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Characterization of localized effective spins in gapped quantum spin chains
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We study properties of localized effective spins induced in gapped quantum spin chains by local inhomo-
geneities of the lattice. As a prototype, we study effective spins induced in an impunity sites doped AKLT model
by constructing the exact ground state in a matrix product state (MPS) form. We characterize their responses to
external fields by studying an extended Zeeman interaction. We also study the antiferromagnetic bond-alternating
Heisenberg chain with defect structures. For this model, an MPS representation similar to that for the AKLT
model, “a uniform MPS with windows,” is constructed, and it gives a good approximation of the ground state.
We discuss the trade-off relation between the window length and the precision of the MPS ansatz. The effective
exchange interaction between the induced spins is also investigated by using this representation.
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I. INTRODUCTION

Collective motions in quantum many-body systems are
one of the most exciting topics in quantum dynamics, which
give the basis of recently developing quantum information
techniques [1–6]. As a typical example of such collective
phenomena in quantum systems, it has been well studied
that localized effective spins are induced in gapped quantum
spin systems. Such structures appear at local inhomogeneities
in lattices, e.g., edges, impurity spins, inhomogeneities of
interactions, etc.

For example, edges and impurities in the S = 1 antifer-
romagnetic Heisenberg chain have been studied extensively
[7–11]. Moreover, localized spin moments at the inhomoge-
neous structure are pointed out in several systems [12,13].

Recently, the coherent dynamics of such a localized mag-
netic structure has been measured in experiments. For ex-
ample, Bertaina et al. [14] measured Rabi oscillations of
the localized spins in (TMTTF)2PF6, which was modeled
by the antiferromagnetic bond-alternating Heisenberg chain
(ABAHC). They also discussed the effect of the localized
spins on the ESR spectrum and proposed possible use of the
magnetic structure as a spin qubit.

Under these circumstances, the theoretical analysis of such
localized effective spins becomes more important. In the
present paper, we characterize such effective spins as a col-
lective mode in gapped systems by making use of the matrix
product state (MPS) representation [15–18] and study their
coherent responses to the external field.

As a prototype, we first study the Affleck-Kennedy-
Lieb-Tasaki (AKLT) model [19,20]. The AKLT model is
a frustration-free spin model, and the exact uniform MPS
representation of the ground state exists [21,22]. We dope
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S = 3/2 impurity spins into the AKLT model and introduce
interactions around them with projection operators in order
not to break the frustration-free property. Then, the ground
state exhibits S = 1/2 effective spin structures. By replacing
the tensors at the impurity sites, we can construct the exact
MPS representation of the effective spin states. We call such
MPS structure “a uniform MPS with windows.” By making
use of this MPS representation, we study responses to an
external magnetic field and propose a way of independent
manipulation of two distinct systems (qubits) in two effective
spin systems. We also point out such manipulation is not
possible for more than two spins.

As a more realistic model, we study the ABAHC, which
has the gapped ground state and inhomogeneities cause lo-
calized effective spins. Because this is not a frustration-free
model, the discussions of the AKLT model are not fully ap-
plicable. However, MPS based analyses are still useful in this
case. We studied the ABAHC with weak-weak bond defects
and investigated the interaction between two effective spins
induced by the defects. We obtained the asymptotic behavior
of the interaction strength as a function of the separation by
using the MPS representation with the windows. We also
discuss the trade-off relation between the precision and the
window length, both numerically and analytically.

The present paper is organized as follows. In Sec. II we
study MPS for the AKLT model with impurities as a proto-
type, and in Sec. III MPS for the ABAHC are given. Summary
and discussion are given in Sec. IV.

II. LOCALIZED SPIN STRUCTURE IN THE AKLT MODEL

The AKLT model is an S = 1 antiferromagnetic quantum
spin chain described by the Hamiltonian

ĤAKLT =
∑

i

[
Ŝi · Ŝi+1 + 1

3
(Ŝi · Ŝi+1)2 + 2

3

]
. (1)
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FIG. 1. The schematic picture of the VBS state. Black dots
denote sL,R and white circles denote the symmetrization operator S .

Ŝi · Ŝi+1 + 1
3 (Ŝi · Ŝi+1)2 + 2

3 is proportional to P̂Stot=2
i,i+1 , which

is defined as the projection operator onto the spin 2 subspace
of HS=1

i ⊗ HS=1
i+1 . Here Hi denotes the local Hilbert space at

site i.
For a chain with periodic boundary condition, the ground

state is given as follows:(⊗
i

Si

)
|dimer〉 = Tr

[ •⊗
i

[ − 1
2 |0i〉 1√

2
|+i〉

− 1√
2
|−i〉 1

2 |0i〉

]]
,

(2)

where the operator ⊗̇ acts as (X ⊗̇Y )i, j = ∑
k Xi,k ⊗ Yk, j and

|dimer〉 denotes a dimer state of virtual S = 1/2 spins

|dimer〉 =
⊗

i

|↑i,R〉|↓i+1,L〉 − |↓i,R〉|↑i+1,L〉√
2

= Tr

[ •⊗
i

1√
2

[−|↑i,L〉|↓i,R〉 |↑i,L〉|↑i,R〉
−|↓i,L〉|↓i,R〉 |↓i,L〉|↑i,R〉

]]
. (3)

The operator SS=1 is a symmetrization operator, which makes
two virtual S = 1/2 spins into a S = 1 spin as

SS=1
∣∣ 1

2 ; sL
〉∣∣ 1

2 ; sR
〉 = 1√( 2

1+sL+sR

) |1; sL + sR〉, (4)

where
(n

m

)
denotes the combination number. This ground state

is called a valence bond solid (VBS) state and often illustrated
as a schematic picture depicted in Fig. 1.

