension of the critical behavior from weak-
coupling approximations continuously to strong coupling.
The reduced parquet equations (6) and (7) are the starting
point for the investigation of the critical behavior of the two-
particle vertex.

↑ k

↓

↑

↓ k

Λ↑↓ = −

k + Q

k − Q

K↑↓ Λ↑↓

FIG. 1. The Bethe-Salpeter equation (6) for the irreducible ver-
tex �↑↓ with the integral kernel, the reducible vertex K↑↓ from the
the electron-hole channel. We used the four-vector notation, k =
(k, iωn) for the fermionic and Q = (Q, iνm ) for the bosonic variables.
Both sides have the same external labels and Q is the internal
variable. The vertical wavy line is the bare Hubbard interaction.

4. Low-momentum and -frequency limit

The reduced parquet equations (6) and (7) in their general
form do not allow for analytic continuation to real frequencies
with contour integrals involving Fermi and Bose distributions.
To reach the goal of analytic control, one has to resort to
specific limits separating the fermionic and bosonic degrees
of freedom. We will consider two cases of the low-momentum
and low-frequency limit of external variables of the two-
particle vertices, q, k, k′ → 0 and νm,ωn, ωn′ → 0, where we
can obtain explicit solutions of the reduced parquet equa-
tions. The two cases differ in the ratio of the bosonic and
fermionic variables. If we assume |k|/|q|, |k′|/|q| → 0 and,

↑ k

↓ k + q

↑ k

↓ k + q

K↑↓ = −

k

k + q

Λ↑↓

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ↑↓ + K↑↓

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

FIG. 2. The reduced Bethe-Salpeter equation (7) for the re-
ducible vertex K↑↓ from the the electron-hole channel. Both sides
have the same external labels and k′′ is the internal (integration)
variable.
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simultaneously, ωn/νm, ωn′/νm → 0, we reproduce the static
approximation introduced and analyzed in Refs. [21,22]. This
approximation works well only at zero temperature and in
the spin-symmetric state. To also cover nonzero temperatures
and the ordered state, we have to consider the opposite ratio,
|q|/|k|, |q|/|k′| → 0 with k, k′ ≈ kF and νm/ωn, νm/ωn′ →
0. We will now turn to the latter case.

Since the irreducible vertex �↑↓(k′ + Q, iωn′+l ; k −
Q, iωn−l ) in Eq. (6) is bounded in the critical re-
gion and only small values of momentum Q and fre-
quency νl are relevant, we can neglect its fluctuations.
We then obtain an explicit equation for the irreducible
vertex,

�↑↓(k, iωn; k′, iωn′ ) = U

1 + N−1
∑

Q β−1
∑

νm
K↑↓(k′, iωn′ , k, iωn; −Q,−iνm )G↑(k + Q, iωn+m)G↓(k′ − Q, iωn′−m)

. (8)

The equation for the reducible vertex for small transfer momentum and frequency in the critical region reads

1

N

∑
k′′

1

β

∑
ωl

[βNδk,k′′δn,l + �σσ̄ (k, iωn, k′′ + q, iνm + iωl )Gσ̄ (q + k′′, iνm + iωl )Gσ (k′′, iωl )]

× Kσ σ̄ (k′′, iωl , k′, iωn′ ; q, iνm) = − 1

N

∑
k′′

1

β

∑
ωl

�σσ̄ (k, iωn; k′′, iωl )Gσ̄ (k′′, iωl )Gσ (k′′, iωl )�σσ̄ (k′′, iωl , k′, iωn′ ). (9)

We neglected the dependence of the sum on the right-hand
side of Eq. (9) on the transfer momentum q and frequency
νm. It is irrelevant for the critical behavior of the reducible
vertex. Equation (9) cannot, however, be solved analytically
and further approximations are needed. We do it in Sec. III A.

B. Even and odd parts of the self-energy

The reduced parquet equations determine the irreducible
and reducible vertices in the scattering channel with a sin-
gularity in the respective Bethe-Salpeter equation. The full
two-particle vertex is then given as

�σσ̄ (k, iωn, k′, iωn′ ; q, iνm)

= �σσ̄ (k, iωn, k′ + q, iωn′+m)

+ Kσ σ̄ (k, iωn, k′, iωn′ ; q, iνm). (10)

We use the convention with k, k′ being the incoming and
outgoing energy momentum of the electron and q the transfer
energy momentum between the electron and the hole for the
repulsive interaction studied here.

The one-particle propagators in the parquet equations are
treated as input. In conserving theories, the one- and two-
particle Green functions are, however, related. The problem
of correlated electron systems is that there are two ways
to consistently match the one-particle self-energy with the
two-particle vertex. One way is the Ward identity and the
other is the dynamical Schwinger-Dyson equation [43]. We
recently demonstrated that no approximate solution can obey
both relations exactly [21]. Neither of the two relations may,
however, be disregarded. The former is needed for thermody-
namic consistency and to make the approximation conserving.
The latter comes from the microscopic quantum dynamics.
We cannot guarantee both relations with a single vertex
and a single self-energy. We must either use a single self-
energy and two two-particle vertices, or vice versa. Ambiguity
in the two-particle vertices leads to ambiguous criticality,
thermodynamic inconsistencies, and the inability to continue
the approximations beyond the critical point in the Bethe-

Salpeter equation to the ordered phase. We are hence forced
to use just a single two-particle vertex and introduce two
self-energies to keep the approximate theories free of incon-
sistencies.

