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Nature of symmetry breaking in the superconducting ground state
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The order parameters which are thought to detect U(1) gauge symmetry breaking in a superconductor are
both nonlocal and gauge dependent. For that reason, they are also ambiguous as a guide to phase structure. We
point out that a global subgroup of the local U(1) gauge symmetry may be regarded, in analogy to non-Abelian
theories, as a “custodial” symmetry affecting the matter field alone, and construct, along the lines of our previous
work, a gauge-invariant criterion for breaking symmetries of this kind. It is shown that spontaneous breaking of
custodial symmetry is a necessary condition for the existence of spontaneous symmetry breaking of a global
subgroup of the (Abelian or non-Abelian) gauge group in any given gauge, and a sufficient condition for the
existence of spontaneous breaking of a global subgroup of the gauge group in some gauge. As an illustration, we
compute numerically, in a lattice version of the Ginzburg-Landau model, the phase boundaries of the theory and
the order parameters associated with various symmetries in each phase.
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I. INTRODUCTION

Superconductivity is the simplest example of a so-called
dynamically broken gauge symmetry. In view of the Elitzur
theorem, which states that gauge symmetry is unbreakable
either dynamically or spontaneously, this characterization de-
serves closer scrutiny. What symmetry, exactly, is broken?
And in which operators is that breaking manifest? The issue is
largely a conceptual one since the BCS theory seems perfectly
adequate for conventional (noncuprate) superconductors, but
these questions seem relevant not just to a deeper understand-
ing of superconductivity, but also to a better understanding
of any theory which is claimed to break a gauge symmetry,
whether spontaneously or dynamically.

Certainly the ground state of a superconductor, and in fact
any physical state, must be invariant under infinitesimal and,
more generally, local gauge transformations of the dynamical
fields; this is required by the Gauss law condition, and the
vanishing of locally noninvariant operators in the ground state
is guaranteed by the Elitzur theorem [1]. But neither Gauss’s
law nor the Elitzur theorem forbids the breaking of a global
symmetry, and in fact there is a global U(1) subgroup of the
gauge symmetry which appears to be broken by the super-
conducting ground state. But, the order parameter which has
been proposed to detect the breaking of this gauge symmetry
is itself gauge dependent, and the magnitude of the order
parameter, including whether it is zero or nonzero, depends
on the gauge choice, as shown below in an effective model. In
view of this fact, is it possible to construct a gauge-invariant
criterion which distinguishes the symmetric phase from the
symmetry-broken phase in U(1) gauge theories, and in gauge-
Higgs theories in general? That is the question we would like
to address here.

To fix notation, let cσ (x), c†
σ (x) denote the electron opera-

tors with spin index σ , transforming as

cσ (x) → eiθ (x)cσ (x), c†
σ (x) → e−iθ (x)c†

σ (x),

Aμ(x) → Aμ(x) + 1

e
∂μθ (x) (1)

under a local gauge transformation. A global U(1) subgroup of
the gauge group is defined by the set of transformations with
θ (x) = θ independent of space. But, this can be regarded as a
global symmetry pertaining to the matter sector of the theory
alone since the Aμ gauge field is unaffected by such transfor-
mations. For this reason, adopting a term from the electroweak
sector of the standard model, it may be regarded as a type
of “custodial symmetry.” Of course, the name we choose to
assign to a symmetry may be just a matter of words (although
we will support our preference in Sec. III), but the choice
of order parameter to detect symmetry breaking is not just
semantic. In the context of superconductivity, it is usually the
expectation value of the Cooper pair creation operator which
is said to detect the breaking of gauge invariance in the BCS
ground state. But, since this operator transforms under local
as well as global transformations, it can only serve as an order
parameter for global symmetry breaking in a fixed gauge. The
spontaneous breaking of a “remnant” gauge symmetry, i.e., a
global symmetry which remains after gauge fixing, is known
to be ambiguous, in that the symmetry-breaking transition
depends on the gauge choice [2]. This ambiguity is consistent
with the theorem proved by Osterwalder and Seiler [3], whose
consequences were elaborated by Fradkin and Shenker [4].

This raises the question of whether we can find a gauge-
invariant criterion for the breaking of a global symmetry
characterized by θ (x) = θ . We will address this question,
along the lines of our recent work [5], in non-Abelian
gauge-Higgs theories, in the context of a lattice version of
Ginzburg-Landau theory, i.e., the Abelian Higgs model. In
Sec. II we show explicitly the ambiguity of spontaneous
gauge symmetry breaking in this model, in the sense that
the location (and even the existence) of a symmetry-breaking
transition of this kind actually depends on the gauge choice
required, either explicitly or implicitly, to define the order
parameter.

The main point of this paper is presented in Sec. III.
In that section we introduce the concept of custodial
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symmetry, together with a gauge-invariant criterion for cus-
todial symmetry-breaking Abelian and non-Abelian gauge-
Higgs theories, pointing out that in the non-Abelian case
custodial and global gauge transformations belong to differ-
ent groups. We then propose that the Higgs phase should
be defined, in a gauge-invariant manner, as the phase of
broken custodial symmetry. In support of this proposal, we
show in Sec. IV that custodial symmetry breaking is a nec-
essary condition for the spontaneous breaking of a global
subgroup of the gauge symmetry in any given gauge, and a
sufficient condition the existence of global gauge symmetry
breaking in some gauge. In Sec. V we display the custodial
symmetry-breaking transition line in the Abelian Higgs model
with a double-charged scalar field, and discuss the possible
correspondence of this transition, in the confined region, to
a transition between different types of confinement (color
confinement and “charge separation” confinement) in the
confining phase. In this section we also address the ques-
tion of Goldstone excitations. In non-Abelian theories the
custodial transformations and global gauge transformations
are distinct, which raises the question of how the Goldstone
theorem is evaded when custodial symmetry is broken. Fur-
ther questions relating to the Goldstone theorem in the BCS
theory are discussed in an Appendix. Our conclusions are in
Sec. VI.

In this paper we concentrate on an effective Abelian Higgs
model, but for a discussion of related issues in the microscopic
theory, when a quantized electromagnetic field is included in
the Hamiltonian (see Ref. [6]).

II. AMBIGUITY OF SPONTANEOUS GAUGE
SYMMETRY BREAKING

In the absence of gauge fixing, there are no local operators,
transforming nontrivially under the gauge group, which can
acquire a vacuum expectation value; this is essentially the
content of Elitzur’s theorem. On the other hand, certain gauges
leave unfixed a global subgroup of the gauge group, which
we call a “remnant” symmetry, and operators which transform
under the remnant symmetry can, depending on the couplings,
acquire a vacuum expectation value in the thermodynamic
limit. In other words, a remnant symmetry can break spon-
taneously. But, is this what is meant by a “spontaneously bro-
ken” gauge symmetry? We believe this phrase is ambiguous,
on the grounds of gauge dependence. Operators which are
sensitive to a remnant symmetry in different gauges may not
agree on exactly where in the phase diagram the symmetry
is actually broken. They may not even agree on whether the
symmetry is broken at all.

In this section we will elaborate on this point. For this
purpose we will focus on the Abelian Higgs model, where
the scalar field has charge qe, where q is an integer. The
Abelian Higgs model at q = 2 is a relativistic version of the
Ginzburg-Landau effective action with a lattice regularization
and compact U(1) gauge group. The quantum mechanical
model is described by

Z =
∫

DUμDφ e−S, (2)

with action

S = −β
∑

x

∑
μ<ν

Re[Uμ(x)Uν (x + ν̂)U ∗
μ (x + ν̂)U ∗

ν (x)]

−γ
∑

x

3∑
μ=0

Re[φ∗(x)(Uμ(x))qφ(x + μ̂)]. (3)

The gauge field is an element of the U(1) group, i.e., Uμ(x) =
eiχμ(x), and for simplicity we also take the Higgs field to have
unit modulus, i.e., φ(x) = eiδ(x). Finite temperature is imposed
by a finite extension Nt of the lattice in the time direction,
i.e., T = 1/(Nt a), where a is the lattice spacing. The action is
invariant under U(1) gauge transformations

Uμ(x) → U ′
μ(x) = eiθ (x)Uμ(x)e−iθ (x+μ̂),

(4)
φ(x) → φ′(x) = eiqθ (x)φ(x).

There are two reasons to consider a compact U(1) gauge
group. First, the gauge group of electromagnetism may actu-
ally be compact. This will be the case if electromagnetism is
embedded in some larger compact gauge group, as in many
beyond-the-standard model theories. Second, the compact
Abelian Higgs model is also the appropriate formulation if we
wish to understand symmetry breaking in the Abelian theory
in the context of analogous phenomena in non-Abelian gauge
Higgs theories. The unit modulus constraint is a convenience,
which can be regarded as the λ → ∞ limit of a “Mexican
hat” potential V (φ) = λ(φφ∗ − γ )2. We can soften the unit
modulus constraint by replacing it with the Mexican hat
potential, but this means computing a phase diagram in a
three- (rather than two-) dimensional β, γ , λ parameter space,
and we believe this extra dimension will not affect the issues
we are concerned with in any essential way.