This state is written in the conventional form of MPS:∑
{s}

Tr

(∏
i

Asi

)
|{s}〉, (5)

with the tensor with three indices

A+ =
√

2

3
σ+, A0 = −

√
1

3
σ z, A− = −

√
2

3
σ−. (6)

Here |{s}〉 denotes the basis of the system |s1, s2, . . . , sN 〉
(si = +, 0,−) and σ denotes the Pauli matrices. The coeffi-
cients of (6) are introduced into A to make the state normalized
in the thermodynamic limit.

For a chain with an open boundary condition, the ground
state is obtained by applying the symmetrization operators (4)
on the following state:

|s1,L〉 ⊗
(

N−1⊗
i=1

|↑i,R〉|↓i+1,L〉 − |↓i,R〉|↑i+1,L〉√
2

)
⊗ |sN,R〉, (7)

instead of the periodic dimer state (3). Because of the
edge spins s1,L, sN,R, the ground state is fourfold degenerate.
We mention that these S = 1/2 spin degrees of freedom are
localized but not strictly localized around the edges. To make

−2 −1 0 1 2

L R L R L R L RL RC

FIG. 2. The effective spin state with a doped S = 3
2 spin.

it clear, let us consider the magnetization profile in the case
of s1,L = sN,R = ↑ and N → ∞. Around the left edge, the
profile is given by

〈
Sz

i

〉 = −2
(− 1

3

)i
, i = 1, 2, . . . . (8)

Since
∑∞

i=1 −2(−1/3)i = 1/2, this structure can be regarded
as a localized S = 1/2 spin originating from s1,L.

A. AKLT model with impurity spins

Here we consider the AKLT model with a doped S = 3/2
spin, which induces an S = 1/2 localized spin structure. We
tune the interactions around the doped spins to make the
ground state exactly representable in the MPS form. The

constructed Hamiltonian acting on (
⊗

i<0 H
S=1
i ) ⊗ H

S= 3
2

0 ⊗
(
⊗

i>0 H
S=1
i ) is

Ĥ =
∑

i< − 1
or 1�i

[
Ŝi · Ŝi+1 + 1

3
(Ŝi · Ŝi+1)2 + 2

3

]

+
[

Ŝ−1 · ŝ0 + 2

7
(Ŝ−1 · ŝ0)2 + 5

7

]

+
[

ŝ0 · Ŝ1 + 2

7
(ŝ0 · Ŝ1)2 + 5

7

]
, (9)

where ŝ denotes an S = 3/2 spin operator. Since the interac-
tion around the impurity is also proportional to the projection
operator, i.e.,

P̂Stot= 5
2

i,i+1 ∝ ŝi · Ŝi+1 + 2
7 (ŝi · Ŝi+1)2 + 5

7 , (10)

the ground state of this Hamiltonian can be constructed in the
same way as that of the uniform AKLT model. The ground
state is schematically expressed in Fig. 2. Let us briefly
illustrate how to construct the MPS representation of this state.
First, we construct a product state of the dimer state (3) and
an extra S = 1/2 spin state |s0,C〉,

|dimer〉 ⊗ |s0,C〉

∝ Tr

[( •⊗
i<0

[−|↑i,L〉|↓i,R〉 |↑i,L〉|↑i,R〉
−|↓i,L〉|↓i,R〉 |↓i,L〉|↑i,R〉

])

⊗̇
[−|↑0,L〉|s0,C〉|↓0,R〉 |↑0,L〉|s0,C〉|↑0,R〉
−|↓0,L〉|s0,C〉|↓0,R〉 |↓0,L〉|s0,C〉|↑0,R〉

]

⊗̇
( •⊗

0<i

[−|↑i,L〉|↓i,R〉 |↑i,L〉|↑i,R〉
−|↓i,L〉|↓i,R〉 |↓i,L〉|↑i,R〉

])]
. (11)
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The symmetrization operator acting on three S = 1/2 spins
is now given by

SS= 3
2
∣∣ 1

2 ; sL
〉∣∣ 1

2 ; sC
〉∣∣ 1

2 ; sR
〉

= 1√( 3
3
2 +sL+sC+sR

) ∣∣ 3
2 ; sL + sC + sR

〉
. (12)

By applying (
⊗

i<0 SS=1
i ) ⊗ SS= 3

2
0 ⊗ (

⊗
0<i SS=1

i ) to
|dimer〉 ⊗ |s0,C〉, we obtain the ground state

|σ loc〉 =
∑
{s}

Tr

⎡
⎣
⎛
⎝ ∏

−N/2<i<0

Asi

⎞
⎠Bs0

σ loc

⎛
⎝ ∏

0<i�N/2

Asi

⎞
⎠

⎤
⎦|{s}〉,

(13)

where σ loc = ↑,↓ denotes the index of the S = 1/2 localized
spin corresponding to the unpaired spin sC, and nonzero
elements of B are defined by

B
+ 3

2
↑ = σ+, B

+ 1
2

↑ = −
√

1

3
σ z, B

− 1
2

↑ = −
√

1

3
σ−,

B
+ 1

2
↓ =

√
1

3
σ+, B

− 1
2

↓ = −
√

1

3
σ z, B

− 3
2

↓ = −σ−. (14)

From now, we consider only in the thermodynamic limit,
i.e., N → ∞ limit of (13) [23]. In this limit, the states
are normalized, and the magnetization profiles of them are
given by

〈↑loc|S(z)
i |↑loc〉 =

{ 5
6 (i = 0) =: f (i)
2
3

( − 1
3

)|i|
(i �= 0)

, (15)

〈↓loc|S(z)
i |↓loc〉 = − f (i). (16)

We note that
∑

i f (i) = 1/2 is satisfied. Thus we succeeded to
create effective S = 1/2 spins represented by compact tensors
by doping S = 3/2 spins. Here it should be noted that we may
construct the effective spin states by simply introducing S =
1/2 spins [7,8]. However, in this case, there is no compact
representation since the projection method used above is not
available.

