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Tensor renormalization group in bosonic field theory
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We compute the partition function of a massive free boson in a square lattice using a tensor network algorithm.
We introduce a singular value decomposition of continuous matrices that leads to very accurate numerical results.
It shows the emergence of a corner double line fixed-point structure. In the massless limit, we reproduce the
results of conformal field theory including a precise value of the central charge.
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I. INTRODUCTION

Tensor networks (TNs) have become in recent years a
standard technique to study a wide variety of problems in
condensed-matter physics, statistical mechanics, quantum-
field theory, and other areas of physics [1,2]. In quan-
tum lattice systems, TNs provide variational ansätze for
many-body wave functions denoted tensor network states
(TNSs). Well-known examples of TNSs are matrix product
states (MPSs) for one-dimensional (1D) systems [3–8] that
underlie the density-matrix renormalization-group (DMRG)
method [9–11], projected entangled pairs states that is a
two-dimensional (2D) version of MPSs [12,13], multiscale
entanglement renormalization ansatz (MERA) [14–16], etc.
The use of TNSs has also made it possible to classify the
symmetry-protected phases in 1D, explore the topological
phases of matter in 2D [17–19], and provide simple versions
of holography in the anti-de Sitter/conformal field theory
(AdS/CFT) correspondence [20–25].

In classical spin systems, the DMRG techniques were
applied to compute the partition function [26]. Later on,
the method was improved expressing the partition func-
tion and correlations using four-index tensors [27]. An im-
portant step was made by Levin and Nave who proposed
the tensor renormalization group (TRG) [28] where the
Kadanoff-Wilson blocking method is improved by imple-
menting entanglement techniques in the truncation proce-
dure [29,30]. However, the TRG does not fully succeed in
removing the short-range entanglement. For noncritical sys-
tems, the TRG converges towards nontrivial tensors with a
corner double line (CDL) structure [31]. This difficulty was
solved by implementing techniques first developed for MERA
[32,33].

The aim of this paper is to explore the application of
real-space tensor network techniques to study quantum-field
theories. Our motivation is to revisit quantum-field theory,
and, in particular, renormalization-group issues from a frame-
work naturally adapted to capture the role played by entan-
glement. A systematic study of quantum-field theories is only
available in the perturbative framework where the free theory
is the starting point. Hence, as a first step towards more
interesting cases, we efficiently adapt the TRG protocol to
evaluate the partition function of a free boson. Like in the

ordinary TRG, a CDL-type infrared fixed point emerges at
the expected length scale. In the conformal limit, we obtain
a competitive estimation for the value of the central charge.
Our implementation of the TRG is based on the simple rules
of Gaussian integration, and hence, we name it Gaussian TRG
(gTRG).

The paper is structured as follows. Section II explains
the model we are going to study. Section III presents the
renormalization-group algorithm, which is the central point
of this paper. Results obtained using the algorithm are shown
in Sec. IV, and they are compared with the analytical com-
putations. Section V studies the renormalization flow, paying
special attention to the emerging CDL structure. Finally, in
Sec. VI, we present our conclusions and point out future
directions of research.

II. THE MODEL

We will consider a free scalar of mass m in two dimensions.
Continuous versions of tensor networks have been proposed
for the study of quantum-field theories [34–39]. However,
they are not yet developed to the extent ordinary tensor net-
works are, and we will not pursue them here. In the following,
space-time will be discretized whereas field variables retain
their continuous character. This choice breaks symmetries,
such as translation and rotation, but they can be recovered
in the continuum limit. Space-time will be represented by a
square lattice with periodic boundary conditions. At each site
(i, j) of the lattice lives a variable φi j ∈ R. The Euclidean
partition function is

Z =
∫ ∏

i j

dφi j exp

{
− 1

2

∑
i j

[
(φi j − φi+1 j )

2

+ (φi j − φi j+1)2 + m2φ2
i j

]}
, (1)

where m is measured in lattice units.
The interactions on the lattice described by (1) are pairwise

between the fields at neighbor sites. It is convenient to change
to a vertex model where the fields live on the edges and the
interactions take place at the lattice sites. On the dual tilted
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lattice, we define the statistical weights,

W (φi ) = exp

{
−1

2

4∑
i=1

[
(φi − φi+1)2 + m2

2
φ2

i

]}
, (2)

with the fields relabeled as follows:

(3)

We have shaded the interaction vertices for clarity.

III. GAUSSIAN TRG

We will implement a TRG protocol to reduce iteratively
the number of degrees of freedom. The basic tool used in
systems with a finite number of degrees of freedom is the
singular value decomposition (SVD) of the network tensors.
Any finite rank matrix can be decomposed as M = USV †,
where U and V are unitary matrices and S is diagonal with
non-negative entries. The latter result also holds for compact
operators acting on Hilbert spaces of continuous functions.
This result has been used to implement the standard TRG
approach to a φ4-boson field theory [40]. In this reference,
the two-body interaction is truncated to a finite-dimensional
space in order to verify the Monte Carlo scaling relation for
the expectation value of the boson field at criticality. Here,
we will not follow this approach but one that is inspired from
standard field-theory techniques. Indeed, at each step of the
coarse-graining procedure, we will impose that the statistical
weights should remain Gaussian for continuous fields.