The two self-energies in the approximate treatments can
be introduced as even and odd parts of a single self-energy.
The symmetry is set by the field controlling the critical
fluctuations, conjugate to the order parameter. It is the lon-
gitudinal magnetic field in the present construction. The odd
or anomalous part of the self-energy will be determined via
the Ward identity from the normal part, having the even
symmetry, of the irreducible vertex �↑↓ of the singular Bethe-
Salpeter equation and the odd/anomalous part of the one-
electron propagator. The Ward identity is, however, a func-
tional differential equation that cannot be exactly resolved
for the self-energy from the given two-particle vertex. To
reach a qualitative thermodynamic consistency, it is sufficient
to solve the Ward identity only linearly with respect to the
symmetry-breaking field. The odd part or the thermodynamic
self-energy is then defined as

�
(k, iωn) = − 1

N

∑
k′′

1

β

∑
ωl

�(k, iωn; k′′, iωl )�G(k′′, iωl ),

(11)

where the normal part of the irreducible vertex
with even symmetry with respect to the magnetic
field is �(k, iωn, k′′, iωl ) = [�↑↓(k, iωn, k′′, iωl ) +
�↓↑(k, iωn, k′′, iωl )]/2. The odd part of the one-electron
propagator is �G(k′′, iωl ) = [G↑(k′′, iωl ) − G↓(k′′, iωl )]/2.
A diagrammatic representation of the Ward identity is
presented in Fig. 3. It is evident that the anomalous
self-energy is connected with the order parameter and
vanishes in the spin-symmetric (paramagnetic) state, unlike
the thermodynamic self-energy used in Refs. [21,22].

The normal part of the full self-energy has even symmetry
with respect to the magnetic field and will be determined
from the Schwinger-Dyson equation for the spin-dependent
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↑ k

↓ k

ΔΣ =

k+q

k +q

↑ k

↓ k

Λ ΔG

FIG. 3. Graphical representation of the odd part of the self-
energy calculated from the normal part of the irreducible vertex in
the electron-hole channel, given by Eq. (11). The odd part of the
self-energy is anomalous in that it causes spin flip. It is an order
parameter that is nonzero only in the ordered phase.

self-energy,


σ (k, iωn)

= U

2
(n − σm) − U

N2

∑
k′′,q

1

β2

∑
ωl ,νm

Gσ (k′′, iωl )

× Gσ̄ (k′′ + q, iωl + iνm)�σσ̄ (k′′, iωl , k, iωn; q, iνm)

× Gσ̄ (k + q, iωn + iνm), (12)

where the total particle density n and magnetization m read

n = 1

βN

∑
k,σ

∑
ωn

eiωn0+
Gσ (k, iωn), (13)

m = 1

βN

∑
k,σ

∑
ωn

eiωn0+
σGσ (k, iωn). (14)

The full two-particle vertex is defined in Eq. (10) and the
Schwinger-Dyson equation is diagrammatically represented
in Fig. 4.

This spin-polarized self-energy also contains odd powers
of the magnetic field. The odd part of the self-energy is already
determined by the Ward identity and the Schwinger-Dyson
equation should relate only the normal part of the self-energy
with the two-particle vertex. The spin-dependent self-energy
from Eq. (12) must then be symmetrized to acquire the desired
even symmetry with respect to the magnetic field. The normal
part of the dynamical (spectral) self-energy is


(k, ω+) = 1
2 [
↑(k, iωn) + 
↓(k, iωn)]. (15)

The full self-energy in the one-particle propagator is a sum
of the anomalous self-energy, given by Eq. (11), and the
spectral self-energy, given by Eq. (15). The full one-electron

σk σk
Σσ =

σk σk

σ̄k

− σk

σ̄k

σk+q σk

σ̄k +q
Γσσ̄

FIG. 4. Schwinger-Dyson equation from which the normal part
with even symmetry with respect to the symmetry-breaking field
is calculated, given by Eq. (12). The full vertex is the sum of
the reducible vertex and irreducible vertex from the electron-hole
channel, �σσ̄ = �σσ̄ + Kσ σ̄ .

propagator is

Gσ (k, ω) = 1

ω + μ − ε(k) + σ [h−�
(k, ω)]−
(k, ω)
,

(16)

where μ is the chemical potential and ε(k) is the dispersion
relation.

Equations (11)–(16) define a theory with the full one-
particle self-consistency. The only difference from the Baym-
Kadanoff approach is the decomposition of the self-energy
into its normal and anomalous parts, with even and odd sym-
metry with respect to the magnetic (symmetry-breaking) field
determined from different exact equations. Should the Ward
identity be compatible with the Schwinger-Dyson equation,
we would recover the solution derived within the standard
Baym and Kadanoff approach.

It appears, as we showed in earlier publications and will
also demonstrate later in this paper, that the full one-particle
self-consistency does not necessarily lead to approximations
with the best and most reliable results. It may be convenient
to relax the one-particle self-consistency and to replace the
normal part of the self-energy in the propagators used in the
Bethe-Salpeter and Schwinger-Dyson equation by a simpler
one, 
0(k, ω). It can be selected to optimize the approximate
solution. If done so, we call the approximate one-electron
Green function a thermodynamic propagator and denote it
GT . The same propagator is then also used in the equation
determining the anomalous self-energy in the Ward identity,
given by Eq. (11). We showed earlier that the simplest approx-
imation best suited for the Kondo asymptotics in the SIAM is
the Hartree approximation with 
0(k, ω) = Un/2 [21].