B. Response to magnetic field

Now we discuss a response of the effective spin structures
to external magnetic fields described by the Hamiltonian
Ĥ′(t ) = ∑

i hi(t ) · Ŝi. For simplicity, hereafter we omit the
argument t . First, we consider the case of a uniform magnetic
field Ĥ′ = h · (

∑
i Ŝi ). Since [Ĥ, Ĥ′] = 0 and Ĥ|σ loc〉 = 0,

the dynamics is bounded in the ground state subspace. The
matrix representation of Ĥ′:[

〈↑loc|
〈↓loc|

]
Ĥ′[|↑loc〉|↓loc〉] = 1

2

∑
α=x,y,z

hασ α, (17)

is the same as that of the Hamiltonian h · Ŝ acting on a single
free S = 1/2 spin. Therefore, the response is the same as that
of free S = 1/2 spin.

In the case of nonuniform external fields, i.e., {hi} is
position dependent, Ĥ and Ĥ′ no longer commute. Here we
assume that the gap above the ground state is large, and

the transition to the excited states is negligible. Under this
assumption, we study dynamics only in the ground states.
Then, the matrix representation of Ĥ′ is written as[〈↑loc|

〈↓loc|
]
Ĥ′[|↑loc〉 |↓loc〉] = 1

2

∑
α=x,y,z

heff
α σα, (18)

where we define effective magnetic fields as

heff
α =

∑
i f (i)hi,α∑

i f (i)
= 2

∑
i

f (i)hi,α. (19)

Thus, the response can be regarded again as the same as the
free spin.

This observation indicates that the effective spin acts in the
same way as long as the effective field is the same. Because
of the one-to-many correspondence between heff and {hi},
we can construct many different {hi}s which generate the
same dynamics. The degrees of freedom of effective fields
suggests the possibility to manipulate multiple effective spins
independently by tuning the distribution {hi}. Thus, in the
following, we study the systems with multiple doped spins.

C. MPS of multiple induced spins

Now we consider the Hamiltonian with multiple S = 3/2
doped spins. By using the above-introduced tensor B, we can
construct the ground state as∣∣σ loc

1 , . . . , σ loc
k

〉
=

∑
{s}

Tr

⎡
⎣
⎛
⎝ ∏

i< j1

Asi

⎞
⎠B

sj1

σ loc
1

⎛
⎝ ∏

j1<i< j2

Asi

⎞
⎠B

sj2

σ loc
2

· · ·

· · · B
sjk

σ loc
k

⎛
⎝ ∏

jk<i

Asi

⎞
⎠

⎤
⎦|{s}〉. (20)

The ground state is 2k-fold degenerate, where k is the number
of doped spins.

Here we consider the case of k = 2, and we fix the posi-
tions of doped spins as j1 = 0 and j2 = L � 2. The matrix
elements of the spin operators are given by〈↑loc

1 ,↑loc
2

∣∣S(z)
i y

∣∣↑loc
1 ,↑loc

2

〉 = g1(i) + g2(i), (21)〈↑loc
1 ,↑loc

2

∣∣S(+)
i

∣∣↑loc
1 ,↓loc

2

〉 = g2(i), (22)

and so on, where

g1(i) =
(

1 + 1

4
δi,L

)
f (i), g2(i) = g1(L − i). (23)

Now we define u2 as

u2 = [∣∣↑loc
1 ,↑loc

2

〉 ∣∣↑loc
1 ,↓loc

2

〉 ∣∣↓loc
1 ,↑loc

2

〉 ∣∣↓loc
1 ,↓loc

2

〉]
. (24)

Then, the matrix elements of Ĥ′ is written as

u†
2Ĥ′u2

= 1

2

⎡
⎢⎣

heff
z,1 + heff

z,2 heff
x,2 − iheff

y,2 heff
x,1 − iheff

y,1 0

heff
x,2 + iheff

y,2 heff
z,1 − heff

z,2 0 heff
x,1 − iheff

y,1

heff
x,1 + iheff

y,1 0 −heff
z,1 + heff

z,2 heff
x,2 − iheff

y,2

0 heff
x,1 + iheff

y,1 heff
x,2 + iheff

y,2 −heff
z,1 − heff

z,2

⎤
⎥⎦

= 1

2

∑
j=1,2

∑
α j=x,y,z

heff
α j , jσ

α j

j , (25)
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where we define heff
α, j = 2

∑
i g j (i)hi,α . Here it should be noted

that the bases (24) are not orthonormal and the Gram matrix
is

G := u†
2u2 =

[
1 − �L

1 + �L −2�L

−2�L 1 + �L

1 − �L

]
,

(26)

where �L = (− 1
3 )L+1. �L can be regarded as a barometer

of the overlap between the magnetization profiles of two
effective spins. Because G is different from the unit matrix
I4×4, the dynamics generated by Ĥ′ is different from that of
two free S = 1/2 spins.

To amend this difference, we introduce new basis {|σ̃1, σ̃2〉}
by linear combinations of {|σ loc

1 , σ loc
2 〉} as

ũ2 = u2

√
G

−1 = u2

[
β+ + β−

β+ β−
β− β+

β+ + β−

]
,

(27)

where

β± = 1

2

(√
1

1 − �L
±

√
1

1 + 3�L

)
. (28)

Then, the matrix elements of Ĥ′ for these new bases are
given by the same form of (25) after redefining heff as

1√
1−�L

(β+heff
α,1 + β−heff

α,2) → heff
α,1. Since the number of de-

grees of freedom of {hi} is larger than that of {heff
k }, we can

control heff
1 and heff

2 independently by tuning {hi}. Thus, these
new basis {|σ̃1, σ̃2〉} can be regarded as “qubit” states, which
can be controlled independently by the external field.

D. More than two spins

Now we study the case when the number of effective spins
becomes larger than two.