A. “Gauge-invariant” order parameters

It is impossible to identify gauge symmetry breaking using
local order parameters such as φ(x) in the effective theory or,
in the (gauge-invariant) microscopic theory, the Cooper pair
creation operator c†

↑(x)c†
↓(x). These local operators transform

under local gauge transformations, and their expectation val-
ues vanish in accordance with the Elitzur theorem. In order to
detect symmetry breaking of a global gauge symmetry, there
are two options, which are essentially equivalent. The first is
to fix a gauge which leaves unfixed a global remnant sym-
metry. Elitzur’s theorem will then not rule out an expectation
value for φ(x) or the Cooper pair operator because Elitzur’s
theorem does not apply to global transformations of any kind.
The second option is to introduce a nonlocal operator Qx

which transforms under the global symmetry θ (x) = θ , but is
invariant under all other local gauge transformations. Again,
Elitzur’s theorem does not rule out a finite expectation value
for various operators of this type. Consider an operator Q
which is noninvariant under a gauge transformation carried
out in a fixed finite volume VQ. Elitzur’s theorem states that
〈Q〉 = 0 even when we carry out the usual procedure of
adding a term to break the symmetry, take the infinite volume
limit, and then remove the breaking. What is crucial, how-
ever, is that Q will vary under a local gauge transformation
carried out only in a fixed volume, which remains fixed in the
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thermodynamic limit. What Elitzur showed is that in this
situation the effect of the breaking term can be bounded, even
in the infinite volume limit, by some small parameter which
is taken to zero at the end. Details can be found in [1,7].
If, on the other hand, Q only varies under transformations
carried out at every site on the lattice (or, in the present case,
throughout the volume of the solid), the bound fails in the
thermodynamic limit, and the theorem does not apply. And
of course it must fail in this situation, for otherwise Elitzur’s
argument would also rule out the spontaneous breaking of
ordinary global symmetries. But, it is not assured, for different
Qx operators or for remnant global symmetries in different
gauges, that the global symmetry breaking occurs at the same
place in the phase diagram.

As an example, let us introduce, in the microscopic theory,
the phase factor

eiγx = exp

[
i

e

4π

∫
d3z Ai(z)

∂

∂zi

1

|x − z|
]

(5)

and define

θ (x) = θ0 + ϕ(x) where
∫

d3x ϕ(x) = 0. (6)

Under a local gauge transformation (1) we have

eiγx → eiϕ(x)eiγx . (7)

Next, introduce operators which are invariant under local
transformations

c̃σ (x) = cσ (x)e−iγx , c̃†
σ (x) = c†

σ (x)eiγx , (8)

and define

Qx = c̃†
↑(x )̃c†

↓(x). (9)

Then, under an arbitrary gauge transformation θ (x), Qx trans-
forms only under the zero mode

Qx → e2iθ0 Qx. (10)

We then observe that

gC (x; A) = eiγx (11)

is precisely the gauge transformation which takes the matter
and gauge fields into Coulomb gauge. Exactly (and only) in
Coulomb gauge, eiγx = 1, and Qx has the local form Qx =
c†
↑(x)c†

↓(x). But, of course the locality is deceptive since
Coulomb gauge fixing is a nonlocal operation. In any case,
evaluating c†

↑(x)c†
↓(x) in Coulomb gauge, and evaluating the

“gauge-invariant” operator Qx in the absence of gauge fixing,
are completely equivalent.

Obviously, this construction generalizes. Let gG(x; A) [or,
on the lattice gG(x;U ) where U denotes lattice link variables]
be a gauge transformation which takes the matter and gauge
fields into some gauge G, and which leaves unfixed the
remnant symmetry θ (x) = θ . We then define, e.g.,

QG,x = gG(x; A) ◦ {c†
↑(x)c†

↓(x)} (12)

in the microscopic theory, or

QG,x = gG(x;U ) ◦ φ(x) (13)

in the Abelian Higgs theory to serve as nonlocal order param-
eters for breaking of the remnant symmetry. Constructions of

0

 0.2

 0.4

 0.6

 0.8

1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

av
er

ag
e 

lin
k

γ

FIG. 1. Average link L [Eq. (14)] vs γ at β = 2.0 on a 164

lattice volume. The transition from the massless to the Higgs phase
is located at γ = 0.365, where the slope changes abruptly.

that type are found in the literature, e.g., in [8,9], where G is
an axial gauge, or in [10], where G is lattice Landau gauge.
Although these order parameters are described as (and in fact
are) locally gauge invariant, it should be understood that a
certain gauge choice, and therefore a certain arbitrariness, un-
derlies these constructions. Evaluation of such Q observables,
in the absence of gauge fixing, is completely equivalent to
evaluating the expectation value 〈φ〉 in a particular gauge.

B. Phase diagrams

The phase diagram of the Abelian Higgs model in the space
of couplings β, γ and charges q = 1, 2, 6 was determined
long ago by Ranft et al. [11], albeit on lattices which were tiny
(44) by today’s standards, with transition points located by a
method (hysteresis curves) which has since been superseded
by other methods. For this paper we have determined the
transition points in the q = 2 theory, from the confinement
to the Higgs or massless phases, from the location of peaks in
the plot of plaquette susceptibility vs β, at fixed γ , on a 124

lattice volume. Transition points from the massless to Higgs
phase are located from the position of a “kink,” i.e., an abrupt
change in slope, in a plot of the link action

L = 1

V

∑
x

∑
μ

〈
Re

[
φ∗(x)U 2

μ(x)φ(x + μ̂)
]〉

(14)

vs γ . An example of data for L vs γ at β = 2, on a 164 lattice,
is plotted in Fig. 1, and the kink is apparent at γ ≈ 0.365.
Since this behavior should reflect a nonanalyticity of the
free energy in the thermodynamic limit, we would expect
the change in slope at the transition to become increasingly
abrupt as the volume increases. In Fig. 2 we show our data
for L vs γ in the immediate neighborhood of the transition
point, at lattice volumes 84, 124, 164, which agrees with this
expectation.

In the end, our results for the thermodynamic phase struc-
ture of the q = 2 theory, displayed in Fig. 3, are not far off the
old results of [11]. We should point out that in the confinement
phase denoted “conf” in Fig. 3, what is really confined are test
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FIG. 2. Closeup of the L vs γ data at β = 2.0 in the immediate
neighborhood of the transition, on 84, 124, 164 lattice volumes. Note
that the change in slope at the transition near γ = 0.365 becomes
more abrupt with increasing volume.

charges with ±1 units (q = 1) of electric charge. The meaning
of confinement in this region for q = 2 charges, and how the
confinement phase for q = 2 charges is distinguished from
the Higgs phase, is not at all trivial, and will be discussed in
Sec. V B. The massless phase is continuously connected to the
massless phase of the pure gauge theory at γ = 0, which is
known to have a transition between the confined and massless
phases at β = 1.

Let us define, in the q = 2 Abelian Higgs theory, two dif-
ferent order parameters QL and QT , each of which transforms
under a global subgroup, defined by θ (x) = θ , of the local
U(1) gauge symmetry, via

QL → e2iθ QL, QT → e2iθ QT , (15)

but which are invariant under any local gauge transformation.
These operators are defined by the gauge transformations

0
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conf
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γ

β

FIG. 3. The q = 2 phase diagram. The confining, massless,
and Higgs phases are completed, separated by thermodynamic
transitions.

gL(x;U ) and gT (x;U ) which take the system into Landau
and temporal gauge, respectively, then operating on φ and
averaging over volume,

QL,T = 1

V

∑
x

gL,T (x;U ) ◦ φ(x), (16)

where V is the lattice volume. Both Landau and temporal
gauge leave unfixed a remnant symmetry. Lattice Landau
gauge is defined as the gauge that maximizes

RL =
∑

x

4∑
μ=1

Re[Uμ(x)]. (17)

The subscript T denotes “maximal” temporal gauge. On a
periodic lattice one cannot fix all timelike links to the identity,
the most that can be done in temporal (or any axial) gauge is
to fix links in a maximal “tree” since it is impossible to gauge
fix all links in a loop. Maximal temporal gauge is defined by
setting

U4(x) = 1 for x4 �= 1,

U3(x) = 1 for x4 = 1, x3 �= 1,
(18)

U2(x) = 1 for x4 = 1, x3 = 1, x2 �= 1,

U1(x) = 1 for x4 = 1, x3 = 1, x2 = 1, x1 �= 1.

Landau and maximal temporal gauge fix all but a remnant
global symmetry θ (x) = θ .

In lattice Landau gauge, however, we have to contend
with the Gribov ambiguity, i.e., the fact that there are many
local maxima of R, and therefore the full specification of
gL(x;U ) depends on the Gribov copy selected. Obviously, no
fully gauge-invariant observable can depend on such a choice,
but we are dealing here with order parameters which, as we
shall see, most definitely depend on the gauge. The most
natural choice in Landau gauge would be the transformation
gL which brings R to an absolute maximum. Numerically, this
is impossible to achieve in practice, in fact the determination
of the absolute maximum is believed to be NP hard. However,
any deterministic algorithm will select a unique gauge copy
corresponding to a local maximum of R, given a particular
lattice configuration Uμ(x), so the specific gauge-fixing algo-
rithm used by the computer may be regarded as part of the
specification of the gauge choice.