III. MEAN-FIELD APPROXIMATION FOR THE
REDUCIBLE VERTEX FUNCTION

A. Mean-field-like decoupling of frequency convolutions

The quantum character of many-body phenomena is mani-
fested via the frequency dependence of the fundamental func-
tions. Pure quantum critical behavior, free of spatial fluctua-
tions, can be observed in the strong-coupling limit of impurity
models with correlated electrons. We resort to a mean-field
treatment and suppress the spatial fluctuations in the vertex
functions and resort to a local theory. We now apply the
general theory to the Kondo behavior of the single-impurity
Anderson model to produce an impurity solver for systems
with strongly correlated electrons. We keep the full frequency
dependence.

The irreducible vertex from Eq. (8) in the local approxima-
tion is

�σσ̄ (iωn, iωl ) = U

1 + Sσ σ̄ (iωl , iωn)
, (17a)

with

Sσ σ̄ (iωl , iωn) = 1

β

∑
νm

Kσ σ̄ (iωl , iωn; −iνm)

× Gσ (iωn+m)Gσ̄ (iωl−m). (17b)

We recall the notation σ̄ = −σ . The equation for the
reducible vertex reduces to an integral (matrix) equation in
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Matsubara frequencies,

1

β

∑
ωl

[βδn,l + �σσ̄ (iωn, iνm + iωl )Gσ̄ (iνm + iωl )

× Gσ (iωl )]Kσ σ̄ (iωl , iωn′ ; iνm)

= − 1

β

∑
ωl

�σσ̄ (iωn, iωl )Gσ̄ (iωl )Gσ (iωl )�σσ̄ (iωl , , iωn′ ).

(18)

Although the fermionic variables at low temperatures are
relevant only near the Fermi energy, ω ≈ 0, the integrals
(sums) over the fermionic variables must be appropriately
taken into account. We split the sum over Matsubara frequen-
cies in sums over positive and negative frequencies. We use
the following notation:

〈X (iωαl )〉l = 1

β

∑
ωl >0

X (iωαl ). (19)

We cannot explicitly solve integral equation (18), but we
can resort to a decoupling of the frequency convolutions in the
spirit of a mean-value theorem for integrals of products of two
positive functions. Fluctuations in the fermionic Matsubara
frequencies are not relevant in the critical region of the singu-
larity of the two-particle vertex. The fermionic frequencies are
nevertheless important for keeping the approximation reliable
also away from the critical region, in particular at nonzero
temperatures. We leave only one of the two-particle vertices
X and Y , in the convolution of type 〈XGGY 〉 dynamic,
frequency dependent, while the frequency dependence of the
other vertex will be replaced by a single mean value in
the decoupling. It is reasonable to assume that the relevant
values of the fermionic frequencies at low temperatures are
only those from the vicinity of the Fermi energy. We hence
choose the mean value to be the limit to the Fermi energy
from above for the sum over positive frequencies and from
below for the sum over negative ones. The decoupling scheme
of the convolutions of fermionic Matsubara frequencies in
the critical region of the low-temperature divergency of the
reducible vertex then is∑

α=±1

〈X (iωn, iωαl+m)G(iωαl+m)G(iωαl )Y (iωαl , iωn′ )〉l

→
∑
α=±1

{X (iωn, 0α )〈G(iωαl )G(iωαl−m)Y (iωαl−m, iωn′ )〉l

+〈X (iωn, iωαl+m)G(iωαl+m)G(iωαl〉l )Y (0α, iωn′ )

−X (iωn, i0α )〈G(iωαl+m)G(iωαl )〉lY (0α, iωn′ )}, (20)

where we denoted 0α = iη sign(α) and η > 0 is infinites-
imally small. This is a natural mean-field-like decoupling
neglecting quadratic fluctuations beyond the mean value in the
averaging of products of operators. The decoupling of convo-
lutions in Eq. (20) holds for functions analytic in the upper
and lower complex planes. That is what we assume about the
Green and vertex functions in Eq. (18). It is confirmed by the
explicit analytic continuation of sums in Eq. (18) to contour
integrals resulting in an analytic expression for the reducible
vertices �σσ̄ (z, z′) and Kσ σ̄ (z, z′; ζ ) for z, z′, ζ ∈ C.

We can solve Eq. (18) explicitly with this decoupling of the
frequency convolutions. This approximate solution generates
a rich analytic structure of the vertex functions with cuts
along the real axis of the fermionic frequencies as well as
along positive and negative diagonals in the plane of complex
frequencies. The calculations are, however, rather lengthy and
we leave the application of the dynamical decoupling from
Eq. (20) to a separate publication. Here we resort to a simpler
static decoupling of convolutions of fermionic frequencies,

〈X (iωn, iωαl+m)G(iωαl+m)G(iωαl )Y (iωαl , iωn′ )〉l

→ X (iωn, i0α )〈G(iωαl+m)G(iωαl )〉lY (0α, iωn′ ). (21)

The static decoupling is sufficient to gain a first qualitative
picture of the strong-coupling regime. It offers a generaliza-
tion of the static approximation from Ref. [21] to the spin-
polarized state and to nonzero temperatures.