First, we consider the case of three spins. We found that
it is impossible to properly define effective fields heff

α,k =∑
i fk (i)hi,α and an orthonormal basis set {|σ̃1, σ̃2, σ̃3〉} which

satisfies

ũ†
3Ĥ′ũ3 =

∑
j=1,2,3

∑
α j=x,y,z

heff
α j , jσ

α j

j . (29)

In order to show this, we solve the generalized eigenvalue
problem λGv = Hv for

H = u†
3

(∑
i

hi,zS
z
i

)
u3, G = u†

3u3. (30)

If there exists a set of parameters satisfying (29), the eigen-
vectors are independent of the choice of the configuration
{hi,z}. To check whether such parameter sets exist or not, we
generated random configurations and solved the eigenvalue
problem numerically. Then we found that different configura-
tions make the eigenvectors different. Thus, we conclude that
the qubit states which can be controlled independently are not
possible for the case with three spins.

This difference can be understood as a consequence of the
scattering phenomena of the transfer matrices made of MPS

(see Appendix C). In the case of more than two spins, as
shown in (C6), multiple scattering more than two times causes
a peculiar matrix element in H . Such scattering processes,
which do not take place in the case of two spins, make the
qualitative difference.

III. ANTIFERROMAGNETIC BOND-ALTERNATING
HEISENBERG CHAIN

As mentioned in the Introduction, effective spin struc-
tures are induced at local inhomogeneities in various kinds
of gapped spin chains. A typical example of such gapped
chains is the spin-Peierls chain, modeled by the ABAHC. Its
Hamiltonian is given by

ĤABAHC =
∑

i

[1 + (−1)iδ]Ŝi · Ŝi+1, (31)

where Ŝ denotes an S = 1/2 spin operator. We call the bond
of the strength 1 + |δ| “strong bond” and that of 1 − |δ| “weak
bond.” The ground state is thought to be in the same phase as
the so-called dimer state. We can define a nonlocal string order
parameter detecting the dimer order [24,25]. These phases
are regarded as the symmetry-protected topological phases
named even-Haldane phase or odd-Haldane phase [26]. Here-
after, we adopt the dimerization parameter as δ = 0.03. This
value corresponds to the ESR experiment [14] and is suitable
to visualize the magnetization profile of the effective spin
smoothly.

We use a uniform MPS

|�(A)〉 =
∑
{s}

v†
L

(∏
i∈Z

As2i,s2i+1

)
vR|{s}〉 (32)

to approximate the ground state. The tensor A ∈ C22×D×D is
defined for every two sites, and vL,R are boundary vectors with
D complex elements. D is the bond dimension of A. A and
v are chosen to satisfy the normalization 〈�(Ā)|�(A)〉 = 1,
where the overline denotes the complex conjugate. To obtain
the ground state, we optimize the tensor A to minimize the
energy 〈�(Ā)|ĤABAHC|�(A)〉. In the present study, we use the
VUMPS algorithm [27] for this purpose. We prepare several
normalized random tensors as initial states of the optimization
and check that the optimized tensors are independent of the
initial choices. It suggests that the obtained states are not
trapped in local minimums of the energy.

The correlation length of the ground state is calculated
by the transfer matrix (T A

A )(a,a′ ),(b,b′ ) := ∑
s As

a,bĀs
a′,b′ . The

eigenvalues of T A
A , λ1, λ2, . . . , are sorted in descending order

of their magnitude. Because of the normalization, λ1 is equal
to 1. We assume |λ2| < 1, and the correlation length is defined
by ξbulk = −1/ ln |λ2|.

For the present model, we found D = 130 is large enough
to study the qualitative characteristics of the effective spin
structures, although the extrapolation to D → ∞ gives a
quantitative difference. The correlation length of the D = 130
MPS is ξbulk ≈ 5.055. We also estimate the energy gap �E ≈
0.145.
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FIG. 3. The magnetization profile around the defect obtained by
the MPS with N = 0 and N = 25. These two lines almost overlap.
The inset shows the difference between the two profiles.

A. Defects and effective spin structures

Now we study the ground state with a single defect. It is
known that the ground state of the ABAHC has an effective
spin structure around the inhomogeneity [12,13]. Here we
introduce a weak-weak bond defect into the ABAHC. The
lattice structure is schematically drawn as

1 0 1

where solid and dotted lines denote the strong and weak
bonds, respectively.

We calculate the ground state of this model in the MPS
form. We use the central 2N + 1 tensors, which we call
“window” in the uniform MPS, to express the effect of the
defect. Namely, the variational wave function is given by

∣∣�(
A; {B[i]}N

i=−N

)〉
=

∑
{s}

v†
L

( ∏
n<−N

As2n,s2n+1

)
Bs−2N ,s−2N+1

[−N] · · · Bs−2,s−1
[−1]

× Bs0
[0] · · · Bs2N−1,s2N

[N]

(∏
N<n

As2n−1,s2n

)
vR|{s}〉, (33)

where A is the tensor already calculated for the uniform
model. This form can be regarded as the generalization of
(13). The TDVP algorithm [28–31] was used for the optimiza-
tion of {B[i]} (see also Appendix A). In the optimization, we
apply a small magnetic field in the z direction in order to break
the degeneracy of the ground state.

We plot the magnetization profiles of the state calculated
for N = 0 and N = 25 in Fig. 3. The sum of the profile is
equal to 1/2, and therefore it can be regarded as an S =
1/2 effective spin structure. These two profiles agree well,
and thus we can say that the effective spin structure is well
represented by the MPS (33) even in the case of N = 0.
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Ψ
(A

;{
B

[i
]}2

5
i=

−2
5
)

Ψ
(A

;{
B

[i
]}N i=

−N
) A exp −N/ξ

FIG. 4. The relation between the windows length N and the
fidelity defined by (34). Blue circles denote the data of numerical
calculation with D = 130 and Nmax = 25. The orange line denotes
A exp(−N/ξbulk ) line. The value of A is chosen to fit the data at
N = 0.