We will allow several fields to live at each lattice
edge. For simplicity, we still denote them collectively as
φ ≡ {φ1, . . . , φχ }. The number of fields per edge plays the
role of bond dimension. We group the fields entering each
vertex in two sets labeled as L and R. Generic Gaussian
weights have the form

= ρ exp

(
−1

2
φT

L ALφL − 1

2
φT

R ARφR + φT
L BφR

)
,

(4)

with AL,R and B as real matrices of dimension 2χ × 2χ

and ρ as a constant. We search for a decomposition of W
inspired from the SVD. Namely, we want to factorize the
dependence on L and R fields by introducing new variables,
which according to the previous requirements should have the
interpretation of fields,

(5)

A way to proceed is working directly with the quadratic
forms that appear in the exponent of the Gaussian weights.
The L and R fields are connected by the matrix B, which, thus,
hinders factorization. Since B is real, we have B = UDV T

with U and V also real. We are assuming that D contains
only strictly positive entries, and hence, it is of dimension
χ̃ = rank(B)� 2χ . Introducing χ̃ new fields π , we can rewrite

W (φL, φR) = ρGL(φL )Ŵ (φL, φR)GR(φR), (6)

where we have used straightforward Gaussian integrations to
define

Ŵ =
∫

dπ eiφT
L UπS(π )e−iπT V T φR (7)

S = 1√
(2π )χ̃ det D

e−(1/2)πT D−1π . (8)

Relation (7) is a continuous SVD with the entries of the
diagonal matrix S providing the singular values. π ’s act as
canonically conjugate variables of the original fields. How-
ever, the diagonal factors GL,R cause (6) to deviate from a
SVD,

GL = e−(1/2)φT
L (AL−UDU T )φL , GR = e−(1/2)φT

R (AR−V DV T )φR .

(9)

These matrices will prove crucial in the implementation of the
TRG. They are the price to pay for the enormous simplifica-
tion of working at the level of the exponent, dealing only with
finite-dimensional matrices. We will refer to (6) as a Gaussian
SVD (gSVD).

The Gaussian version of the TRG protocol we propose is
an iterative application of the following transformations of a
model defined on a lattice of N sites into a lattice of N/2 sites,

(10)

namely: (i) gSVD of the weights of the φ fields, (ii) construc-
tion of the weights of the π fields, (iii) gSVD of the weights
of the π fields, and (iv) construction of the weights of the φ

fields. The φ and π fields turn out to have very different prop-
erties (see below). We will label the associated matrices with
a subscript φ or π , corresponding to the tilted and directed
lattices that are rotated by 45◦ every TRG transformation. A
complete RG cycle returns to the same type of lattice, and
thus, it is composed of two TRG steps.

We will use a subindex n to label the RG iteration as
indicated in Eq. (10). The initial lattice has by assumption
χ

φ

1 = 1. Bφ

1 has two equal singular values, implying χπ
1 = 2.

The bond dimension of the lattice emerging from the gSVD
at any of the following steps is twice that of the fields running
in the previous loop. Namely, χ

φ

n+1 = 2χφ
n in (10). The same

holds for π fields as derived in detail in Appendix A. Hence,
with no truncation χφ

n = 2n−1 and χπ
n = 2n, implying that

the bond dimension doubles when transforming from φ to π

fields, and remains constant in the next π to φ step.
The singular values added at each RG transformation

are expected to encode correlations at larger coarse-grained
scales. In the vacuum of the bosonic theory, correlations decay
with distance. Hence, at some RG step, the newly added sin-
gular values should start being sufficiently small to set them
to zero with a small error cost. This reduces the dimension of
the ancillary field space and renders the calculation feasible.
Since we are not dealing with an ordinary SVD, there is some
degree of ambiguity involved in this implementation. We will
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FIG. 1. Relative error in the free energy per site δ f as a function
of the mass m for a lattice with L1 = L2 = 230 and maximal bond
dimensions χmax.

proceed as follows. The matrix B can be rewritten as

B = U1D1V
T

1 + U2D2V
T

2 , (11)

where Di are diagonal matrices with the highest (i = 1) and
smallest (i = 2) eigenvalues of B respect to a chosen cutoff.
Based on that, we can substitute

S(π ) → S1(π1)δ(π2). (12)

The matrix S1 is given by (8) with D replaced by D1. The δ

function eliminates the dependence on the fields π2, reducing
the bond dimension.

In terms of the original fields, the difference between the
exact and the truncated weights comes from the limit |φ| →
∞. Therefore, in order to justify (12), it is necessary to have
their large values suppressed. This is achieved by the factors
GL,R, which, in particular, contain the mass terms. The high
accuracy of the numerical results presented below indicates
that these matrices, indeed, play efficiently the role of field
regulators.

We name this adapted TRG protocol gTRG. The integra-
tion leading to the new weights at each gTRG step are Gaus-
sian and, thus, easy to perform. From now on, we use a scheme
in which U = V , and hence, the relation AL = AR satisfied by
the initial weights will be preserved (see Appendix A). In this
scheme, the same gSVD data characterize every lattice site.