B. Static mean-field approximation

We apply the general theory with the static decou-
pling of convolutions of fermionic Matsubara frequen-
cies, given by Eq. (21), to the strong-coupling limit
of the SIAM where the Kondo effect is observed at
half filling and zero temperature. The static decoupling
with the relevant values of the irreducible vertex only
from the Fermi energy simplifies the solution of the
reduced parquet equations significantly without missing
the strong-coupling limit. We then have �↑↓(ωσ , ω′

τ ) →
�↑↓(0σ , 0τ ). Consequently, we reduce the reducible vertex
to K↑↓(ω′ + iτη′, ω + iση; �ρ ) → K↑↓(iτ0+, iσ0+; �ρ ) =
K↑↓(τ, σ )/D↑↓(�ρ ), where D↑↓(�ρ ) is the determinant of the
matrix of the kernel of the equation for the reducible vertex
K↑↓(iτ0+, iσ0+; �ρ ) with � → 0.

One can solve the equations to determine �↑↓(0σ , 0τ ) and
K↑↓(τ, σ ). The reduction of the dependence of the vertex
functions on the fermionic frequencies to their values at the
Fermi energy is justified and works reliably in the quantum
critical region of the singularity of the two-particle vertex,
that is, at zero temperature. Both vertex functions of fermionic
frequencies are continuous across the Fermi energy at zero
temperature, that is, �↑↓(σ, τ ) = �↑↓ and K↑↓(τ, σ ) = K↑↓.
The two values �↑↓(+,+) and �↑↓(+,−) split at nonzero
temperatures where the values at the Fermi energy play a
gradually less and less dominant role. If we also want to
consistently extrapolate the low-temperature approximation to
high temperatures far above the Kondo temperature, one has
to return to the full dynamical decoupling of convolutions of
fermionic frequencies, given by Eq. (20), and keep the full
dynamics of the irreducible vertex �↑↓(ωσ , ω′

τ ). A simpler
option without leaving the static approximation is to select a
single value of the irreducible vertex at the Fermi energy that
screens the bare interaction efficiently at all temperatures and
is dominating at high temperatures. It is �↑↓(0+, 0−) that does
the job and will be used to extend the zero-temperature static
solution continuously to high temperatures [58].

The single irreducible vertex then reduces to an effective
interaction defined from the equation

�↑↓ ≡ �↑↓(0+, 0−) = U

1 + K↑↓X↑↓
, (22)
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where

X↑↓ =
∫ ∞

−∞

dx

π

{
Re[G↑(x+)G↓(−x+)]

sinh(βx)

×Im

[
1

D↑↓(−x+)

]
− f (x)Im

[
G↑(x+)G↓(−x+)

D↑↓(−x+)

]}
.

(23)

We denoted x+ = x + i0+ and used an equality f (x) + b(x) =
1/ sinh(βx). We straightforwardly analytically continued the
sums over Matsubara frequencies to spectral integrals with the
Fermi, f (x) = 1/(eβx + 1), and the Bose, b(x) = 1/(eβx −
1), distributions.

The reduced parquet equations now have an explicit al-
gebraic solution. The full, frequency-dependent determinant
D↑↓(�+) reads

D↑↓(�+) = 1 + �↑↓[〈G↓(x + �+)ImG↑(x+)〉x

+ 〈G↑(x − �+)ImG↓(x+)〉x], (24)

where we denoted

〈Gs(x + ω)Gs′ (x + ω′)〉x

= −
∫ ∞

−∞

dx

π
f (x)Gs(x + ω)Gs′ (x + ω′). (25)

The equation for the reducible vertex with frequencies near
the Fermi energy K↑↓ = K↑↓(0−, 0+) reads

K↑↓ = −�2
↑↓〈Im[G↓(x+)G↑(x+)]〉x. (26)

We denote g↑↓(+) = 〈Im[G↓(x+)G↑(x+)]〉x and introduce
a dimensionless Kondo scale as the zero value of function
D↑↓(�+) from Eq. (24),

a = D↑↓(0) = 1 + �↑↓g↑↓(+). (27)

It measures the distance to the critical point a = 0 and will
affect the low-energy behavior in the strong-coupling limit.

We rewrite Eq. (22) by using Eq. (26) to another, more
suitable form,

1 > 1 − U − �↑↓
X↑↓�2

↑↓
= D↑↓(0) > 0. (28)

The right inequality guarantees stability of the solution and
integrability and positivity of the integral X↑↓ in the strong-
coupling regime.

Equations (22)–(26) form a closed set of equations, de-
termining self-consistently the values of the vertex functions
�↑↓ and K↑↓ at the Fermi energy. They can be solved nu-
merically in a straightforward way via iterations. The bare
interaction and the one-electron propagators are input to these
equations. The latter contain the normal and anomalous parts
of the self-energy. The anomalous self-energy renormalizing
the effect of the magnetic field in the static approximation is

�
 = �

2
[〈ImG↓(x+)〉x − 〈ImG↑(x+)〉x]. (29)

We recall that � = (�↑↓ + �↓↑)/2 is the normal part of the
irreducible vertex. But due to the electron-hole symmetry,
�↑↓ = �↓↑.

The spin-polarized self-energy from the Schwinger-Dyson
equation is


↑(ω+)

= U

2
(n−σm)+U

∫ ∞

−∞

dx

π

{
f (x+ω)

φ↑↓(x−)

D↑↓(x−)
ImG↓(x++ω)

− b(x)G↓(x+ + ω)Imx

[
φ↑↓(x+)

D↑↓(x+)

]}
, (30)

where

φ↑↓(�±)

= −�↑↓
∫ ∞

−∞

dx

π
f (x)[G↓(x + �±)ImG↑(x+)

+ G↑(x − �±)ImG↓(x+)] (31)

is the electron-hole bubble multiplied by the effective interac-
tion.