B. Trade-off between window length and precision

In the previous section we treated the window length N
as a control parameter of the numerical calculation. Although
the N = 0 wave function gives a good approximate state,
N dependence is still an important matter. In this subsec-
tion we study how the difference between |�(A; {B[i]}∞i=−∞)〉
and |�(A; {B[i]}N

i=−N )〉 behaves as a function of N , where
{B[i]}N

i=−N denotes the set of 2N + 1 tensors optimized to
minimize the energy for each window length.

To study the N dependence, we plot the fidelity√
1 − ∣∣〈�(

Ā; {B̄[i]}Nmax
i=−Nmax

)∣∣�(
A; {B[i]}N

i=−N

)〉∣∣ (34)

in Fig. 4. We find that the fidelity (34) decreases with the
correlation length of the bulk as ∼ exp(−N/ξbulk ).

We believe that this behavior is general and does not
depend on the detail of the model. We give an analytical result
supporting this conjecture in Appendix A.

C. States with two localized spins

Now we study the case with two effective spins in the
ABAHC. The lattice structure is schematically drawn as

0 2L + 1

Because the MPS (33) for N = 0 already approximates the
single effective spin state well, we construct a “man-made”
state of two effective spins as∣∣� (2)

L (A; {B})
〉

=
∑
{s}

v†
L

(∏
m<0

As2m,s2m+1

)
Bs0

×
( ∏

0<m�L

As2m−1,s2m

)
Bs2L+1

(∏
L<m

As2m,s2m+1

)
vR|{s}〉,

(35)
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L

E

J tri
eff (L)

ΔE

Jeff(L)

triplet of effective spins

singlet of effective spins

FIG. 5. Schematic picture of the energy spectrum of two ef-
fective spins system. The effective exchange interaction breaks the
degeneracy of the ground state.

where {B} denotes the central tensor in (33) for N = 0. This
state corresponds to a triplet state since two effective spins
point in the same direction.

In the ABAHC, effective spins interact with each other, and
this interaction breaks the degeneracy of the ground states, as
illustrated in Fig. 5. We note that the exact degeneracy of the
effective spin states (20) originates from the frustration-free
property of the AKLT Hamiltonian. By making use of (35),
we study the effective interaction as a function of the distance
between two defects. We derive J tri

eff(L) as

J tri
eff(L) = E (L) − E (∞) ∼ exp(−L/ξbulk ) (36)

by defining

E (L) =
〈
�

(2)
L (Ā; {B̄})

∣∣Ĥ∣∣� (2)
L (A; {B})

〉〈
�

(2)
L (Ā; {B̄})

∣∣� (2)
L (A; {B})

〉 . (37)

The detail derivation of (36) is given in Appendix B.
Unlike the case of the AKLT model, the effective Hamil-

tonian acting on the site 0 [the detail definition is given in
(A9)] is modified by the existence of Bs2L+1 , and the same
happens on the site 2L + 1. Therefore, even when the state
|�(A; {B})〉 can represent the ground state with high accuracy,
the accuracy of the man-made state may become worse when
the distance between two effective spins is not large enough.
We check the validity of (35) by a numerical calculation. In
Fig. 6 we plot J tri

eff(L) calculated by the man-made state (35)
and by the state optimizing the whole tensors in the window
[0, 2L + 1]. In the case L > 5 ≈ ξbulk, the interaction was well
reproduced by the man-made state.

Thus, we conclude that the MPS based characterization of
the effective spins is useful for very general cases.

IV. SUMMARY AND DISCUSSION

We have studied localized effective spins induced by inho-
mogeneous lattice structures in gapped quantum spin systems.
As a prototype of such structure, first we studied the AKLT
model with doped S = 3/2 spins. We constructed the exact
MPS representation of the ground state and analyzed the re-
sponse to external magnetic fields. We found that the response
is given by a form of summation of local fields. Thus, by
tuning the distribution of fields, we approximately manipulate
the spins independently. However, if we take into account the
nonorthonormality of the states, the operation interferes with
each other, and the control is no more independent. We found

5 10 15 20

10

10

10

10

10

L

J
(L

)

numerical

FIG. 6. The strength of the effective interaction J tri
eff as a function

of the distance between two effective spins. Blue circles represent the
energies calculated by the man-made state (35). After constructing
man-made states, we optimize the states by the TDVP algorithm.
In the optimization, we apply a uniform magnetic field hz satisfy-
ing Jeff < hz < �E ≈ 0.145. Orange dots are the optimized energy.
When L larger than 5 ≈ ξbulk, the man-made state reproduces the
effective interaction energy well.

that, for the case of two effective spins, we can construct qubit
states which can be manipulated independently. But, we also
found such construction is impossible for the cases of more
than two spins.

As a realistic model, we studied the ABAHC with defects,
which has been studied experimentally, e.g., the work of
Bertaina et al. [14]. The uniform MPS with impurity tensors
can well approximate the ground state of this model as well
as the case of the AKLT model. But, some qualitative dif-
ferences, due to the absence of the frustration-free property,
exists. The precision of the MPS approximation depends on
the window length of the impurity tensors. We discover that
this dependence is dominated by the bulk correlation length
ξbulk. We also studied the strength of the effective exchange
interaction as a function of the separation of impurities, which
was found to become small exponentially with the correlation
length ξbulk. For studying these characteristics, the MPS based
characterization works well.