IV. RESULTS

The partition function of a free boson can be computed
analytically using momentum eigenmodes. For a lattice of size
L1 × L2 with periodic boundary conditions, it reads

Zexact
L1L2

=
(

π

2

)(L1L2/2)∏
n1,n2

(
sin2 πn1

L1
+ sin2 πn2

L2
+ m2

4

)−(1/2)

,

(13)

where ni = 1, . . . , Li (i = 1, 2). Comparison with the exact
result allows us to test the performance of the gTRG method.
In Fig. 1, we plot the relative error δ f in the free energy
per site f = − ln Z/L1L2 as a function of the mass for dif-
ferent maximal bond dimensions χmax. A large lattice with
L1 = L2 = 230 has been chosen. With χmax = 32, we obtain an
error below 10−6. The results for χmax > 32 become increas-
ingly noisy because we reach the accuracy limit, given by
the precision for the inversion of matrices. The dashed lines

FIG. 2. Left: δ f for m = 1.2 × 10−6 as a function of the bond
dimension for L1 = L2 = 230. Right: Singular values of Bφ

4 with no
truncation. For large masses, they always join in equal value pairs.
The two top curves correspond to doubly degenerate singular values.

in Fig. 1 are averaged results for the absolute value of δ f ,
computed by applying a Gaussian filter of radius � ln(m) =
0.14. With χmax = 64, the average precision is 10−8, whereas,
in the best cases, we have reached an error below 10−9.
Figure 2(left) shows the relative error in the free energy per
site as a function of the bond dimension for m = 1.2 × 10−6,
which, indeed, drops below 10−8 for large χ .

Truncation is first introduced in a step leading from a φ to
a π lattice since it is then when the bond dimension increases.
Figure 2(right) shows the singular values of Bφ

4 . No truncation
has been yet applied, and hence, χ4

φ = 8. We observe that
the singular values are very strongly decaying. This general
property allows us to truncate them affecting, only mildly,
the accuracy of the results. Notably it also holds in the limit
of very small masses, explaining the smooth and efficient
behavior of the gTRG in a regime which is problematic for
the ordinary TRG.

Independently of the bond dimension, we have discarded
singular values smaller than a threshold ε in order to minimize
numerical errors. The value of ε depends on the numerical
precision with which we are operating. In our case, we found
it appropriate to set ε = 10−11.

Massless case

The accurate results of the gTRG for small masses allow
us to address the massless case and, in particular, to compute
the central charge. In the limits m � 1 and L1, L2 � 1 with
L2/L1 constant, the exact partition function (13) can be ap-
proximated by (see Appendix D)

Zexact
L1L2

	 e− f∞L1L2

m(L1L2)1/2
ZCFT(τ ), (14)

where f∞ = 2G
π

− ln 2π
2 is the large lattice limit of the free

energy per site with G as the Catalan constant. ZCFT is the
partition function of a massless boson in a torus with moduli
parameter τ [41]. In our case, τ = iL2/L1.

The CFT partition function is responsible for the leading
finite-size corrections. Choosing L1 = L2 ≡ L, (14) yields

π

6
c = L2( f∞ − fL ) + ln(mL) + 2

∞∑
n=1

ln(1 − e−2πn), (15)

where c = 1 is the theoretical value of the central charge
[42,43]. Taking L = 26 and 27 and using (15) with fL
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computed numerically for χmax = 64, we obtain, respectively,

c − 1 = O(10−5), O(10−6). (16)

These values are derived averaging over m ∈ [10−14, 10−8]
in order to minimize the effect of the numerical noise on
(15), which grows as the square of the lattice size. Noise
wins over the leading finite-size effect for larger L, whereas
for smaller lattice,s higher-order finite-size effects worsen the
result. Equation (16) provides a check of the gTRG in the
regime of intermediate size lattices, complementary to that
explored in Fig. 1.

V. RG FLOW

The RG behavior of free field theories is extremely simple.
When a mass parameter is present, it runs with the scale
according to its bare dimension. Hence, a small mass will
become of order one in lattice units after

n(m) ∼ − ln m

ln 2
, (17)

RG iterations. For n � n(m), correlations should be mostly
confined to occur inside a single lattice plaquette. Entangle-
ment inside a plaquette is modeled by a CDL structure [31],

(18)

The TRG has the drawback of being unable to eliminate such
ultralocal entanglement and reach a trivial IR fixed point.
Instead, it promotes the inner correlations from half of the
plaquettes to the next coarse-graining level, reproducing again
a CDL structure [31]. The same should apply to the gTRG.

Due to the factorized nature of the CDL vertex, B is the
direct sum of two equal matrices and, thus, its singular values
come in pairs. In fact, the singular values of Bφ have always
a strong tendency to arrange in pairs. Figure 2(right) shows
that the six highest singular values have already paired up
after three RG cycles. This is, however, not the case for Bπ .
For the first RG cycle, its two singular values can be derived
explicitly,

λπ
1,1 = 1

m2

8 + 4m2 + m4

8 + 6m2 + m4
, λπ

1,2 = 1

2 + m2
. (19)

For small masses, λπ
1,1 ≈ 1/m2 and λπ

1,2 ≈ 1/2. We observe
that, in successive RG cycles, the gap between the largest
singular value and the rest slowly decreases until it closes.
The singular values then pair up as required for CDL behavior
and acquire fixed values. The smaller the mass, the larger the
gap, and the more RG iterations are necessary. Figure 3 (left)
shows the RG flow of the singular values for m = 10−5 and
χmax = 24. Pairing is effective for n 	 19 in agreement with
(17), which gives n(10−5) 	 16 to 17.