We may also define lattice Coulomb gauge as the gauge
which maximizes

RC =
∑

x

3∑
i=1

Re[Ui(x)], (19)

and gC (x;U ) as the gauge transformation to Coulomb
gauge. In Coulomb gauge there remains a symmetry un-
der gauge transformations which depend only on time, i.e.,
θ (x, t ) = θ (t ). On any given time slice, this is a remnant
global symmetry, which may be spontaneously broken on that
time slice. We therefore define the Q observable on each time
slice as

QC (t ) = 1

V3

∑
x

gC (x, t ;U ) ◦ φ(x, t ), (20)

where V3 is the (D = 3)-dimensional spatial volume of the
time slice. Of course, there is no true phase transition on
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FIG. 4. Transition points for the breaking of a global remnant gauge symmetry in (a) Landau and (b) Coulomb gauges. The dashed line is
the line of thermodynamic transition shown in Fig. 3.

a finite volume, and so in practice we compute, in a fixed
volume V ,

QL,T (V ) = 1

V

∣∣∣∣∣∑
x

φ(x)

∣∣∣∣∣,
QC (V3, t ) = 1

V3

∣∣∣∣∣∑
x

φ(x, t )

∣∣∣∣∣, (21)

QC (V3) = 1

Nt

Nt∑
t=1

QC (V3, t ), (22)

with φ(x) fixed to Landau, maximal temporal, or Coulomb
gauge, respectively, and extrapolate the results to V = ∞.
Transitions are located by peaks in the susceptibilities

χL = V [〈QL(V )2〉 − 〈QL(V )〉2],
(23)

χC = 1

Nt

Nt∑
t=1

V3[〈QC (V3, t )2〉 − 〈QC (V3, t )〉2].

We have seen in Fig. 3 that in the q = 2 case there are
three phases, which we denote as “massless,” “Higgs,” and
“confinement,” completely separated from one another by
lines of thermodynamic transition. In the massless phase, all
three of the order parameters QL, QC, QT extrapolate to zero
at infinite volume, as one might expect. Within the Higgs
phase, the remnant global gauge symmetry is spontaneously
broken in the full volume, for Landau gauge, and in any time
slice, in Coulomb gauge. However, the remnant symmetries
in Landau and Coulomb gauges are also broken inside the
confinement phase, at higher γ values, and moreover the
Landau and Coulomb transition lines do not coincide within
the confinement phase. The phase diagrams for remnant sym-
metry breaking, for Landau and Coulomb gauges, are shown
in Fig. 4. In this figure the remnant symmetries break at the
points shown, while the thermodynamic transition is indicated
by the dashed line. We see that at small β there is a line of
remnant symmetry breaking in the confined region which does

not correspond to any thermodynamic transition, and which
lies entirely in the confined phase. Moreover, the transition
line in the confined phase is slightly different in Landau and
Coulomb gauges, as seen in Fig. 5. Already, we can conclude
that spontaneous breaking of remnant gauge symmetry is
gauge dependent.

Even within the Higgs phase, spontaneous gauge symmetry
breaking is not seen in all gauges which leave unfixed a global
subgroup of the gauge symmetry. In Fig. 6 we display QL and
QT vs 1/

√
V , at a point β = 1.2, γ = 0.7 which is inside

the Higgs phase (as determined by thermodynamic transitions,
see Fig. 3). It is seen QT extrapolates to zero at infinite lattice
volume inside the Higgs phase, while QL does not. Here again
we have evidence of the gauge dependence of spontaneous
symmetry breaking of remnant gauge symmetry.

The fact that QT extrapolates to zero in the Higgs phase,
and in fact throughout the phase diagram, is a particu-
larly clear indication of the ambiguity of spontaneous gauge
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FIG. 5. Closeup of the remnant symmetry-breaking points in
Landau and Coulomb gauges, away from the line of thermal
transitions.
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FIG. 6. The Landau and temporal gauge order parameters QL

and QT vs inverse square root of the lattice volume 1/
√

V , inside
the Higgs phase at β = 1.2, γ = 0.7. The remnant global gauge
symmetry is broken in this phase in Landau gauge, according to QL ,
but is not broken in temporal gauge, according to QT , which extrap-
olates to zero at infinite volume.

symmetry breaking. But, the vanishing of QT at infinite
volume should not be a surprise. Suppose, instead of fixing
to a maximal temporal gauge as in (18), we only impose
U4(x, t ) = 1 at all t = x4 �= 1 [the U4(x, t = 1) links cannot
be fixed also since this would require gauge fixing links
on a closed contour, which is impossible]. Then, there is a
residual local symmetry under time-independent gauge trans-
formations g(x, t ) = g(x), which can differ at every x. The
residual symmetry is reduced, in maximal temporal gauge, to
a global space-time-independent symmetry g(x, t ) = g = eiθ

by the additional gauge fixing on the t = x4 = 1 time slice
shown in (18).1 We interpret the vanishing of QT in the infinite
volume limit to mean that away from t = 1 the local symmetry
is effectively recovered, probably because the t = 1 boundary
conditions are irrelevant, in the bulk of a large volume, in a
system with a finite correlation length. The same situation
is expected to hold, for the same reason, in other (maximal)
axial gauges, where the links are fixed in a configuration
such that only a global remnant symmetry remains. In fact,
because of the Euclidean symmetry, maximal Az = 0 gauge
is no different in this respect from maximal temporal gauge.
But, the fact that we can understand why QT should vanish,
i.e., because of the irrelevance of a boundary condition which
fixes the remnant local symmetry, does not affect the fact that
the spontaneous breaking of a remnant global symmetry in
some gauges is not manifest in other gauges. Or, to put it
another way, the fact that an operator transforms nontrivially
only under a global subgroup of the gauge symmetry does
not guarantee that this operator shows a transition from the
“symmetric” massless phase to the “broken” Higgs phase.

The ambiguity outlined here is certainly not limited to the
Abelian Higgs model, in fact, it was first noted in Ref. [2]

1In calculating QT we have excluded φ(x) on the time slice t = 1,
which should make no difference in the infinite volume limit.
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FIG. 7. The remnant symmetry-breaking lines for Coulomb and
Landau gauges in SU(2) gauge-Higgs theory with action (24).

for the SU(2) gauge-Higgs model, with the Higgs field in the
fundamental representation of the gauge group. The action in
this case is

S = −β
∑

x

∑
μ<ν

1

2
Tr[Uμ(x)Uν (x + ν̂)U †

μ(x + ν̂)U †
ν (x)]

−γ
∑
x,μ

1

2
Tr[φ†(x)Uμ(x)φ(x + μ̂)]

= SW + SH , (24)

with φ(x) an SU(2)-valued field. It was found that the break-
ing of the residual gauge invariance in Coulomb and Landau
gauges occurs along different transition lines, shown in Fig. 7.
There is no thermodynamic transition in the region of the
phase diagram where the Landau and Coulomb lines differ.

C. Z2 symmetry breaking

Apart from gauge symmetry, the action of the q = 2 gauge-
Higgs model is invariant under the following symmetry:

U4(x, 0) → zU4(x, 0) all x at t = 0, (25)

where z = ±1 is an element of the Z2 group. For pure gauge
theory (γ = 0), z is an element of U(1), and the symmetry
is known as “center symmetry.” In the q = 2 model the U(1)
center symmetry is broken down to Z2, while in the q = 1
model the symmetry is absent entirely. A gauge-invariant ob-
servable which transforms nontrivially under the Z2 symmetry
is the Polyakov line

P(x) = U4(x, 1)U4(x, 2) . . . U4(x, Nt ), (26)

where P(x) → zP(x) under (25). Therefore, the expectation
value of the Polyakov line is an order parameter for sponta-
neous breaking of global Z2 symmetry. Moreover, since

〈P〉 ∼ e−F/kT , (27)

where F is the free energy of a static source with a single unit
of charge, 〈P〉 = 0 implies confinement, and 〈P〉 �= 0 means
nonconfinement, of particles with a single unit (q = 1) of
charge. Thus, we expect 〈P〉 = 0 in the region labeled “conf”
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FIG. 8. The Z2 transition line, as detected by Polyakov lines on a
123 × 6 lattice. This line coincides with thermodynamic transitions
from the confinement phase for q = 1 (but not q = 2) test charges,
to the massless and Higgs phases.

of the phase diagram shown in Fig. 3, and 〈P〉 �= 0 in the
Higgs and massless phases. We have verified (on a 123 × 6
lattice volume) that the transition happens across the transition
line shown in Fig. 8, separating the confinement from the
Higgs and massless phases.

D. Numerical details

The numerical simulations are carried out by standard
methods. The |φ| = 1 constraint is implemented by express-
ing φ(x) = exp[iϕ(x)]. At each update, one generates a ran-
dom number r(x) uniformly distributed in the interval [0,1],
and an angle η(x) = 2πξ [0.5 − r(x)]. Then, a trial φnew(x) is
generated, with

φnew(x) = eiη(x)φ(x) (28)

and this trial value is accepted or rejected according to the
Metropolis algorithm. The constant ξ is adjusted, after each
update sweep of the lattice, in order to keep the acceptance
rate in the range 40%–60%. The same procedure (with a dif-
ferent value of ξ ) is used for updating link variables Uμ(x) =
exp[iαμ(x)]. We carried out 100 update sweeps through the
lattice for each data-taking sweep.