In the ESR experiment [14], they found a sharp resonant
peak, which is considered to be attributed to the effective
spins. Besides the sharp peak, they also found a broad struc-
ture, which should be attributed to fast motion, including the
excited state. In the present paper, we confined ourselves in
the states below the gap. In order to explain the experimental
results, we have to take the excited states into account. To
study the effects of the excited states on the dynamics of the
effective spins is a future work.
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APPENDIX A: TDVP ALGORITHM AND ANALYSIS OF THE LENGTH SCALE OF THE WINDOW

In this Appendix we introduce the optimization algorithm for the tensors in the window, e.g., {B[i]}N
i=−N in (33). This algorithm

is based on the imaginary time evolution and called time-dependent variational principle (TDVP).
Now we consider S = (d − 1)/2 spin chain with the Hamiltonian

Ĥ =
∑
i∈Z

ĥi,i+1 + (
ĥloc

−1,0 + ĥloc
0,1

)
= Ĥuniform + Ĥloc

[−1,1]. (A1)

As a starting point, we consider the state with the smallest window size:

|�(A; {B})〉 =
∑
{s}

v†
L

(∏
n<0

Asn

)
Bs0

(∏
0<n

Asn

)
vR|{s}〉, (A2)

where A denotes the tensor which was calculated for the uniform Hamiltonian Ĥuniform. The spectral decomposition of the
transfer matrix T A

A = ∑
s As ⊗ Ās is given by

T A
A = |r1)(l1| +

D2∑
i=2

λi|ri)(li|, (A3)

where (li| and |r j ) denote the left and right eigenvectors of T A
A , respectively, satisfying (li|r j ) = δi, j . Here 1 > |λ2| � |λ3| · · · is

assumed. We also define the associated matrices li and r j which fulfill

(li|T A
A |r j ) =

∑
s,b,b′,k,k′

(li )b,kAs
k,k′ (r j )k′,b′ Ās

b,b′ . (A4)

B denotes the optimized tensor to minimize the total energy. This optimization can be done by defining effective Hamiltonian
and solve the eigenvalue problem. We define an operator transfer matrix as

J XY
h =

∑
s,t

〈s′t ′|ĥ|st〉(X sY t ) ⊗ (X̄ s′
Ȳ t ′

) (A5)

and shift the origin of the energy as ĥ = ĥ − (l1|J AA
h |r1). Then, the norm and the matrix elements of Ĥ are given by

〈�(Ā; {B̄})|�(A; {B})〉 = (l1|T B
B |r1) =: B̄s′

l ′,r′ (Neff )(s′,l ′,r′ ),(s,l,r)B
s
l,r, (A6)

〈�(Ā; {B̄})|Ĥ|�(A; {B})〉 = (l1|J AA
h

∞∑
n=0

(
T A

A

)nT B
B |r1) + (l1|J AB

h+hloc |r1) + (l1|J BA
h+hloc |r1) + (l1|T B

B

∞∑
n=0

(
T A

A

)nJ AA
h |r1) (A7)

= (l1|J AA
h

D2∑
k=2

1

1 − λk
|rk )(lk|︸ ︷︷ ︸

=:(LIBC|

T B
B |r1) + (l1|J AB

h+hloc |r1) + (l1|J BA
h+hloc |r1)

+ (l1|T B
B

D2∑
k=2

1

1 − λk
|rk )(lk|J AA

h |r1)

︸ ︷︷ ︸
=:|RIBC)

(A8)

=: B̄s′
l ′,r′ (Heff )(s′,l ′,r′ ),(s,l,r)B

s
l,r . (A9)

(LIBC| and |RIBC) are called infinite boundary conditions [32–34]. The optimized tensor B is obtained by solving the
generalized eigenvalue problem λNeff �x = Heff �x.

Hereafter, for simplicity, we regard |�(A, {B})〉 as a “vacuum” state and represent it by the following shorthand notation:

| 〉 = |�(A; {B})〉. (A10)

When some tensors in | 〉 are replaced, we only denote the replaced tensors as

| Y si Zs j 〉 =
∑
{s}

v†
L

(∏
n<0

Asn

)
Bs0

( ∏
0<n<i

Asn

)
Y si

⎛
⎝ ∏

i<n< j

Asn

⎞
⎠Zsj

⎛
⎝∏

j<n

Asn

⎞
⎠vR|{s}〉. (A11)
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Now we consider the infinitesimal imaginary time evolution starting from | 〉. For small �τ , this evolution is obtained by
approximating

e−�τĤ| 〉 = | 〉 − �τĤ| 〉 (A12)

by ∣∣ (
As−N + �τCs−N

[−N]

) · · · (AsN + �τCsN
[N]

) 〉 = | 〉 + �τ
∑

−N�i�N

∣∣ Csi
[i]

〉
. (A13)

In order to calculate this time evolution, we solve the minimization problem

{C[i]}N
i=−N = argmin

{C̃[i]}N
i=−N

∥∥∥∥∥Ĥ| 〉 +
∑

i

∣∣ C̃si
[i]

〉∥∥∥∥∥
2

= argmin
{C̃[i]}N

i=−N

( ∑
−N�i�N

(∥∥∣∣ C̃si
[i]

〉∥∥2 + 〈 ¯̃Csi
[i]

∣∣Ĥ| 〉 + 〈 |Ĥ∣∣ C̃si
[i]

〉))
. (A14)

However, because of the gauge degrees of freedom, i.e., | Csi
[i] 〉 + | Csi+1

[i+1] 〉 = | (Csi
[i] + Asi X ) 〉 + | (Csi+1

[i+1] − XAsi+1 ) 〉 for
arbitrary D × D matrix X , {C[i]} is not uniquely determined. Then, we consider the following constrained optimization problem:

{C[i]}N
i=−N = argmin{C̃[i]}N

i=−N

( ∑
−N�i�N

(∥∥∣∣ C̃si
[i]

〉∥∥2 + 〈 ¯̃Csi
[i]

∣∣Ĥ| 〉 + 〈 |Ĥ∣∣ C̃si
[i]

〉))

subject to
〈 ∣∣ C̃si

[i]

〉 = 0 for i �= 0 and
〈 ¯̃Csj

[ j]

∣∣ C̃si
[i]

〉 = 0 for i �= j. (A15)