The same behavior is seen in Fig. 3 (right). We have
plotted the singular values of Bπ

8 obtained with χmax = 8.
The singular values pair up for masses larger than m ≈ 0.03.
Below, they rapidly unpair with the largest singular value
strongly detaching from the rest. In rescaled lattice units,

FIG. 3. Singular values of Bπ
n . Left: RG flow for m = 10−5 and

χmax = 24. Right: As a function of the mass for n = 8 and χmax = 8.

the threshold mass is 0.03 × 28 ≈ 8. Hence, a CDL structure
does not emerge until scales larger than the correlation length
ξ = 1/m are reached.

Let us denote by B̂ the submatrix of B that connects fields
on opposite links. Although the pairing of singular values
is necessary for CDL, the vanishing of B̂ in two successive
gTRG steps is a sufficient condition (see Appendix C). We
define

PCDL = 1

χ

‖B̂‖
λ1

, (20)

where ‖ · ‖ is the Frobenius norm and λ1 is the largest singular
value of B. The RG evolution of this quantity is plotted
in Fig. 4 (left) for the example of Fig. 3 (left). It abruptly
decreases at the same scale at which the singular values pair
up, confirming that the complete CDL structure is realized.

Figure 4 (right) shows the number of RG cycles nec-
essary to attain a CDL IR fixed point using for criterium
PCDL < 10−7. Similar results are obtained for large and small
bond dimensions. In both cases, they are consistent with the
scaling argument (17). An extrapolation to the massless limit
implies n → ∞ and, thus, an infinite correlation length. This
suggests that the gTRG keeps some long-distance information
for any bond dimensions. The reason behind it could be
related to an important feature of the gTRG. It is constructed
such that the lattice variables are always fields, which can
take arbitrarily large values. As a consequence the diagonal
matrix S in (7), whose components play the role of singular
values for the gSVD, contains arbitrarily small entries even
after truncation. On the contrary, the ordinary TRG discards
the singular values smaller than a chosen cutoff.

FIG. 4. Left: Indicator PCDL for m = 10−5 and χmax = 24. The
step at which it drops coincides with Fig. 3 (left). Right: RG cycles
needed to reach a CDL structure. The theoretical argument (17) is
shown in black.
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VI. CONCLUSIONS

We have implemented the tensor renormalization-group
method to compute the partition function of a free boson
in two Euclidean dimensions. The guiding principle is to
preserve the Gaussian character of the statistical weights. This
led us to modify the singular value decomposition to handle
continuous degrees of freedom taking unbounded values. We
have obtained very accurate numerical results keeping a small
number of fields in the RG iteration procedure. There is still
some residual short-range entanglement that give rise to CDL
tensors. We expect that a version of the TNR along the lines
of Refs. [32,33] would eliminate it completely reducing the
computational cost to achieve the same accuracy as it occurs
for spin models.

We expect that our results serve as a starting point for a per-
turbative treatment of interacting models. In this construction,
the gSVD should play the role that free theory propagators
have in the construction of interacting field theories. This
will allow us to get new insights on the interplay between
entanglement and interactions. The final goal is to improve
the performance of the entanglement-based RG method in
quantum-field theory.
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APPENDIX A: gTRG ALGORITHM

In order to apply the gTRG algorithm, we first write the
bosonic partition function as a contraction of a square tensor
network in which each tensor is given by Eq. (2),

W φ

1 (φ) = ρ1e−(1/2)φT Mφ
1 φ, ρ1 = 1, M1 = m2

2
14 + K,

K =

⎛⎜⎝ 2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

⎞⎟⎠, (A1)

with φ = (φ1, φ2, φ4, φ3) as indicated in (3). Similarly, at each
step, we will have square lattices of tensors W ϕ

n , where n
indicates the RG cycle and ϕ represents the φ or π fields.
The goal of the gTRG algorithm is to compute from W ϕ

n

its coarse-grained version W ϕ̃
ñ . If ϕ = φ, then ϕ̃ = π and

ñ = n, whereas if ϕ = π , then ϕ̃ = φ and ñ = n + 1. Namely,
W φ

n → W π
n and W π

n → W φ

n+1.
From now on, when no confusion is possible, we just

write W ϕ
n = W and W ϕ̃

ñ = W̃ . Following the TRG, we use
the gSVD to split W (ϕ) = exp (− 1

2ϕT Mϕ) in left and right
tensors as shown in Eq. (4). Accordingly we separate the
fields ϕ in their left and right components ϕL = (ϕ1, ϕ2) and
ϕR = (ϕ3, ϕ4), where ϕi’s collectively denote all fields that
live in the corresponding lattice link. M is then decomposed

in four blocks,

M =
(

A −B
−B A

)
. (A2)

As we will show, those blocks have further structures, and it
is possible to decompose them as