The normal part of the dynamical self-energy then is

(ω+) = [
↑(ω+) + 
↓(ω+)]/2 and the one-electron prop-
agator with the full self-energy for the SIAM is

Gσ (ω) = 1

ω + μ + σ (h − �
) − 
(ω) + i�
, (32)

where � is the width of the local level attached to conducting
leads and is set as the energy unit.

The present construction allows for selecting the optimal
degree of the one-electron self-consistency. It means that
the propagators used in the perturbation expansion, in the
Ward identity, the Bethe-Salpeter, and the Schwinger-Dyson
equations, need not be the fully renormalized propagator from
Eq. (32). We can use a thermodynamic propagator with an
appropriately chosen normal self-energy 
0(ω) with which
we control the degree of one-particle self-consistency,

GT
σ = 1

ω + μ − U
2 nT + σ (h − �
) − 
0(ω) + i�

, (33)

where the Hartree term is calculated with the thermodynamic
propagator,

nT = −
∑

σ

∫ ∞

−∞

dx

π
f (x)ImGT

σ (x+). (34)

It appears that the best fit for the asymptotic form of
the Kondo scale is reached by 
0(ω) = 0, which we use
in the thermodynamic propagator GT

σ (ω) in the following
section.

IV. STRONG-COUPLING LIMIT AT ZERO
TEMPERATURE OF SIAM

The critical behavior of the SIAM emerges in the asymp-
totic limit to strong-coupling of the spin- and charge-
symmetric state at zero temperature. We now explicitly solve
the equations within the static decoupling of the frequency
convolutions at zero temperature where the irreducible vertex
is continuous at the Fermi energy. We will also generally
analyze the spin-polarized solution away from half filling
to demonstrate how the critical behavior fades away when
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moving from the spin- and charge-symmetric situation and
leaving the strong-coupling regime.

A. Analytic solution

The irreducible vertex (effective interaction) at zero tem-
perature is

�↑↓ = U

1 − K↑↓
∫ 0

−∞

dx

π
Im

[
G↑(x+)G↓(−x+)

D↑↓(−x+)

] , (35)

with the determinant D↑↓(x+) and K↑↓ defined in Eqs. (24)
and (26).

We separately represent the imaginary and real parts of the
dynamical self-energy. The imaginary part has the following
representation:

Im
↑(ω+) = U
∫ |ω|

−|ω|

dx

π
ImG↓(x + ω+)Im

[
φ↑↓(x+)

D↑↓(x+)

]

× [θ (ω)θ (−x) − θ (−ω)θ (x)], (36a)

while the real part is

Re
↑(ω+) = U
∫ −ω

−∞

dx

π
Re

[
φ↑↓(x+)

D↑↓(x+)

]
ImG↓(x + ω+)

+ U
∫ 0

−∞

dx

π
Im

[
φ↑↓(x+)

D↑↓(x+)

]
ReG↓(x + ω+).

(36b)

Function φ↑↓(x+) was defined in Eq. (31).
The thermodynamic propagator can be represented via an

effective chemical potential and an effective magnetic field,

GT
σ (ω+) = 1

ω + μ̄ + σ h̄ + i�
, (37)

which are derived from the bare chemical potential and mag-
netic field, together with the thermodynamic particle density
and magnetization,

μ̄ = μ − U

2
nT , (38)

h̄ = h + �

2
mT . (39)

The unrenormalized thermodynamic propagator allows for
analytic representations of the thermodynamic quantities. The
thermodynamic charge density and magnetization are

nT = 1 + 1

π
[arctan(μ̄ + h̄) + arctan(μ̄ − h̄)], (40)

mT = 1

π
[arctan(μ̄ + h̄) − arctan(μ̄ − h̄)]. (41)

The zero-field susceptibility from the thermodynamic
propagator is

χT = dmT

dh

∣∣∣∣
h=0

= 2

1 + φ(0)

∫ 0

−∞

dx

π
Im[GT (x+)2]. (42)

The full physical spin-dependent propagator is

Gσ (ω+) = 1

ω + μ − U
2 n + σ h̄ − 
(ω+) + i�

. (43)

The physical particle density and magnetization are

n = −
∑

σ

∫ 0

−∞

dx

π
ImGσ (x+), (44)

m = −
∑

σ

σ

∫ 0

−∞

dx

π
ImGσ (x+), (45)

respectively, and they differ slightly from the thermodynamic
ones. The zero-field physical susceptibility from the full prop-
agator is

χ = dm

dh

∣∣∣∣
h=0

= (2 + �χT )
∫ 0

−∞

dx

π
Im[G(x+)2]. (46)

Only small frequencies in D↑↓(ω+) are relevant in the
strong-coupling limit. We can then replace the full frequency
dependence in D↑↓(ω+) by a low-frequency expansion, keep-
ing only the term linear in frequency. That is,

D↑↓(ω+)
.= a − i�D′

↑↓ω = a − i�(DR + iDI )ω. (47)

The linear coefficient reads

D′
↑↓ = 〈∂G↓(x+)ImG↑(x+) − ∂G↑(x−)

× ImG↓(x+)〉x�↑↓ = [i〈ImGT
↑ (x+)∂ReG↓(x+)

− ImG↓(x+)∂ReG↑(x−)〉x + πρ↑ρ↓]�↑↓, (48)

where ρσ = −ImGσ (0+)/π is the density of states at the
Fermi energy.