Both Landau and Coulomb gauge are implemented via
over-relaxation [12]. The procedure is to compute, at site x,
the quantity

A(x) =
4∑

μ=1

[Uμ(x) + U †
μ(x − μ̂)]

= ρ(x)eiθ (x), (29)

with ρ(x) real and positive. Then, the gauge transformation
g(x) = exp[−iθ (x)], applied at site x only, maximizes the real
part of A(x). In over-relaxation we apply instead the transfor-
mation g(x) = exp[−iκθ (x)], with κ > 1.0. The procedure is
to sweep through the lattice site by site, calculating and ap-
plying the transformation g(x) at each site. After each sweep
one computes the average value of Re[Uμ(x)] in the lattice

volume. When a convergence criterion is satisfied (the frac-
tional change from one sweep to the next is less than 10−7),
the gauge fixing is terminated, and the value of φ(x) in
Landau gauge, averaged over the lattice volume, is computed.
Over-relaxation speeds up convergence to the gauge, and
we have found that the choice of κ = 1.7 works well. As
explained above, in connection with the Gribov copy issue, the
numerical gauge-fixing algorithm should really be regarded as
part of the specification of the gauge condition.

The gauge-fixing procedure in Coulomb gauge is similar,
except that one computes, on each time slice

A(x, t ) =
3∑

μ=1

[Uμ(x, t ) + U †
μ(x, t )]

= ρ(x, t )eiθ (x,t ). (30)

The gauge-fixing procedure is applied to each time slice
separately, with the gauge fixed at time t before moving on to
fix the gauge on time slice t + 1. The advantage is that some
time slices require more gauge-fixing sweeps than others, and
since the gauge condition on one slice does not depend on
other time slices, it is more efficient to fix each time slice
separately.

III. CUSTODIAL SYMMETRY BREAKING

We have seen that operators such as QC, QL, which trans-
form under some global subgroup of the gauge group, can
have transition lines which do not coincide everywhere, and
some operators of this kind, such QT may have no transition
line at all. The expectation value of each of these operators
amounts to the expectation value 〈φ〉 of the scalar field, eval-
uated in some gauge which leaves unfixed a global remnant
symmetry. Let us take the point of view that if there is even
one gauge of this type in which 〈φ〉 is nonzero, then some
symmetry is, in some sense, broken. But which symmetry and
in what sense, given that 〈φ〉 is nonzero in some gauges but
not in others? What we are looking for is a gauge-invariant
criterion for the breaking of some (not necessarily gauge)
symmetry such that, if there exists any gauge-fixing condition
F (U ) = 0 in which 〈φ〉 �= 0, then this symmetry is sponta-
neously broken. In this section we will introduce the concept
of custodial symmetry, and in the following section we will
show that it has the property just mentioned.

The term “custodial symmetry” is derived from the elec-
troweak sector of the standard model. We will define a custo-
dial symmetry to be a global symmetry of one or more matter
fields which (i) does not transform the gauge field; and for
which (ii) any local operator which transforms nontrivially
under the custodial symmetry also transforms nontrivially
under the local gauge symmetry. The spontaneous or dy-
namical breaking of such a symmetry is therefore masked
by the unbroken gauge symmetry, which makes it difficult
to see how to construct an order parameter for the custodial
symmetry breaking without first fixing the gauge symmetry in
some way. We have already encountered one such symmetry,
namely, the transformation (1) with θ (x) = θ independent of
space. Another symmetry of this kind is well known in the
electroweak sector of the standard model. Returning to the
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SU(2) lattice gauge-Higgs theory (24), we note that the action
is invariant under

Uμ(x) → L(x)Uμ(x)L†(x + μ̂), φ(x) → L(x)φ(x)R,

(31)

where L(x) ∈ SU(2)gauge is a local gauge transformation,
while R ∈ SU(2)global is a global transformation. SU(2)global

is sometimes referred to as the “custodial” symmetry of the
theory (cf. [13]) and it is obviously distinct from the gauge
group.

It should be noted that if we choose a gauge (e.g., unitary
gauge) in which the Higgs field acquires a vacuum expectation
value

〈φ〉 =
[
υ 0
0 υ

]
, (32)

then the SU(2)gauge× SU(2)global symmetry is broken down to
a diagonal global subgroup

SU(2)gauge × SU(2)global → SU(2)D, (33)

corresponding to transformations

L(x) = R† = g, φ(x) → gφ(x)g†, Uμ(x) → gUμ(x)g†.

(34)

Some authors refer to transformations in this diagonal sub-
group, which preserve the vacuum expectation value of φ in
a fixed gauge, as the custodial symmetry group. Whatever the
terminology, custodial symmetry has a role to play in the phe-
nomenology of the electroweak interactions, and is reviewed
in many places, e.g., [13–15]. Here, however, we wish to
focus first on the SU(2)global group of R transformations in the
absence of gauge fixing, moving from there to the θ (x) = θ

global U(1) symmetry group in the Abelian theory.
Does it make any sense to describe the Higgs phase of

the theory as a phase of spontaneously broken SUglobal sym-
metry, what we call here custodial symmetry? Local gauge
symmetries cannot break according to the Elitzur theorem,
and the breaking of a global subgroup of the gauge symmetry
appears to depend on the gauge choice, as we have seen in the
previous section. There is also no gauge-invariant local order
parameter for custodial symmetry breaking, so it cannot break
spontaneously in the usual sense (and if it did, one would have
to contend with the Goldstone theorem). On the other hand,
the full partition function of the SU(2) gauge-Higgs theory can
be regarded as a sum of partition functions of a spin system in
an external gauge field, i.e.,

Z =
∫

DU Zspin[U ]e−SW (U ), (35)

where

Zspin[U ] =
∫

Dφ e−SH (U,φ), (36)

and, depending on U , custodial symmetry can break in the
system described by Zspin(U ).

Let us define the expectation value of an operator �[U, φ]
in the spin system

�(U ) = 1

Zspin(U )

∫
Dφ �(φ,U )e−SH , (37)

with the full expectation value

〈�〉 =
∫

DU P(U )�(U )

= 1

Z

∫
DU Dφ �(φ,U )e−S. (38)

This means that the expectation value in the spin system
is to be evaluated from ensembles with U chosen from the
probability distribution

P(U ) = 1

Z
Zspin[U ]e−SW (U ). (39)

So, the question becomes the following: Is Zspin[U ] in the
broken or the unbroken phase for gauge field configurations
selected from this probability distribution? It is not hard to
devise a gauge-invariant operator �(U ) which is nonzero in
the broken phase, and which vanishes in the unbroken phase
in the thermodynamics limit. Then, 〈�〉 �= 0, i.e., custodial
symmetry breaking, is our proposed definition of the Higgs
phase of a gauge-Higgs theory.

In a numerical simulation we may determine whether
Zspin(U ) is in the broken phase in the probability distribution
defined by (39) by a “Monte Carlo-within-a-Monte Carlo
simulation.” The procedure is to update the Uμ(x), φ(x) fields
in the full gauge-Higgs theory in the usual way for, e.g.,
100 update sweeps, which is followed by the data-taking
procedure, which is itself a lattice Monte Carlo simulation
of Zspin(U ), keeping the link variables fixed at whatever
they were at the end of the last update sweep. The Zspin(U )
simulation proceeds for nspin sweeps, updating only the φ(x)
variables. Let φ(x, n) denote φ(x) at the nth update sweep of
the spin system, and let

φnspin
(x) = 1

nspin

nspin∑
n=1

φ(x, n). (40)

We then define

�nspin,V [U ] = 1

V

∑
x

∣∣φnspin
(x)

∣∣, (41)

where |φ| = det
1
2 (φ), and

�[U ] = lim
nspin→∞ lim

V →∞
�nspin,V [U ]. (42)

Averaging �nspin,V [U ] over many data-taking sweeps at large
nspin, and extrapolating to infinite volume, provides a nu-
merical estimate of 〈�[U ]〉. Then, the Higgs phase of the
full gauge-Higgs theory is distinguished from the unbroken
phase by

〈�[U ]〉 =
{

zero, unbroken phase
nonzero, Higgs phase. (43)

This procedure was carried out for the SU(2) and SU(3)
gauge-Higgs models in Ref. [5], where we have determined
the transition line between the phases of broken and un-
broken custodial symmetry, as defined above. The custodial
symmetry-breaking transition in the SU(2) theory is shown
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FIG. 9. The custodial symmetry (labeled “gauge inv”) and Lan-
dau gauge remnant symmetry transition points in SU(2) gauge-Higgs
theory. Points labeled “crossover” locate a sharp thermodynamic
crossover, but not a phase transition. Note that the Landau transition
lies above the line of custodial symmetry breaking.

in Fig. 9, together with the remnant symmetry-breaking line
for Landau gauge. At the larger β values, the two transitions
coincide, and also coincide with a sharp crossover in the
action vs γ , which is also shown. The Coulomb transition line
(not shown, but see Fig. 7), lies above the Landau transition.

We may define the gauge-invariant observable �[U ] more
formally, without any appeal to numerical simulations, by
introducing a small perturbation which is removed after taking

the thermodynamic limit. Let

φJV [x;U, η] = 1

Zspin[U ]

∫
Dφ φ(x)

× exp

[
−SH + J

∑
x

Tr[η†(x)φ(x)]

]
,

(44)

where η(x) is a unimodular field |η| = 1, which is chosen to
be any one of an equivalent set of configurations, related by
the SUglobal symmetry, which maximizes the averaged sum of
moduli

�JV [U ] = max
η

1

V

∑
x

|φJV [x;U, η]|. (45)

We then define the order parameter for symmetry breaking

〈�〉 = lim
J→0

lim
V →∞

〈�JV [U ]〉, (46)

with the order of limits as shown. This parameter is nonzero
if the SUglobal symmetry of the spin system is spontaneously
broken, and zero otherwise.