A − B = 1

2

(
s 0
0 s

)
+
(

a −a
−a a

)
,

B = 1

2

(
b+ + b− b+ − b−
b+ − b− b+ + b−

)
, (A3)

where a, b+, and b− are χ × χ symmetric and positive
semidefinite matrices and s is a χ × χ diagonal matrix with
non-negative entries. The matrices s, a, and b± act on the
fields ϕi of each separated lattice link. This structure is ver-
ified by the initial weights where those small blocks are just
numbers,

s1 = m2, aφ

1 = bφ

+,1 = bφ

−,1 = 1. (A4)

The proof proceeds by induction. We assume that the previ-
ous structure is realized by W . Now, we perform the gSVD of
W using the SVD of B as explained in the body of the article.
Since we have assumed that b±’s are positive definite, so is B,
and its SVD reduces to a diagonalization. The diagonalization
of B = UDU T can be computed from the diagonalization of
its blocks b± = u±d±uT

±. The isometries u± span the space of
nonzero eigenvalues, and d± is the diagonal matrix with the
nonzero eigenvalues of b±. The χ̃ × χ̃ diagonal matrix D and
2χ × χ̃ isometry U are

D =
(

d+ 0
0 d−

)
, U = 1√

2

(
u+ u−
u+ −u−

)
. (A5)

At this point, if the number of new fields χ̃ is too big or some
of the eigenvalues in D are too small, we can implement the
truncation as explained in the main text.

In the original TRG algorithm, each tensor of the lattice is
split in two W = VṼ †. The gTRG algorithm proceeds in the
same way. Due to the assumed structure of W we have V = Ṽ
so that

W (ϕL, ϕR) =
∫

dϕ̃ V (ϕL, ϕ̃)V †(ϕ̃, ϕR). (A6)

This relation can be written pictorially as

(A7)

where from Eqs. (6)–(9),

V (ϕL, ϕ̃) = √
ρG(ϕL )eiϕT

L U ϕ̃S1/2(ϕ̃). (A8)

To obtain the new tensor W̃ , we have to contract a loop of
four tensors V . Depending on how we label the two halves of
each tensor W , left and right, we can have different resulting
tensors W̃ that are equivalent under a suitable change of fields
ϕ → −ϕ. We are going to fix this freedom in such a way that
all W̃ ’s are equal up to 90◦ rotation since, at the next step,
they will be split along a different axis and have the structures
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showed at (A2) and (A3). Our choice can be depicted as

(A9)

The resulting lattice of tensors preserves the translational and
rotational symmetries of the original lattice but only at the
level of plaquettes as can be seen in the following figure:

(A10)

The new tensor W̃ (ϕ̃) is given by

W̃ (ϕ̃) =
∫ 4∏

i=1

dϕiV (ϕ1, ϕ2; ϕ̃1)V †(ϕ̃2; ϕ2, ϕ3)

×V (ϕ3, ϕ4; ϕ̃4)V †(ϕ̃3; ϕ4, ϕ1)

= ρ̃e−(1/2)ϕ̃T M̃ϕ̃ . (A11)

with

M̃ = 1

2
14 ⊗ D−1 + CT Q−1C, ρ̃ = ρ2 (2π )2χ−χ̃

det(D) det(Q)1/2
.

(A12)

The matrix Q collects terms quadratic in ϕ in the exponent
of the integrand and C collects the cross terms in ϕ and ϕ̃,
whereas ρ is the corresponding factor of W . It is convenient
to decompose C in two blocks such that ϕT Cϕ̃ = ϕT CLϕ̃L +
ϕT CRϕ̃R. We have

Q = 14 ⊗ s + K ⊗ a, CL =
(

U 0
0 0

)
− S

(
0 0
0 U ′

)
,

CR =
(

0 0
0 U

)
− S

(
U ′ 0
0 0

)
, (A13)

where U ′ is defined as U in (A5) but substituting u− by −u−
and the 4χ × 4χ matrix S shifts ϕi to ϕi−1. Straightforward
manipulations show that W̃ has the structure described in (A2)
and (A3) with

s̃ = D−1, ã = U T

(
0 0
0 q1

)
U, b̃+ = U T

(
q1 0
0 0

)
U,

b̃− = 1

2
U T

(
q0 + q2 q0 − q2

q0 − q2 q0 + q2 − 2q1

)
U, (A14)

where q j = (s + 2 ja)−1. The matrix s̃ is diagonal with non-
negative entries. The matrices ã, b̃+, and b̃− are symmetric
by construction. They are also positive semidefinite. This is
evident for ã and b̃+ since their eigenvalues are those of
q1, which is positive semidefinite because so are s and a by
assumption. After some simple algebra, b̃− is also shown to
be positive semidefinite.

When the eigenvalues of b± are all nonvanishing, χ̃ =
rank(B) = 2χ and U is an orthogonal matrix. In this case,
expressions (A15) make clear that the matrices ã and b̃+ have
half of their eigenvalues equal to zero. It can be seen that the

same result holds for b̃−. As a consequence, when we perform
a new gTRG iteration, the bond dimension does not increase

χnew = rank(B̃) = rank(b̃+) + rank(b̃−) = χ̃ . (A15)

Moreover Ũ is a 2χ̃ × χ̃ isometry, and (A15) does not restrict
the number of positive eigenvalues of the matrices anew, bnew

± .
In the generic case, all of them will be nonvanishing. In
the initial lattice (A4), b±,1’s have trivially maximal rank.
Therefore, without truncation, χπ

n = 2χφ
n and χ

φ

n+1 = χπ
n .