The theory with the full one-particle self-consistency and
the full propagator in all equations can be solved only numer-
ically at intermediate and not too strong electron interaction.
The theory with the thermodynamic propagator, on the other
hand, also allows for an explicit analytic representation in
the Kondo limit. It is defined when a = 1 + �g↑↓(0) � 1.
Using the thermodynamic propagator from Eq. (37) and the
low-frequency asymptotics of the determinant from Eq. (47),
we can explicitly evaluate the frequency integrals.

The asymptotic form of the effective interaction in strong
coupling within the low-frequency asymptotics, given by
Eq. (47), is (� = 1)

� = U

1 + �D0| ln a|
π [D2

R + D2
I ]

{Re[G↑G∗
↓]DR − Im[G↑G∗

↓]DI}

= U

1 + �D0| ln a|[(μ̄2 − h̄2 + 1)DR − 2h̄DI ]

π [D2
R + D2

I ][(μ̄2 − h̄2 + 1)2 + 4h̄2]

, (49)

where Gσ = Gσ (0+) and

D0 =
∫ 0

−∞

dx

π
Im[G↑(x+)G↓(x+)] = 1

2π h̄

×
[

arctan
2h̄

1 + μ̄2 − h̄2
+ πθ (h̄2 − μ̄2 − 1)sign(h̄)

]
,

(50)

DR = πρ↑ρ↓ = 1

π

1

(μ̄ + h̄)2 + 1

1

(μ̄ − h̄)2 + 1
, (51)
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DI = −
∫ 0

−∞

dx

π
[ImG↑(x+)∂ReG↓(x+)

− ImG↓(x+)∂ReG↑(x−)]

= 1

2π h̄

{
1 + μ̄2 − h̄2

(μ̄2 − h̄2)2 + 2(μ̄2 + h̄2) + 1

− 1

2h̄

[
arctan

2h̄

1+μ̄2−h̄2
+πθ (h̄2−μ̄2−1)sign(h̄)

]}
.

(52)

The first equality always generally holds for an arbitrarily
renormalized one-electron propagator, while the second one
only holds for the thermodynamic propagator GT (ω+) from
Eq. (37). Since the solution is a local Fermi liquid where

(0) = 0, the actual degree of the one-particle renormaliza-
tion does not play a role in the strong-coupling asymptotics.
Notice that the imaginary part of the linear coefficient of the
determinant D↑↓(ω+) is nonzero only in the spin-polarized
state.

The asymptotic form of the imaginary part of the spin-
polarized dynamical self-energy in strong coupling is

Im
σ (ω+)

= UD0ImGT
σ̄ (ω+)

π
[
D2

R + D2
I

]
⎧⎨
⎩DR ln

√
1 + ω2

[
D2

R + D2
I

]
ā2

+ DI

[
arctan

DRω

ā − DIω
+ πθ (DIω − ā)sign(ω)

]⎫⎬
⎭,

(53a)

with the corresponding real part obeying the causality condi-
tion

Re
σ (ω+)

= −UD0ImGT
↓ (ω+)

π
[
D2

R + D2
I

] {
DI ln

√
(ā − DIω)2 + D2

Rω2

− DR

[
arctan

(
DRω

ā − DIω

)
+ πθ (DIω − ā)sign(ω)

]}

+ UD0DR| ln ā|ReG↓(ω+)

π
[
D2

R + D2
I

] , (53b)

where we denoted ā = a/�.
Finally, we can explicitly evaluate the Kondo scale as a

function of the effective chemical potential and the effective
magnetic field when we use the critical effective interaction
� = 1/D0. We then obtain

− ln aK = π (UD0 − 1)
[
D2

R + D2
I

]
Re[G↑G∗

↓]DR − Im[G↑G∗
↓]DI

= π (UD0 − 1)
[
D2

R + D2
I

]
[(μ̄2 − h̄2 + 1)2 + 4h̄2]

[(μ̄2 − h̄2 + 1)DR − 2h̄DI ]
.

(54)
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FIG. 5. Spectral function at U/� = 8 at half filling calcu-
lated within the static approximation, given by Eq. (35) (Parquet),
Ref. [21] (old Parq.), and NRG in energy units �.

This explicit representation can be used to determine the
boundary of the strong-coupling region. It is set to the point
where the logarithm of the asymptotic Kondo scale goes
through zero, that is, UD0 = 1. The Kondo regime is then
defined for the interaction strength obeying UD0 � 1.

B. Numerical results

We used thermodynamic and full one-electron propagators
to compare the results with the exact ones for the SIAM
at zero temperature. Since the equation for the irreducible
vertex, given by Eq. (35), slightly differs from the vertex used
in Refs. [21,22], we also compare the two versions of the
two-particle self-consistency.

The Kondo effect and the Kondo strong-coupling regime
occur at half filling of the nonmagnetic state. We compare in
Fig. 5 the present version of the static approximation with
the thermodynamic propagator from Eq. (37) with that of
Ref. [21] and with the spectral function obtained from the
Numerical Renormalization Group (NRG). There is not much
difference between the two versions of the static approxima-
tion. They both have the same enhancement of the satellite
Hubbard bands with a narrower central Kondo-Suhl resonance
compared to NRG.