The maximization condition in (45) guarantees the gauge
invariance of �JV [U ], even at finite J . This is not hard
to see, and goes as follows. Let η = ηmax be any one of
the set η’s that maximizes the right-hand side of (45). The
members of this set are easily seen to be related to one another
by custodial symmetry transformations, i.e., if ηmax(x) is a
maximizing configuration, then so is ηmax(x)R, where R is an
element of the custodial group. Let g(x) be any local gauge
transformation, and let φ(x) = g(x)φ′(x), η′(x) = g†(x)η(x).
Then,

�JV [g ◦ U ] = max
η

1

V

∑
x

|φJV [x; g ◦ U, η]|

= max
η

1

V

∑
x

1

Zspin(g ◦ U )

∣∣∣∣∣
∫

Dφ φ(x) exp

[
−SH (g ◦ U, φ) + J

∑
x

Tr[η†(x)φ(x)]

]∣∣∣∣∣
= max

η

1

V

∑
x

1

Zspin(U )

∣∣∣∣∣
∫

Dφ′g(x)φ′(x) exp

[
−SH (g ◦ U, g ◦ φ′) + J

∑
x

Tr[η†(x)g(x)φ′(x)]

]∣∣∣∣∣
= max

η′

1

V

∑
x

1

Zspin(U )

∣∣∣∣∣g(x)
∫

Dφ′φ′(x) exp

[
−SH (U, φ′) + J

∑
x

Tr[η′†(x)φ′(x)]

]∣∣∣∣∣
= �JV [U ], (47)

where we have used the gauge invariance of Zspin(U ) and
SH (U, φ), the fact that the modulus of the functional inte-
gration is independent of the unitary matrix g(x) in front of
the integral, and the fact that it does not matter whether the
expression is maximized with respect to η or η′. Obviously,
the last line is maximized at η′ = ηmax or η(x) = g(x)ηmax(x).
In other words, the η fields which satisfy the maximization
condition transform covariantly under a gauge transformation,
and the order parameter itself is gauge invariant.

A field η(x) which maximizes the right-hand side of (45)
for a given Uμ(x) configuration is very difficult to determine

in practice. Since no gauge is fixed, Uμ(x) varies wildly
in space, and the same will be true of η(x). Were we to
define the spatial average of φJ [x;U, η] before taking the
modulus, it would average to zero in general. In practice we
use the lattice Monte Carlo procedure, described above, to
determine 〈�〉.

Unitary gauge

One might wonder what happens to the SUglobal symmetry
in unitary gauge, where there is no longer any freedom to
transform φ. In fact, the relevant degrees of freedom are still
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there in unitary gauge, but they are now found in the gauge
sector. Let us write Uμ(x) = g(x)U F

μ (x)g†(x + μ̂), where U F
μ

is the gauge field in the gauge F (U ) = 0. Custodial symmetry
is now a global transformation on the g(x) field. To see this,
begin by fixing to φ = 1. Then,

Z =
∫

DU exp

[
−SW + γ

∑
x,μ

1

2
Tr[Uμ(x)]

]
. (48)

Now let F [U ] = 0 be any gauge-fixing condition, and we
insert unity in the usual way:

Z =
∫

DU

{
�FP[U ]

∫
Dgδ(F [g ◦ U ])

}

× exp

[
−SW + γ

∑
x,μ

1

2
TrUμ(x)

]

=
∫

DU �FP[U ]δ(F [U ])e−SW

×
∫

Dg exp

[
γ

∑
x,μ

1

2
Tr[g†(x)Uμ(x)g(x + μ̂)

]

=
∫

DU �FP[U ]δ(F [U ])Zspin(γ ,U )e−SW , . (49)

where

Zspin(γ ,U ) =
∫

Dge−SH [U,g],

(50)

SH [U, g] = −γ
∑
x,μ

1

2
Tr[g†(x)Uμ(x)g(x + μ̂)].

Obviously, the Higgs action SH is again invariant under cus-
todial transformations of the g field. The only difference, as
compared to (35) and (36), is that the gauge link variables
Uμ are in the F (U ) = 0 gauge. Since the order parameter �

for symmetry breaking in Zspin(γ ,U ) is gauge invariant, the
choice of gauge does not matter, and we recover the original
formulation with φ(x) replaced by g(x).

IV. SIGNIFICANCE

As we have emphasized repeatedly, the spontaneous
breaking of a global subgroup of the gauge group is a

gauge-dependent (or, equivalently, operator-dependent) phe-
nomenon, and the question is whether the spontaneous break-
ing of a global gauge symmetry in some gauge, or seen in
some QG operator, has any gauge-independent significance.
In this section we will show that if global gauge symmetry
appears to be spontaneously broken in any gauge at all,
then it means that custodial symmetry is broken, and the
breaking of custodial symmetry has a gauge-independent
meaning. In other words, spontaneous breaking of remnant
gauge symmetry in some gauge is a sufficient but not nec-
essary condition for the spontaneous breaking of custodial
symmetry. Moreover, if custodial symmetry is broken, then
global gauge symmetry is spontaneously broken in at least one
gauge. Taken together, custodial symmetry breaking is both
a necessary condition for gauge symmetry breaking in any
gauge, and a sufficient condition for the existence of global
gauge symmetry breaking in some gauge. We will prove these
statements below; the proof is general and applies to both
Abelian and non-Abelian gauge theories. In this section we
will continue to use the notation of the SU(2) gauge theory,
but the arguments apply to U(1) and SU(N > 2) gauge-Higgs
theories as well.

Start with the necessary condition. Stated a little more pre-
cisely, consider any gauge condition F (U ) = 0 which leaves
unfixed a global subgroup of the gauge symmetry, and let

|〈φ〉JV | = 1

Z

∣∣∣∣∣
∫

DU Dφ �[U ]δ[F (U )]

(
1

V

∑
x

φ(x)

)
e−S

× exp

[
J

∑
x

Tr[φ(x)]

]∣∣∣∣∣ (51)

in volume V where �[U ] is the Faddeev-Popov term. The
global subgroup of the gauge symmetry is said to be spon-
taneously broken in this gauge if

|〈φ〉| = lim
J→0

lim
V →∞

|〈φ〉JV | �= 0. (52)

The statement is that symmetry breaking of that kind is
only possible if 〈�〉 > 0, i.e., if constituent symmetry is also
spontaneously broken. This can be seen from the definition
of constituent symmetry breaking. Since �JV (U ) is gauge
invariant, it can of course be evaluated with or without gauge
fixing, and in particular in the gauge F (U ) = 0. Then,

〈�JV 〉 = 1

Z

∫
DU �[U ]δ[F (U )]e−SW Zspin[U ] max

η

1

V

∑
x

|φJ [x;U, η]|

= 1

Z

∫
DU �[U ]δ[F (U )]e−SW Zspin[U ]

{
1

Zspin[U ]
max

η

1

V

∑
x

∣∣∣∣∣
∫

Dφ φ(x)e−SH exp

[
J

∑
x

Tr[η†(x)φ(x)]

]∣∣∣∣∣
}

= 1

Z

∫
DU �[U ]δ[F (U )]e−SW max

η

1

V

∑
x

∣∣∣∣∣
∫

Dφ φ(x)e−SH exp

[
J

∑
x

Tr[η†(x)φ(x)]

]∣∣∣∣∣. (53)
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However, from (51)

|〈φ〉JV | � 1

Z

∫
DU �[U ]δ[F (U )]e−SW

∣∣∣∣∣ 1

V

∑
x

∫
Dφ φ(x)e−SH exp

[
J

∑
x

Tr[φ(x)]

]∣∣∣∣∣
� 1

Z

∫
DU �[U ]δ[F (U )]e−SW

1

V

∑
x

∣∣∣∣∣
∫

Dφ φ(x)e−SH exp

[
J

∑
x

Tr[φ(x)]

]∣∣∣∣∣
� 1

Z

∫
DU �[U ]δ[F (U )]e−SW max

η

1

V

∑
x

∣∣∣∣∣
∫

Dφ φ(x)e−SH exp

[
J

∑
x

Tr[η†(x)φ(x)]

]∣∣∣∣∣
� 〈�JV 〉. (54)

Taking first the infinite volume and then the J → 0 limits, it
follows that

〈�〉 � |〈φ〉|. (55)

So, although remnant gauge symmetry may or may not be
broken at some point in the space of couplings, depending
on the choice of gauge, we can conclude that the existence
of spontaneous gauge symmetry breaking for those couplings
in some gauge is only possible if custodial symmetry is
also spontaneously broken. This means, in particular, that the
custodial symmetry-breaking line must lie below the rem-
nant gauge symmetry-breaking lines in Coulomb and Landau
gauges, which is indeed what we see in Fig. 9, taken together
with Fig. 7.