Computation of the partition function

In this article, we compute the partition function of square
lattices with L2 sites and periodic boundary conditions with
L = 2S . After each gTRG step, the number of sites is reduced
by 1/2. Therefore, after S − 1 RG steps, our lattice only
has four sites, and there are only two tensors left. Then,
performing another gTRG transformation, the lattice becomes
the tensor trace of just one tensor W π

S ,

Z = tTr W π
S =

∫
dπ1dπ2WS (π1, π2, π2, π1) =

(A16)

It is important to take into account that the definition of the
tensor W π

S in the last step is special since we are not free to
arrange the loop of tensors as in (A9). Instead, we are forced to
use a disposition in which V φ

S and (V φ
S )† are placed at opposite

sides as in the following figure:

(A17)

APPENDIX B: DETAILS OF
THE TRUNCATION

In order to minimize the numerical error, the gTRG dis-
cards singular values of B below a given threshold ε. Without
truncation, the singular values of Bφ

n follow an approximately
exponential distribution with smaller values added at each
step, see Fig. 2(left). If we allow χmax large enough, at
some point, some of them will be smaller than ε. Using the
value of ε = 10−11, this happens when χmax > 22 for m < 0.1
and at smaller χmax for bigger masses. Truncations which
involve ε have relevant differences with those in which ε

plays no role. In the latter case, truncation only starts when
the maximal bond dimension χmax is reached. Before that, the
bond dimensions double in the gTRG steps that lead from φ

to π fields and remain constant when transforming from π to
φ fields. Therefore,

χπ
n−1 = χφ

n = 1

2
χπ

n . (B1)

A typical sequence is provided by m = 10−6 and χmax = 20,{
χ

φ

1 , χπ
1 , χ

φ

2 , χπ
2 , . . .

}
= {1, 2, 2, 4, 4, 8, 8, 16, 16, 20, 20, 20, 20, . . .} . (B2)
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FIG. 5. Left: Singular values of Bπ
4 without truncation. For small masses, the largest singular value is approximately m−2. For large masses,

they all converge to m−2. Right: Singular values of Bπ
5 for m = 10−6.

On the contrary, if χmax = 64, we have{
χ

φ

1 , χπ
1 , χ

φ

2 , χπ
2 , . . .

}
= {1, 2, 2, 4, 4, 8, 8, 16, 16, 22, 30, 35, 41, 46,

54, 60, 64, 64, 64, 64, . . .} . (B3)

In this case, truncation is first triggered by ε, and several
iterations are needed to achieve the maximal bond dimension.

Before truncation, the matrices Bπ
n have quite different

properties from Bφ
n : (i) half of their singular values are

zero, and (ii) those nonvanishing stay above O(1) values.
The singular values of Bπ

4 are shown for the illustration in
Fig. 5(left). Once, ε triggers truncation χπ

n < 2χφ
n as seen in

(B3). Moreover, the two previous properties of Bπ
n are not

satisfied anymore. More than half of its singular values are
now positive. The largest χπ

n ’s of them behave as before.
The new ones, instead, decay in an approximately exponential
way, similar to those of the φ lattices. In Fig. 5(right), we show
the singular values of the matrix Bπ

5 associated with (B3).
We observe that the first χπ

5 = 22 singular values stay above
O(1), whereas the next ones strongly decay. A total number
of χ

φ

6 = 30 survive the ε cutoff. Hence, after truncation is
triggered χφ

n > χπ
n−1.

The resulting stepwise pattern of reaching the maximal
bond dimension has important consequences in the perfor-
mance of the gTRG. In Fig. 2(left), we have plotted the
relative error in the free energy as a function of the maximal
bond dimension for m = 1.2 × 10−6. This curve has two dif-
ferentiated segments. The first one falls as χ−a with a ∼ 3.44.
This is the typical TRG behavior in which improving the
precision is increasingly expensive [28,32]. The parameter ε

starts playing a role at χmax = 22. At this point, the curve
enters its second segment where we observe that the precision
improves at a lower computational cost. Interestingly, this
turns out to rely on the possibility of having χφ

n > χπ
n−1.

Indeed, we have checked that restricting the bond dimensions
to only increase in the φ to π transformations clearly worsens
the results.

APPENDIX C: CDL STRUCTURE

In this Appendix, we explain the details of the CDL struc-
ture that appears in the gTRG algorithm. The internal structure

of the CDL tensors is given by

e−(1/2)ϕT MCDLϕ ∝

where the internal lines represent cross terms between the
corresponding fields in the exponent. The matrix MCDL fac-
torizes, thus, in the tensor product of four equal blocks,

MCDL = 14 ⊗ mCDL,

mCDL = 12 ⊗ h +
(

1 −1
−1 1

)
⊗ k, mCDL ∼

(C1)

where h and k are χ/2 × χ/2 symmetric positive definite real
matrices.