The NRG calculations were performed with the NRG
LJUBLJANA code [59]. A constant density of states of
bandwidth 2D with U/2D > 100 was used. Spectral functions
were obtained from the Density-Matrix-NRG algorithm of
Ref. [60]. We opted for not correcting the spectral energies via
the so-called self-energy trick. All results were recalculated
from the typical NRG units of D into the units of � as used
in this paper.

One can improve upon the thermodynamic propagator
and take into account the full one-particle self-consistency.
We take the same full propagator in the parquet equations
as well as in the Ward identity and the Schwinger-Dyson
equation. We compared the two solutions for the spectral
function of the nonmagnetic state at half filling with the
NRG result for weak and moderate interactions in Fig. 6.
In weak coupling, all three approaches give almost the same
function. In intermediate coupling, the fully self-consistent
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FIG. 6. Spectral function calculated within the static approxima-
tion with the thermodynamic propagator, given by Eq. (37) (noSC),
and the full propagator, given by Eq. (43) (SC), in the reduced
parquet equations compared with NRG for several values of the
interaction in energy units �.

version delivers a better agreement with the NRG result for
high frequencies and in positioning of the Hubbard satellite
bands. The width of the central quasiparticle peak is, however,
missed in the strong-coupling regime of the self-consistent
version, given by Fig. 7. The non-self-consistent version
with the thermodynamic propagator from Eq. (37) correctly
predicts the linear dependence of the logarithm of the Kondo
scale on the interaction strength defined as the half width
at half maximum (HWHM) of the central peak, while the
exponent of the self-consistent solution is one-third. We also
plotted another definition of the Kondo scale from factor Z =
(1 − d
/dω|ω=0)−1, which shows the same strong-coupling
asymptotics. The shift of the curve calculated from our static
approximation with the thermodynamic propagator is caused
by a difference in the nonuniversal prefactor at the logarithm
of the Kondo scale. It is π/8 in the Bethe-ansatz solution with
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FIG. 7. Half width of the Kondo-Suhl quasiparticle peak at half
maximum (HWHM) and Z factor calculated with one-particle self-
consistency (SC Parquet) and with the thermodynamic propagator
(Parquet) compared with the NRG result in energy units �.
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FIG. 8. Spectral function calculated with the full spectral self-
energy, given by Eq. (36) (solid line), and with the asymptotic one,
given by Eq. (53) (dashed line), for weak and strong interaction in
energy units �.

the Lorentzian density of states [61], while it comes as 1/π

from our parquet equations.
It is convenient, in particular in more complex models,

to have equations in the strong-coupling regime that are as
simple as possible. The asymptotic representation for the self-
energy, given by Eq. (53), can do the job and is capable to
deliver the qualitatively correct three-peak spectral function;
see Fig. 8. There is a good agreement in the weak coupling
with the full solution. The width of the central peak is asymp-
totically correct and only the satellite Hubbard bands are
more pronounced compared to the full solution. The real and
imaginary parts of the self-energy are plotted in Fig. 9. Since
a one-particle self-consistency is missing, the real part of the
self-energy at weak coupling does not correctly reproduce the
negative slope at the Fermi energy.

When we move away from half filling, the central peak
slowly moves away from the Fermi energy, and the lower
Hubbard band (for occupation n < 1) moves towards the
central one and eventually merges with it; see Fig. 10. It is
the behavior discussed in more detail in Ref. [22].

A more interesting situation is when we break the spin-
reflection symmetry, which is the case not discussed in our
earlier publications. The magnetic field affects the Kondo
strong-coupling behavior more significantly than the shift of
the chemical potential from half filling. We show in Fig. 11
the full spectral function for several values of the magnetic
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FIG. 9. (a) Real and (b) imaginary parts of the full (solid line)
and asymptotic (dashed line) self-energies for weak and strong
interaction in energy units �.
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FIG. 10. Spectral function away from half filling in energy units
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2 = 0, −2�,
and −4�, respectively.

field. We can see that already weak magnetic fields of the
order of h = 0.2� split the central peak into two separate
ones and lower the height of the split peaks. The move-
ment of the central peak in the magnetic field can be better
demonstrated in the spectral function of the majority spin
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FIG. 11. (a) The full spectral function and (b) for spin up in the
external magnetic field in energy units �.
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FIG. 12. Spectral function for spin up compared with the NRG
result for several strengths of the magnetic field in energy units �.

(up). We compared the spectral function for the majority spin
with NRG in Fig. 12. Qualitative features of the spectral
function are well reproduced in the static approximation with
the thermodynamic propagator. A dip observed at weak and
intermediate field is a consequence of insufficient one-particle
self-consistency.