Moving on to the sufficient condition, let us define
φJV (x;U ) as φJV (x;U, η) with η chosen to maximize the
right-hand side of (45). Let

φ̂JV (x;U ) = φJV (x;U )

|φJV (x;U )| (56)

and we consider the gauge

φ̂JV (x;U ) = 1. (57)

Since this condition is imposed only on the gauge field, there
is obviously a remnant symmetry under those transformations
which leave U invariant, and these are the elements z of
the center of the gauge group, i.e., g(x) = z. For an SU(N)
gauge group, the center subgroup is ZN , while for the U(1)
gauge group, the center is the group U(1) itself. Introducing
an explicit breaking term

|〈φ〉| = lim
J→0

lim
V →∞

1

Z

∣∣∣∣∣
∫

DU �[U ]δ[φ̂JV (x;U ) − 1]e−SW max
η

∫
Dφ

1

V

∑
x

φ(x)e−SH exp

[
J

∑
x

Tr[η†(x)φ(x)]

]∣∣∣∣∣
= lim

J→0
lim

V →∞
1

Z

∫
DU �[U ]δ[φ̂JV (x;U ) − 1]e−SW max

η

1

V

∑
x

∣∣∣∣∣
∫

Dφ φ(x)e−SH exp

[
J

∑
x

Tr(η†(x)φ(x))

]∣∣∣∣∣
= 〈�〉, (58)

where, in going from the first to the second equality, we have
used the fact that in the gauge (57) the integral over φ is
equal to a positive number times the unit element. If custodial
symmetry is spontaneously broken, then |〈φ〉| > 0, and the
remnant global gauge symmetry is also spontaneously broken.

A custodial symmetry in a non-Abelian theory is not
necessarily a continuous symmetry. Let us consider a lattice
version of an SU(N) gauge-Higgs theory, this time with the
unimodular Higgs field in the adjoint representation. A lattice
action with the correct continuum limit is [16]

S = −SW − γ
∑
x,μ

Tr[�(x)Uμ(x)�†(x + μ̂)U †
μ(x)], (59)

where �(x) is an SU(N)-valued Higgs field, and SW is the
usual Wilson action. The custodial symmetry in this case is
the discrete global symmetry

�(x) → �′(x) = zn�(x), (60)

where

zn = e2π in/N , n = 0, 1, . . . , N − 1 ∈ ZN (61)

and the set of elements {zn1} constitute the center subgroup of
SU(N).

V. CUSTODIAL SYMMETRY BREAKING IN THE
ABELIAN HIGGS MODEL

After this excursion into non-Abelian gauge theory we
return to the example relevant to superconductivity, i.e., the
lattice Abelian Higgs model (3) with a double-charged Higgs
field, corresponding to q = 2. We observe that the action is
invariant under a global U(1) transformation φ(x) → eiαφ(x)
of the Higgs field alone. By our definition, this is a custodial
symmetry, which in the Abelian case is indistinguishable from
a global gauge transformation with θ (x) = α/2. The sponta-
neous breaking of this custodial symmetry can be detected by
the methods outlined above. In numerical simulations we use
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FIG. 10. The parameter 〈�nspin 〉 vs 1/
√

nspin at β = 0.5. The
custodial symmetry-breaking transition is at γc ≈ 0.84. The plot
displays our values of 〈�〉 below (γ = 0.7) and above (γ = 0.9) the
critical value. For all γ < γc, 〈�〉 extrapolates to zero as nspin → ∞,
while at all γ > γc 〈�〉 extrapolates to a nonzero value.

the Monte-Carlo-within-a-Monte-Carlo approach, calculating
�nspin,V [U ] during the data-taking process using nspin update
sweeps of the φ field at fixed U , and averaging over the values
obtained at every set of data-taking sweeps at fixed U to arrive
at 〈�nspin,V [U ]〉. This quantity is computed at a range of nspin

on a V = 124 lattice volume, and extrapolated to nspin = ∞
by fitting the data to〈

�nspin,V [U ]
〉 = 〈�V [U ]〉 + const√

nspin
. (62)

Below the transition line, 〈�V [U ]〉 = 0, while above the line
〈�V [U ]〉 > 0. An example of this procedure is shown in
Fig. 10, where we present data for 〈�nspin,V [U ]〉 vs nspin at
β = 0.5, at γ values above (γ = 0.9) and below (γ = 0.7)
the transition.

At points where the custodial symmetry transition coin-
cides with the thermodynamic transition, there is an abrupt
rise in 〈�nspin〉 even at moderate values of nspin as illustrated in
Fig. 11, where we plot 〈�〉 vs γ at β = 2 on a 164 lattice. Also
shown in this figure, as a dashed line, is the corresponding data
for the average link variable L, already displayed in Fig. 1.
It is clear that the thermodynamic transition (the “kink”) and
custodial breaking transition, signaled by a sudden rise in 〈�〉,
occur at the same point, namely, γ = 0.365 at β = 2.

The custodial symmetry transition line in the β-γ plane
is shown in Fig. 12. Note that this transition line lies well
below the Landau and Coulomb transition lines. However,
there are an infinite number of gauges which preserve some
global remnant gauge symmetry; no doubt some of them have
transition lines closer to the custodial transition. In fact, as
we have shown in Sec. IV, there exists one gauge of this
type whose transitions coincide with the custodial symmetry
transition line.

A. Absence of Goldstone excitations

The reason that spontaneous breaking of custodial symme-
try does not result in physical gapless excitations is essentially
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FIG. 11. Order parameter 〈�〉 for custodial symmetry breaking
vs γ at β = 2.0 on a 164 lattice volume, with nspin = 6400. Also
shown (dashed line) is the corresponding data for L vs γ , already
shown in Fig. 1. The thermodynamic and custodial symmetry-
breaking transitions coincide at γ = 0.365.

the same reason given long ago [17], when a similar question
was raised regarding the spontaneous breaking of (remnant)
gauge symmetries. In the case of an Abelian theory, it is
obvious that the same reasoning must apply because, in that
case, the custodial symmetry is identical to the remnant gauge
symmetry θ (x) = θ .

In a little more detail, spontaneous breaking of custodial
symmetry in a given Zspin(U ) for some U may very well
be associated with gapless excitations. However, there is no
reason to believe that such excitations appear in correlation
functions associated with physical states. For instance, if cus-
todial symmetry is broken in Zspin(U ), with order parameter
φ(x), then for fixed U there might be a long-range part to a
connected correlator such as

φ(x)φ(y) − φ(x) × φ(y). (63)

Such a correlator, however, being locally gauge noninvariant,
would necessarily vanish in the full theory, i.e.,

〈φ(x)φ(y)〉 − 〈φ(x)〉〈φ(y)〉 = 0. (64)

In order to apply the Goldstone theorem to custodial sym-
metry, and restrict to physical excitations, it is necessary
to fix to a gauge which eliminates extraneous degrees of
freedom, leaving only physical degrees of freedom. Examples
are Coulomb gauge and axial gauge. In such gauges it is
necessary to impose Gauss’s law as an operator identity, and
solve for E2

L in the Hamiltonian. Gauges of this type are
Lorentz noninvariant, and the E2

L term gives rise to long-range
interactions in the Hamiltonian. Nonlocal terms in general
violate one of the assumptions of the Goldstone theorem. This
observation was made originally in reference to the breaking
of remnant gauge symmetries [17], but it applies equally
well to the current associated with any continuous custodial
symmetry. The conclusion is that spontaneous breaking of a
global custodial symmetry does not necessarily imply gapless
physical excitations, which might have been expected from
the Goldstone theorem.
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FIG. 12. Custodial symmetry-breaking transition points. The
dashed line is a line of thermodynamic transition shown in Fig. 3,
which coincides with custodial symmetry breaking at β > 0.85. For
lower values of β, the custodial symmetry-breaking transition occurs
in the region labeled “conf” in Fig. 3. (a) Also shown (solid lines)
are the transition lines for Coulomb and Landau remnant symmetry
breaking in the confined region. (b) Closeup of the custodial transi-
tion region.

B. C vs Sc confinement

Custodial symmetry, and also remnant gauge symmetry in
Coulomb and Landau gauges, have transition lines in the con-
finement region of the q = 2 phase diagram. Usually, 〈φ〉 �= 0
is associated with a Higgs phase, so how can this happen in a
confined phase? In this case, it is helpful to consider unitary
gauge at large γ , and write the link variables in the form
Uμ(x) = Ũμ(x)Zμ(x), where Re[Ũμ(x)] > 0 and Zμ(x) = ±1.
As γ → ∞, then Ũμ(x) → 1, and the Abelian Higgs model
goes over to Z2 lattice gauge theory, which has a confined
and unconfined phase. But what is confined, in the confined
phase, are q = 1 test charges, i.e., sources with ±1 units of
electric charge. Test charges with q = 2 are insensitive to the
Zμ(x) degrees of freedom, and couple only to Ũμ(x). Away
from unitary gauge, the remnant gauge symmetry which is
broken spontaneously by 〈φ〉 �= 0 is global U (1)/Z2, and from

the point of view of q = 2 sources the theory is actually in
a Higgs phase. This raises the question of the nature of the
transition, as seen by q = 2 sources, from the confined phase
into the Higgs phase, since by criteria such as Wilson loops
and Polyakov lines the q = 2 sources are not really confined
anywhere in the phase diagram.

We have addressed the same question in Ref. [5], in
the context of SU(2) gauge-Higgs theory with the Higgs
field in the fundamental representation of the gauge group.
In this theory, as in any gauge theory with matter in the
fundamental representation (such as QCD), Wilson loops
fall off asymptotically with a perimeter law, and Polyakov
lines have a nonzero vacuum expectation value. Then, what
is meant by the word “confinement” in such theories? A
common answer is that confinement means that only color-
singlet particle states appear in the asymptotic spectrum, a
property which we will refer to as “C confinement.” It is well
known that this property holds not only in confinementlike
region of an SU(2) gauge-Higgs theory, but also deep in
the Higgs regime [3,4,18,19]. Nevertheless, there seems to
be a qualitative difference between these regions since in
the confinementlike region there are color electric flux tube
formation, linear Regge trajectories, and a linear potential
up to string breaking, as in QCD, while in the Higgs region
there is no electric flux tube formation in any distance regime,
no linear Regge trajectories, and only Yukawa forces among
particles.