In terms of the definitions introduced in Appendix A, CDL
requires: (i) b+ = b−, (ii) half of the eigenvalues of a and
b+ are zero, (iii) the subspaces spanned by the eigenvectors
of a and b+ with nonzero eigenvalues are orthogonal, (iv)
the mass matrix s does not connect these subspaces. We
will now show that, if the submatrices b± coincide in two
consecutive gTRG steps, or equivalently, a RG cycle, then the
full CDL structure is realized. The indicator PCDL defined in
(20), where B̂ = (b+ − b−)/2, measures the deviation from
this condition. Following the notation of Appendix A, we
label two consecutive gTRG steps with indices n and ñ and
their associated fields by ϕ and ϕ̃. We assume b+ = b−
and b̃+ = b̃−. The matrix b ≡ b+ = b− decomposes as uduT

where the χ̃/2 × χ̃/2 diagonal matrix d collects its positive
eigenvalues and u is a χ × χ̃/2 isometry. Using (A15) and
further applying the following change of basis to the fields in
each lattice link,

1χ̃/2 ⊗ 1√
2

(
1 1
1 −1

)
, (C2)

we obtain

s̃ =
(

d−1 0
0 d−1

)
, ã =

(
0 0
0 uT s−1u

)
,

b̃ ≡ b̃+ = b̃− =
(

uT s−1u 0
0 0

)
. (C3)
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These matrices clearly satisfy all the requirements for CDL
and lead to (C1) with h = d−1 and k = uT s−1u.

The CDL structure is a fixed point of the gTRG algo-
rithm. Let us perform a gTRG iteration taking as a starting
point (C3). The nonzero block of the matrices a and b has
maximal rank, and thus, the new bond dimension is again
χn+1 = χ̃ . This implies that b̃ = ũd̃ ũT , where ũT = (vT 0)
and v is the orthogonal matrix that diagonalizes uT s−1u. The
building blocks of the new tensors q̃ j = (s̃ + 2 jã)−1 defined
in (A15), satisfy

ũT q̃ j ũ = vT dv. (C4)

Therefore (b+)n+1 = (b−)n+1, and the complete CDL struc-
ture is realized with h = d̃−1 and k = vT dv. A new gTRG
iteration leads to h = d−1 and k = vd̃vT , showing that a RG
cycle leaves invariant the exponent of the Gaussian weights.
Interestingly, a gTRG step exchanges the roles of h and k.

APPENDIX D: EXACT RESULTS AND RELATION WITH
CONFORMAL FIELD THEORY

Let us consider a lattice L1 × L2 and real scalar fields
φi j, i = 1, . . . , L1, j = 1, . . . , L2. The partition function is
given by

Z =
∫ ∏

i j

dφi je
−S[φ], (D1)

with

S = 1

2

L1∑
i=1

L2∑
j=1

[
(φi j − φi+1 j )

2 + (φi j − φi j+1)2 + m2φ2
i j

]
.

(D2)

Let us make the Fourier transform,

φ j1 j2 = 1√
L1L2

∑
k1,k2

ei(k1 j1+k2 j2 )φ̂k1k2 , (D3)

where the periodic boundary conditions imply

ki = 2πni

Li
(ni = 1, . . . , Li ), i = 1, 2, (D4)

and the reality condition reads

φ̂∗
k1k2

= φ̂−k1−k2 . (D5)

In momentum space, the action becomes

S = 1

2

∑
k1,k2

(
4 sin2 k1

2
+ 4 sin2 k2

2
+ m2

)
φ̂k1k2 φ̂

∗
k1k2

. (D6)

Performing the Gaussian integration yields

Z (L1, L2) = (2π )L1L2/2

×
∏
n1,n2

(
4 sin2 πn1

L1
+ 4 sin2 πn2

L2
+ m2

)−1/2

.

(D7)

Relation with CFT

In the limit m → 0, we can approximate Eq. (D7) by

Z (L1, L2) 	 2

m

(
π

2

)L1L2/2

×
∏

(n1,n2 )�=(L1,L2 )

(
sin2 πn1

L1
+ sin2 πn2

L2

)−1/2

.

(D8)

We will compute this product in the limit L1, L2 � 1, keeping
the ratio L2/L1 constant. For this purpose, we will employ the
following formula:

L∏
n=1

(
x2 + sin2 πn

L

)
= (21−L sinh(L arcsinh(x)))2, (D9)

that using

arcsinh(x) = ln(x +
√

1 + x2) (D10)

becomes
L∏

n=1

(
x2 + sin2 πn

L

)
= 2−2L[(x +

√
1 + x2)L

− (x +
√

1 + x2)−L]2. (D11)

Let us write Eq. (D8) as

Z (L1, L2) 	 2

m

(π

2

)L1L2/2 ∏
(n1,n2 )�=(L1,L2 )

a(n1, n2), (D12)

where

a(n1, n2) =
(

sin2 πn1

L1
+ sin2 πn2

L2

)−1/2

. (D13)

We can split the product in (D12) as

A ≡
∏

(n1,n2 )�=(L1,L2 )

a(n1, n2) =
L2−1∏
n2=1

a(L1, n2)
L1−1∏
n1=1

L2∏
n2=1

a(n1, n2).