By introducing a d × D × D(d − 1) tensor (VL )s
a,a′ satisfying

(
√

l1|T VL
A = 0, (ID×D|T VL

VL
= (ID(d−1)×D(d−1)| (A16)

and defining a parameter representation of Csi as

C(X )si
a,a′ =

∑
b,b′,b′′

(√
l1

−1)
a,b(VL )si

b,b′Xb′,b′′
(√

r1
−1)

b′′,a′ , (A17)

the constraints in (A15) automatically satisfied for i < 0 sites because (l1|T C(X )
A = (

√
l1|T VLX

√
r1

−1

A = 0. Here X denotes a D(d −
1) × D matrix. Furthermore, the norm of | C(X )si 〉 is given by a simple form as

〈 C(X )
si | C(X )si 〉 = (l1|T C(X )

C(X ) |r1) = (ID×D|T VLX
VLX |ID×D) = (ID(d−1)×D(d−1)|T X

X |ID×D) = Tr(XX †). (A18)

We construct VR and define C(X )si for i > 0 in the same manner. Then we can solve (A15) for every sites independently:

Cs0
[0] = argmin

C̃

(
(l1|T C̃

C̃ |r1) + 〈 ¯̃Cs0 |Ĥ| 〉 + 〈 |Ĥ| C̃s0 〉), (A19)

Csi
[i �=0] = C(X[i] )

si , (A20)

X[i �=0] = argmin
X̃

(Tr(X̃ X̃ †) + 〈 C( ¯̃X )si |Ĥ| 〉 + 〈 |Ĥ| C(X̃ )si 〉). (A21)

By repeating this step, we simulate the imaginary time evolution starting from | 〉 as

| Bs−N (τ ) · · · BsN (τ ) 〉 = e−τĤ| 〉/‖e−τĤ| 〉‖ (A22)

for every N .
The result shown in Fig. 4 suggests that

1 − |〈B̄s−∞ (∞) · · · B̄s∞ (∞)| Bs−N (∞) · · · BsN (∞) 〉| ∼ |λ2|2N . (A23)

We analyze the short time behavior, where the dynamics can be regarded as linear, of the left-hand side of (A23), and prove that

1 − |〈B̄s−∞ (�τ ) · · · B̄s∞ (�τ )| Bs−N (�τ ) · · · BsN (�τ ) 〉| ∼ �τ 2|λ2|2N (A24)

is satisfied if �τ is small enough. Because Fig. 4 suggests the initial state | 〉 is close to the τ = ∞ state, we assume that the
linear dynamics (A24) gives the dominant contribution of (A23).
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We define εm = {(l1|T C[0]
C[0]

|r1 ) (m = 0)

Tr(X[m]X
†
[m] ) (m �= 0)

, and then the left-hand side of (A24) is written as

1 − 1 + �τ 2 ∑
−N�m�N εm√

1 + �τ 2
∑

−∞<m<∞ εm

√
1 + �τ 2

∑
−N�m�N εm

(A25)

= 1 −
(

1 + �τ 2
∑

−N�m�N

εm

)(
1 − 1

2
�τ 2

∑
−∞<m<∞

εm

)(
1 − 1

2
�τ 2

∑
−N�m�N

εm

)
(A26)

= 1

2
�τ 2

∑
|m|>N

εm. (A27)

X[m] is obtained by taking ∂/∂ ¯̃X of the right-hand side of (A21). For simplicity we assume m < −2 and define

|a〉L =
∑

{si}i�m+1

[
v†

L

( ∏
n�m+1

Asn

)]
1,a

|{si}i�m+1〉, (A28)

|a〉R =
∑

{si}m+1<i

[( ∏
m+1<n<0

Asn

)
Bs0

(∏
0<n

Asn

)
vR

]
a,1

|{si}m<i〉, (A29)

|a〉L′L =
∑
b,b′

∑
{si}i�m

[
v†

L

(∏
i<m

Asi

)]
1,b

(
l−1/2
1

)
b,b′ (VL )sm

b′,a|{si}i�m〉, (A30)

|a, a′〉L′C =
∑

b,sm+1

(
r−1/2

1

)
a,b

Asm+1

b,a′ |sm+1〉. (A31)

Since

|�(A; {B})〉 =
∑

a

|a〉L ⊗ |a〉R, (A32)

| C(X̃ )s 〉 =
∑

a,a′,a′′
|a〉L′L ⊗ X̃a,a′ |a′, a′′〉L′C ⊗ |a′′〉R, (A33)

X[m] is obtained as

(X[m] )a,a′ =
(∑

a′′
〈a|L ⊗ 〈a′, a′′|C ⊗ 〈a′′|R

)
Ĥ|�(A; {B})〉. (A34)

Because of the property (A16), if an operator O acts only on the right-hand side sites of site m,
(
∑

b〈a|L ⊗ 〈a′, b|C ⊗ 〈b|R)O|�(A; {B})〉 vanishes. We now define an m independent matrix

(Ya,a′ )b,b′ = (〈a|L′L ⊗ 〈a′, b|L′C)

( ∑
i�m+1

hi−1,i

)
|b′〉L, (A35)

and then X[m] can be written as

(X[m] )a,a′ = (Ya,a′ |(T A
A

)|m|−2T B
B |r1) (A36)

= (Ya,a′ |r1)︸ ︷︷ ︸
=0

(l1|T B
B |r1)︸ ︷︷ ︸

=1

+
D2∑
i=2

λ
|m|−2
i (Ya,a′ |ri )(li|T B

B |r1) ∼ λ
|m|
2 ηa,a′ . (A37)

(A24) is given as a consequence of (A27) and (A37).