The conclusion that the magnetic field moves the solution
from the strong-coupling regime at half filling faster than the
normalized chemical potential μ − U/2 can be demonstrated
in the dependence of the negative logarithm of the Kondo
scale at criticality, given by Eq. (54), on both variables; see
Fig. 13. The strong-coupling regime ends where the asymp-
totic result crosses zero. It happens for much smaller values of
the magnetic field than for the normalized chemical potential.
The difference between the initial value at μ − U/2 = 0 of
the static solution and the numerically exact one from NRG
is due to the fact that U = 12� is not yet the true Kondo
regime since the asymptotic limit UD0 � 1 in the asymptotic
form in Eq. (54) has not yet been reached. Moreover, the
exact value in the limit U → ∞ is π/8, while the static
solution gives 1/π . It is interesting to notice that the bound
for the strong-coupling regime from the static solution agrees
well with the exact expression for the Kondo scale. There is
naturally no boundary between strong and weak coupling in
the full solution.
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FIG. 13. Negative logarithm of the dimensionless Kondo scale
aK calculated from its definition, given by Eq. (27) (Parquet), and
from the asymptotic form, given by Eq. (54), as a function of (a) the
normalized chemical potential at zero magnetic field and (b) the
magnetic field at half filling in energy units �. The Bethe-ansatz
result (exact) was added.
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FIG. 14. Irreducible vertex from the electron-hole channel (ef-
fective interaction) as a function of (a) the normalized chemical
potential and (b) the magnetic field in energy units �. Both full (solid
line) and asymptotic (dashed line) solutions from Eqs. (35) and (49),
respectively, are plotted.

The extent to which quantum fluctuations are relevant can
be measured by the strength of the renormalization of the
bare interaction, that is, how much the irreducible vertex �,
effective interaction, differs from the bare one. We plotted in
Fig. 14 the dependence of �↑↓ on the normalized chemical
potential and magnetic field. We can again observe that the
renormalization decreases faster with the increasing magnetic
field than with the chemical potential. The effective interac-
tion approaches the bare one in the weak-coupling limit with
decaying quantum fluctuations. It is surprising how well the
asymptotic form reproduces the full one in the spin-polarized
state.

V. CONCLUSIONS

The major desired asset of the mean-field theory is its
relative simplicity that allows for the analytic control of the
critical behavior. It is much easier to achieve this in classical
many-body models than in quantum ones. The difference is
made by the dynamics brought in by quantum fluctuations
in strong coupling. Although the dynamical fluctuations can
be studied within a local, dynamical mean-field theory, the
only accessible numerical solution does not allow for the
analytic control. Further approximations are needed. We pre-
sented in this paper a reduction scheme leading to a class
of analytic mean-field theories of quantum fluctuations in
strongly correlated electron systems. The resulting theories
are thermodynamically consistent and conserving. They rec-
oncile the thermodynamic Ward identity and the dynamical
Schwinger-Dyson equation and are free of spurious transitions
and unphysical behavior of the Hartree weak-coupling theory.

The central objects to be determined from the diagram-
matic perturbation theory of the present construction are
two-particle vertex functions instead of the one-particle self-
energy. The reason for that is to achieve a two-particle self-
consistency that guarantees that only integrable singularities
and physical phase transitions can exist. The two-particle
self-consistency is derived from the parquet equations for
two-particle irreducible vertices. The analytic structure of the
two-particle vertices is much more complex than that of the
self-energy. A set of simplifications must be introduced to
reach analytically controlled approximations.

There are three main steps in reaching a tractable analytic
mean-field theory with a two-particle self-consistency. First,

one has to reduce the full set of parquet equations in order
to get rid of superdivergent terms generated by the mixing
of different scattering channels beyond the random-phase
approximation. They are assumed to be canceled by higher-
order contributions beyond the two-channel parquet equations
with the bare interaction as the completely irreducible vertex.
If not suppressed, they would prevent reaching the quantum
critical behavior. Second, one moves into the critical region
of the Bethe-Salpeter equation where the relevant critical
fluctuations of bosonic degrees of freedom are decoupled
from the noncritical ones of the fermionic degrees of freedom.
It is done in analogy with the renormalization group where
only small frequencies controlling criticality are explicitly
considered. This leads to an explicit form of the noncritical
irreducible vertex from the singular Bethe-Salpeter equation.
Third, convolutions of noncritical fermionic frequencies in the
Bethe-Salpeter equation are decoupled in analogy with the
mean-value theorem. This may be done either fully dynami-
cally or statically. Here we elaborated the static approximation
leading to a Hartree-like approximation with a renormalized
effective interaction.

The mean-field theory for vertex functions is not com-
plete unless it determines the self-energy renormalizing the
one-electron propagators used in the equations for the ver-
tex functions. The consistent and conserving theory must
properly relate the one- and two-particle functions. We used
the symmetry with respect to the external magnetic field
conjugate to the order parameter of the new phase beyond
the critical point of the Bethe-Salpeter equation. The normal
part of the self-energy, with even symmetry with respect to the
symmetry-breaking field, is determined from the Schwinger-
Dyson equation using the two-particle vertex obtained from
the parquet equations. The anomalous part, with odd symme-
try with respect to the symmetry-breaking field, is determined
from the Ward identity and the irreducible vertex from the par-
quet equations. The Ward identity and the Schwinger-Dyson
equations connecting the self-energy and the two-particle ver-
tex in different ways are reconciled in these approximations.
Moreover, our approach allows for a flexible handling of
the one-particle self-consistency, from non-self-consistent to
fully self-consistent one-electron propagators, to optimize the
quantitative output.

The resulting mean-field theory with a two-particle self-
consistency even in its simplest static version gives a quali-
tatively correct and thermodynamically consistent description
of quantum criticality in the SIAM. Although it is justified
in the critical region of the singularities in the Bethe-Salpeter
equations, it can be extended to noncritical regions as well as
to the ordered phase. It hence offers a qualitative picture of the
transition from weak to strong coupling, as well as from low
to high temperatures, in models of correlated electrons. The
general construction can also be used beyond the local ap-
proximation to describe the low-temperature behavior of the
low-dimensional models with no long-range order at nonzero
temperatures.
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