In a pure SU(2) gauge theory, the word “confinement”
includes but goes beyond the property of C confinement.
Certainly, the asymptotic spectrum consists only of color
singlets, i.e., glueballs. But, it also has the property that the
energy E (R) above the vacuum energy, of any physical state
containing a static quark-antiquark pair, is bounded from be-
low by a linear potential. In other words, let Vab(x, y; A) be any
functional of the gauge field A which transforms covariantly
under the gauge group, and we consider physical states of the
form

�V = qa(x)Vab(x, y; A)qb(y)�0, (65)

where �0 is the ground state. Let EV (R) = 〈�V |H − E0|�V 〉
be the expectation value of energy, above the vacuum energy
E0, in state �V , where R = |x − y|. We define “separation-of-
charge” confinement, or “Sc” confinement for short, to mean
that EV (R) is bounded from below, asymptotically, by a linear
potential

lim
R→∞

dEV

dR
> σ (66)

for any choice of V . Pure SU(N) gauge theories in D � 4
dimensions certainly have this property. We have suggested
in [5] that this same definition extends to gauge theories with
matter fields, with the essential requirement that V (x, y; A)
depends only on the gauge field, and not on the matter fields.
This restriction essentially tests whether the dynamics would
form a flux tube between sources if we exclude string breaking
by matter fields. In the cited reference we have shown that
there must exist a transition between the C and Sc confine-
ment regions, and we have also computed, in SU(2) and
SU(3) gauge-Higgs theories, the line of custodial symmetry
breaking. Our conjecture, for which we have presented some
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evidence, is that the Sc-to-C confinement transition, and the
custodial symmetry-breaking transition, coincide.

That is also our conjecture regarding the custodial
symmetry-breaking transition inside the confinement phase
of the q = 2 Abelian Higgs model, with this modification:
For the q = 2 theory we have confinement of single charged
(q = 1) sources by a linear potential whenever the Z2 global
symmetry defined in Sec. II C is unbroken, which is the entire
region labeled “conf” in Fig. 3. The C-vs-Sc transition in the
q = 2 theory concerns the nature of the confined phase for
double-charged (q = 2) objects, which are insensitive to the
Z2 degrees of freedom. Double-charged Wilson loops have a
perimeter-law falloff and double-charged Polyakov lines are
nonzero inside the confined phase, as in SU(N) gauge theories
(such as QCD) with matter in the fundamental representation.
We can define Sc confinement for double-charged sources in
the same way: Consider operators V (x, y; A), and q = 2 mat-
ter fields ψ (x) which transform under a gauge transformation
g(x) = exp[iθ (x)] as

V (x, y; A) → e2iθ (x)V (x, y; A)e−2iθ (y),

ψ (x) → e2iθ (x)ψ (x),

�V = ψ (x)V (x, y; A)ψ (y)�0. (67)

Then, the theory is Sc confining when the condition (66) is
satisfied. As in the non-Abelian theory, our conjecture is that
custodial symmetry breaking at small β coincides with the
transition from Sc to C confinement for q = 2 charges.

Our point is this: From the standpoint of q = 2 charged
matter in a q = 2 Abelian Higgs theory, the transition from
a confined phase (which we define as Sc confinement) to a
Higgs phase need not coincide everywhere with the transition
from a confined to a Higgs phase for q = 1 test charges.
What we are proposing is that the spontaneous breaking of
custodial symmetry is a gauge-invariant criterion which sets
the boundary of the Higgs region, as seen by q = 2 matter in
the q = 2 Abelian Higgs theory.

We should finally note that the custodial and remnant
gauge symmetry-breaking lines in the confinement region of
the q = 2 gauge-Higgs model, and also in the SU(2) gauge-
Higgs theory, are not lines of thermodynamic transition. As
we have just argued, this does not imply irrelevance. Recall
that there are other physically meaningful transitions in sta-
tistical systems which, like custodial and remnant symmetry
breaking, are not necessarily associated with thermodynamic
transitions. We here have in mind the geometric transition
lines, also known as Kertesz lines, in Ising and Potts models,
which are associated with percolation transitions [20,21].

VI. CONCLUSIONS

In this paper we have pointed out that “spontaneous break-
ing of gauge symmetry” is an ambiguous concept, and we
have proposed that it is spontaneous breaking of custodial
symmetry which characterizes the Higgs phase. The ambi-
guity of spontaneous gauge symmetry breaking is due to the
fact that local gauge symmetries cannot break spontaneously,
as we know from the Elitzur theorem, which means that
only a global subgroup of the gauge symmetry can break
spontaneously, and this is visible only in a gauge which

leaves this global subgroup unfixed. This means that the
order parameter for spontaneous gauge symmetry breaking
is gauge dependent. As shown previously for SU(2) gauge-
Higgs theory, and as shown here in the lattice Abelian Higgs
model, spontaneous gauge symmetry breaking can occur at
different places in the phase diagram in different gauges, and
in some gauges it may even disappear entirely. This is true
also for locally gauge-invariant operators whose construction
is based on an implicit gauge choice.

Adopting a term from the electroweak theory, we have
defined “custodial symmetry” to be (i) a group of transfor-
mations of the matter fields which does not transform the
gauge field, and (ii) a symmetry for which there is no gauge-
invariant order parameter, in the sense that any operator which
transforms under the custodial symmetry also transforms
under the gauge group. The custodial symmetry group and
global gauge transformations share symmetry transformations
which belong to the center of the gauge group, which for
U(1) gauge theory is the group itself. Despite the absence
of a gauge-invariant order parameter, we have shown here
how spontaneous breaking of the custodial symmetry can be
defined and observed in a gauge-invariant manner, without
recourse to either an explicit or implicit choice of gauge.

The relation of custodial symmetry breaking to gauge
symmetry breaking is as follows: First, custodial symmetry
breaking is a necessary condition for gauge symmetry break-
ing in any particular gauge. Second, custodial symmetry is a
sufficient condition for the existence of some gauge in which
the gauge symmetry breaks spontaneously. If we identify the
Anderson-Brout-Englert-Higgs mechanism with the existence
of spontaneous gauge symmetry breaking in some gauge, then
this mechanism occurs if and only if custodial symmetry is
spontaneously broken. In the q = 2 Abelian Higgs model, we
have seen numerically that custodial symmetry breaks along
the line separating the massless and Higgs phases.

In some regions of the phase diagram, gauge symmetries
and custodial symmetry can break without a corresponding
thermodynamic transition, as is the case for the geometric
(Kertesz) transition in the Ising and Potts models. We believe
that custodial symmetry breaking in the absence of a ther-
modynamic transition is related to what we have elsewhere
described as the transition between separation-of-charge con-
finement and color confinement [5]. This correspondence is
so far a conjecture, and calls for further investigation.
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APPENDIX: GOLDSTONE MODES AND THE
SUPERCONDUCTOR PHASE

One reason that the Goldstone theorem can fail is the pres-
ence of nonlocal interactions, which show up in the Hamil-
tonian in any physical gauge. The nonlocality invalidates one
of the assumptions underlying the standard derivation of the
Goldstone theorem [17]. There is, however, a simple deriva-
tion of the Goldstone theorem, which can be found in standard
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textbooks [22], and which seems oblivious to the presence or
absence of nonlocal interactions. In this Appendix we seek
to understand where that simple argument goes wrong, in the
case of the BCS Hamiltonian.

The argument goes as follows: Suppose we have an opera-
tor Q (a “charge” operator) which commutes with the Hamil-
tonian, and that the set of transformations exp[iθQ] is a U(1)
symmetry group (possibly a subgroup of a larger symmetry),
and Q�0 �= 0. We also suppose that Q is associated with a
conserved current and can be expressed as the spatial integral
of a charge density

Q =
∫

d3x J0(x). (A1)

Because [H, Q] = 0, the state Q�0 has the same energy as
�0, namely, the ground-state energy E0. Now, consider a state
with momentum k:

|k〉 =
∫

d3x e−ik·xJ0(x)|�0〉. (A2)

As k → 0, the energy of this state converges to the energy
of Q�0, which is E0. The conclusion is that the excitation
energy Eex(k) of state |k〉 above the ground-state energy
vanishes as k → 0, i.e., there exist gapless (or, in particle
physics language, massless) excitations. This is the Goldstone
theorem.

Perhaps surprisingly, this argument correctly predicts the
existence of gapless excitations in the normal state, which is
generally not considered to be a state of broken symmetry.
It may be of interest to see explicitly how this works out
in the normal state, and how that conclusion is evaded in
superconducting state. In the present case, it is the number
operator

N =
∫

d3x c†
σ (x)cσ (x) (A3)

which commutes with the Hamiltonian, and in fact eN is the
electric charge operator. It is easy to see that

[eiθN , c†
σ (x)] = eiθ c†

σ (x) (A4)

and, as a consequence, operating on the BCS ground state

eiθN�0
BCS = eiθN

∏
k

(uk + vkc†
↑(k)c†

↓(−k))|0〉

=
∏

k

(uk + vke2iθ c†
↑(k)c†

↓(−k))|0〉, (A5)

which we recognize as a global U(1) transformation θ (x) = θ

acting on the ground state. As usual,

u(k) =
√

1

2

(
1 + εk

Ek

)
, v(k) =

√
1

2

(
1 − εk

Ek

)
,

Ek =
√

ε2
k + |�k|2, εk = k2

2m
− εF ,

1 = g

V

∑
k

′ 1

2
√

ε2
k + |�|2

,

∑
k

′
[. . .] ≡

∑
k

θ (ωD − |εk|)[. . .], (A6)

and

�k =
{
� |εk| < ωD,

0 |εk| � ωD,
(A7)

where ωD, εF , � are the Debye frequency, Fermi energy, and
gap, respectively.