APPENDIX B: DERIVATION OF THE ASYMPTOTIC FORM OF THE INTERACTION

We consider the Hamiltonian with two inhomogeneities

Ĥ = Ĥuniform + Ĥloc
[−1,1] + Ĥloc

[L,L+2], (B1)

and the man-made state ∣∣� (2)
L (A; {B})

〉 = |· · · As−1 Bs0 As1 · · · AsL BsL+1 AsL+2 · · ·〉. (B2)
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We define J loc = J AB
h+hlocT A

A + T A
A J BA

h+hloc and shift the origin of hloc to satisfy

0 = 〈�(Ā; {B̄})|Ĥuniform + Ĥloc
[−1,1]|�(A; {B})〉 = (LIBC|T B

B |r1) + (l1|T B
B |RIBC) + (l1|J loc|r1). (B3)

The denominator and numerator of E (L) are given as

〈
�

(2)
L (Ā; {B̄})

∣∣� (2)
L (A; {B})

〉 = (l1|T B
B

(
T A

A

)LT B
B |r1) = (l1|T B

B |r1)(l1|T B
B |r1) +

D2∑
i=2

λL
i (l1

∣∣T B
B |ri)(li|T B

B |r1) (B4)

= 1 + O(exp(−L/ξbulk )). (B5)

and〈
�

(2)
L (Ā; {B̄})

∣∣H∣∣� (2)
L (A; {B})

〉
(B6)

= (LIBC|T B
B

(
T A

A

)LT B
B |r1) + (l1|J loc

(
T A

A

)L−1T B
B |r1) + (l1|T B

B

(
T A

A

)L−1J loc|r1) + (l1|T B
B

(
T A

A

)LT B
B |RIBC)

+
L−2∑
i=0

(l1|T B
B

(
T A

A

)iJ (AA)
h

(
T A

A

)L−i−2T B
B |r1) (B7)

= (LIBC|T B
B |r1) (l1|T B

B |r1)︸ ︷︷ ︸
=1

+
D2∑
i=2

λL
i (LIBC|T B

B |ri)(li|T B
B |r1) + (l1|J loc|r1) (l1|T B

B |r1)︸ ︷︷ ︸
=1

+
D2∑
i=2

λL−1
i (l1|J loc|ri)(li|T B

B |r1)

+ (l1|T B
B |r1)︸ ︷︷ ︸

=1

(l1|J loc|r1) +
D2∑
i=2

λL−1
i (l1|T B

B |ri )(li|J loc|r1) + (l1|T B
B |r1)︸ ︷︷ ︸

=1

(l1|T B
B |RIBC) +

D2∑
i=2

λL
i (l1|T B

B |ri )(li|T B
B |RIBC)

+
D2∑
j=2

L−2∑
i=0

⎛
⎝λL−i−2

j (l1|T B
B |r1)︸ ︷︷ ︸

=1

(l1|J AA
h |r j )(l j |T B

B |r1) + λi
j (l1|T B

B |r j )(l j |J AA
h |r1) (l1|T B

B |r1)︸ ︷︷ ︸
=1

⎞
⎠

+
D2∑
j=2

D2∑
k=2

L−2∑
i=0

λi
jλ

L−i−2
k (l1|T B

B |r j )(l j |J AA
h |rk )(lk|T B

B |r1) (B8)

= 2

⎛
⎝(LIBC|T B

B |r1) + (l1|T B
B |RIBC) + (l1|J loc|r1)︸ ︷︷ ︸
=0

⎞
⎠ +

D2∑
i=2

−λL−1
i

1 − λi

[
(l1|J AA

h |ri)(li|T B
B |r1) + (l1|T B

B |ri )(li|J AA
h |r1)

]

+
D2∑
i=2

λL
i

[
(LIBC|T B

B |ri )(li|T B
B |r1) + (l1|T B

B |ri)(li|T B
B |RIBC)

]

+
D2∑
i=2

λL−1
i

[
(l1|J loc|ri )(li|T B

B |r1) + (
l1
∣∣T B

B

∣∣ri
)
(li|J loc|r1)

] +
D2∑
j=2

D2∑
k=2

L−2∑
i=0

λi
jλ

L−i−2
k (l1|T B

B |r j )(l j |J AA
h |rk )(lk|T B

B |r1) (B9)

= O[L exp(−L/ξbulk )]. (B10)

APPENDIX C: DETAIL CALCULATION OF THE AKLT MODEL

By using the notation introduced in Appendix A, the transfer matrices of (6) and (14) are given as

T A
A = |r1)(l1| − 1

3 (|r2)(l2| + |r3)(l3| + |r4)(l4|), (C1)

T B↑
B↑ = T A

A + 1
3 (|r2)(l1| − |r1)(l2|), (C2)

T B↓
B↓ = T A

A − 1
3 (|r2)(l1| − |r1)(l2|), (C3)

J A
Sz

= 2
3 (|r2)(l1| − |r1)(l2|). (C4)

Now we consider the case of k = 3 of (20). We fix the positions of the doped spins as j1 = 0, j2 = L + 1, j3 = L + L′ + 2.
To show the difference between k = 2 and k > 2, we consider

〈↑1,↑2,↑3|Sz
L+L′+L′′+3|↑1,↑2,↑3〉 = (l1|T B↑

B↑

(
T A

A

)LT B↑
B↑

(
T A

A

)L′
T B↑

B↑

(
T A

A

)L′′
J A

Sz
|r1). (C5)
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Different from the case of k = 2, (C5) contains three times scattering term as

(l1| T B
B−−→

×− 1
3

(l2| (T A
A )L

−−−−→
×(− 1

3 )L
(l2| T B

B−→
× 1

3

(l1| (T A
A )L′

−−−→
×1

(l1| T B
B−−→

×− 1
3

(l2| (T A
A )L′′

−−−−−→
×(− 1

3 )L′′
(l2|J A

Sz
|r1)︸ ︷︷ ︸

2
3

= −2

3

(
−1

3

)L+L′′+2

. (C6)

Such terms resulting from many times scattering make it impossible to represent u†
3Ĥ′u3 in a simple form as (25).
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