(D14)

The first factor is given by

L2−1∏
n2=1

a(L1, n2) =
L2−1∏
n2=1

(
sin

πn2

L2

)−1

= (21−L2 L2)−1, (D15)

whereas the second factor can be obtained using (D11),

L1−1∏
n1=1

L2∏
n2=1

a(n1, n2)

=
L1−1∏
n1=1

L2∏
n2=1

(
sin2 πn1

L1
+ sin2 πn2

L2

)−1/2

= 2L2(L1−1)
L1−1∏
n1=1

[(
xn1 +

√
1 + x2

n1

)L2

− (xn1 +
√

1 + x2
n1

)−L2
]−1
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FIG. 6. Plot of the function b(n, L1) for n = 1, . . . , L1 − 1
and L1 = 100. The red curve is e−πn1/L1 , and the blue curve is
e−π (L1−n1 )/L1 .

= 2L2(L1−1)
L1−1∏
n1=1

(
xn1 +

√
1 + x2

n1

)−L2

×
L1−1∏
n1=1

[
1 − (

xn1 +
√

1 + x2
n1

)−2L2
]−1

, (D16)

where

xn1 = sin
πn1

L1
. (D17)

Combining Eqs. (D12), (D15), and (D16) yields

Z (L1, L2) 	 (2π )(1/2)L1L2

mL2

L1−1∏
n1=1

(
xn1 +

√
1 + x2

n1

)−L2

×
L1−1∏
n1=1

[
1 − (

xn1 +
√

1 + x2
n1

)−2L2
]−1

. (D18)

Let us define

b(n1, L1) = (
xn1 +

√
1 + x2

n1

)−1

= − sin
πn1

L1
+
√

1 + sin2 πn1

L1
. (D19)

Figure 6 shows that, for L1 � 1, the values of this function
near 1 can be approximated by

b(n1, L1) 	
{

e−πn1/L1 , n1 � L1,

e−π (L1−n1 )/L1 , n1 	 L1.
(D20)

These analytic expressions can be derived from Eq. (D19).
Hence, in the limit L1, L2 � 1 with L2/L1 constant, we find

L1−1∏
n1=1

[
1 − (

xn1 +
√

1 + x2
n1

)−2L2
]−1

	
L1−1∏
n1=1

(1 − e−2πL2n1/L1 )−2 	
∞∏

n=1

(1 − qn)−2, (D21)

where

q = e−2πL2/L1 . (D22)

The exponent 2 in Eq. (D21) comes from the terms around
n1 	 L1 that contribute with the same amount as those near
n1 � L1.

Let us now evaluate the first product in Eq. (D18),

L1−1∏
n=1

(
xn +

√
1 + x2

n

)−L2 = exp

(
−L2

L1−1∑
n=1

f (n)

)
, (D23)

where

f (n) = ln
(
xn +

√
1 + x2

n

) = ln

(
sin

πn

L1
+
√

1 + sin2 πn

L1

)
.

(D24)

To approximate the sum (D23), we use the Euler-MacLaurin
formula,

L1−1∑
n=1

f (n) =
∫ L1

0
dn f (n) − f (0) + f (L1)

2

+ 1

12
[ f ′(L1) − f ′(0)] + · · · , (D25)

and compute the various terms,∫ L1

0
dn f (n) = L1

∫ 1

0
dx ln[sin(πx) +

√
1 + sin2(πx)]

= 2G

π
L1, (D26)

where G is the Catalan constant. The rest of the quantities are
given in the limit L1 � 1 by

f (0) = f (L1) = 0,

f ′(0) = − f ′(L1) = π

L1
+ O

(
L−3

1

)
. (D27)

Therefore,

L1−1∑
n=1

f (n) 	 2G

π
L1 − π

6L1
, (D28)

which plugged into Eq. (D23) yields

L1−1∏
n=1

(
xn +

√
1 + x2

n

)−L2 = exp

[
−2G

π
L1L2 + πL2

6L1

]

= exp

[
−2G

π
L1L2

]
q−(1/12). (D29)

Collecting terms, Eq. (D18) becomes

Z (L1, L2) 	 (2π )(1/2)L1L2

mL2
exp

[
−2G

π
L1L2

]

× q−(1/12)
∞∏

n=1

(1 − qn)−2, (D30)

that can be written as

Z (L1, L2) 	 e−L1L2 f∞

m
√

L1L2
ZCFT(τ ), (D31)

where f∞ is the free energy per site,

f∞ = 2G

π
− ln(2π )

2
. (D32)
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ZCFT(τ ) is the partition function of a massless boson on a torus with moduli parameter τ [41],

ZCFT(τ ) = 1

(Im τ )1/2|η(q)|2 , q = e2π iτ , τ = i
L2

L1
, (D33)

and

η(τ ) = q1/24
∞∏

n=1

(1 − qn) (D34)

is the Dedekind η function. Equation (D7) is symmetric under the exchange L1 ↔ L2, a condition that is guaranteed in (D33) by
the modular invariance of ZCFT,

ZCFT(τ ) = ZCFT(−1/τ ). (D35)
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