Let us ignore photon and ion degrees of freedom, and
consider only the usual BCS Hamiltonian

H =
∫

d3x c†
σ (x)

[
1

2m
(−∇2) − εF

]
cσ (x)

− g

V

′∑
k

′∑
k′

c†
↑(k)c†

↓(−k)c↓(k′)c↑(−k′) − Egrd , (A8)

where Egrd is the ground-state energy, so that H |�0〉 = 0.
H is still invariant under the global transformations
cσ (x) → eiθ cσ (x), c†

σ (x) → e−iθ c†
σ (x), and commutes with

the generator of those transformations, i.e., the number
operator N :

N =
∫

d3x J0(x), J0(x) = c†
σ (x)cσ (x). (A9)

Let us define

Nq =
∫

d3x c†
σ (x)cσ (x)e−iq·x

=
∑

k

c†
σ (k)cσ (k + q), (A10)

so in this case

|q〉 = Nq|�0〉. (A11)

Note that since Nq cannot change electron number, any exci-
tations above the ground state must correspond to the creation
of a particle-hole pair. Introducing the usual Bogoliubov
quasiparticle operators

c↑(k) = uka↑(k) − vka†
↓(−k),

c↓(−k) = vka†
↑(k) + uka↓(−k),

(A12)
c†
↑(k) = uka†

↑(k) − vka↓(−k),

c†
↓(−k) = vka↑(k) + uka†

↓(−k),

with the property that aσ (k)�0 = 0, we have for q �= 0

|q〉 =
∑

k

ukvk+q{a†
↓(k)a†

↑(−k − q)

− a†
↑(k)a†

↓(−k − q)}|�0〉, (A13)

and from here on our notational convention for
momentum subscripts is that uk±q, vk±q, Ek±q means
u|k±q|, v|k±q|, E|k±q|, respectively. We find the norm

〈q|q〉 = 2
∑

k

(
u2

kv
2
k+q + ukuk+qvkvk+q

)
, (A14)

and then evaluate 〈q|H |q〉 in the mean field approximation,
replacing H in (A8) by

Hm f =
∑

k

Eka†
σ (k)aσ (k), (A15)
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which leads, in this approximation, to

Eq = 〈q|Hm f |q〉
〈q|q〉

=
∑

k (Ek + Ek+q )
(
u2

kv
2
k + ukuk+qvkvk+q

)∑
k

(
u2

kv
2
k+q + ukuk+qvkvk+q

) . (A16)

Now, in the normal phase �k = 0, we have ukvk = 0 for all
k, and ukvk+q �= 0 only for k and k + q on opposite sides of the
Fermi surface. Then, as q → 0, the sum over k is nonzero only
in the immediate region of the Fermi surface, where Ek = 0.
This means that Eq → 0 as q → 0, i.e., there are gapless
excitations in this phase which follow from application of the
Goldstone argument, whether or not one cares to describe this
case as a phase of spontaneously broken symmetry.

In the superconducting phase �k �= 0, the situation is dif-
ferent. In this case, ukvk and ukvk+q are nonzero, as q → 0,
for k roughly in the range |εk| < ωD, and in this range
Ek, Ek+q > �. Hence, Eq ≈ 2� as q → 0, and there are no
gapless excitations. Excited states (quasiparticle pairs) have a
minimum energy of 2�.

But, this raises a question, since at q = 0 exactly we must
have Eq = 0. This is because |q = 0〉 = N |�0〉, and since
[H, N] = 0 it must be that |q = 0〉 has the same energy as the
ground state, i.e., E0 = 0, not E0 ≈ 2�. The apparent paradox
is resolved by the realization that exactly at q = 0 there is an
additional contribution to Nq which does not annihilate the
ground state, namely,∑

k

v2
k aσ (k)a†

σ (k) =
∑

k

v2
k [2 + a†

σ (k)aσ (k)]. (A17)

Redoing the calculation including these contributions, we
have for the norm

〈q = 0|q = 0〉 = 4

(∑
k

v2
k

)2

+ 4
∑

k

u2
kv

2
k . (A18)

The first term on the right-hand side is proportional to the
square of the number of electrons in the system, i.e., to the
square of the volume, while the second term grows only
linearly with volume, and in addition only momenta in the
neighborhood of the Fermi surface contribute to the second

2In an insulator the proof is evaded by the fact that there are
no small-q particle-hole excitations near the Fermi surface, as Nq

in (A10) annihilates the ground state for small q. Hence, there is no
smooth limit to q = 0.

sum. Therefore, up to O(1/V ) corrections,

〈q = 0|q = 0〉 = 4

(∑
k

v2
k

)2

. (A19)

Then, since Hm f |�0〉 = 0, we have

E0 = 〈q = 0|Hm f |q = 0〉
〈q = 0|q = 0〉

=
∑

k 2Eku2
kv

2
k( ∑

k v2
k

)2

= 0 + O(1/V ), (A20)

where the last line follows since the numerator in the second
line is O(V ), while the denominator is O(V 2). The fact that E0

is not exactly zero, but differs from zero by a term of order
1/V , can be attributed to the mean field approximation, which
in the BCS case is also only accurate up to corrections of this
order.

So, we have seen that the textbook argument [22] can be
applied to both the normal and superconducting phases. The
normal phase has gapless excitations in accordance with this
argument. The superconducting phase, however, evades this
conclusion in an interesting way, via a discontinuity in Eq (the
energy of the low-momentum |q〉 state) precisely at q = 0.2

The superconducting and normal phases are of course
distinguished by the expectation value of the Cooper pair
operator c†

↑(k)c†
↓(−k), which vanishes in the normal phase

and is nonzero in the superconducting phase.3 However, the
simple model described by the Hamiltonian in (A8) has no
coupling to gauge fields, and no local gauge invariance. In
a gauge theory, order parameters such as the Cooper pair
creation operator in the BCS theory, or the charged scalar
field in the Ginzburg-Landau effective theory, transform under
local gauge transformations. Hence, their expectation values
vanish unless either (i) the gauge is fixed or (ii) we employ a
construction which is equivalent to gauge fixing. As we will
have seen in Sec. II, this introduces an ambiguity, in the sense
that the vanishing or finiteness of the order parameter turns
out to be gauge dependent.

3Actually, this operator also vanishes in a system with a definite
number of electrons. In that case, one may consider instead correla-
tors such as 〈c↑(x)c↓(x)c†

↑(y)c†
↓(y)〉 in the limit of large separation

|x − y|, which would still vanish in the normal phase and be nonzero
in the superconducting phase.

[1] S. Elitzur, Phys. Rev. D 12, 3978 (1975).
[2] W. Caudy and J. Greensite, Phys. Rev. D 78, 025018 (2008).
[3] K. Osterwalder and E. Seiler, Ann. Phys. 110, 440 (1978).
[4] E. H. Fradkin and S. H. Shenker, Phys. Rev. D 19, 3682 (1979).
[5] J. Greensite and K. Matsuyama, Phys. Rev. D 98, 074504

(2018).
[6] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.100.184513 for a discussion of the ground

state and order parameters in the microscopic theory, which
includes Refs. [23–25].

[7] C. Itzykson and J. M. Drouffe, Statistical Field Theory, Vol. 1,
Cambridge Monographs on Mathematical Physics (Cambridge
University Press, Cambridge, 1989).

[8] A. M. Schakel, Boulevard of Broken Symmetries: Effective Field
Theories of Condensed Matter (World Scientific, Singapore,
2008).

184513-16

https://doi.org/10.1103/PhysRevD.12.3978
https://doi.org/10.1103/PhysRevD.12.3978
https://doi.org/10.1103/PhysRevD.12.3978
https://doi.org/10.1103/PhysRevD.12.3978
https://doi.org/10.1103/PhysRevD.78.025018
https://doi.org/10.1103/PhysRevD.78.025018
https://doi.org/10.1103/PhysRevD.78.025018
https://doi.org/10.1103/PhysRevD.78.025018
https://doi.org/10.1016/0003-4916(78)90039-8
https://doi.org/10.1016/0003-4916(78)90039-8
https://doi.org/10.1016/0003-4916(78)90039-8
https://doi.org/10.1016/0003-4916(78)90039-8
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1103/PhysRevD.98.074504
https://doi.org/10.1103/PhysRevD.98.074504
https://doi.org/10.1103/PhysRevD.98.074504
https://doi.org/10.1103/PhysRevD.98.074504
http://link.aps.org/supplemental/10.1103/PhysRevB.100.184513


NATURE OF SYMMETRY BREAKING IN THE … PHYSICAL REVIEW B 100, 184513 (2019)

[9] J. van Wezel and J. van den Brink, Phys. Rev. B 77, 064523
(2008).

[10] T. Kennedy and C. King, Commun. Math. Phys. 104, 327
(1986).

[11] J. Ranft, J. Kripfganz, and G. Ranft, Phys. Rev. D 28, 360
(1983).

[12] J. E. Mandula and M. Ogilvie, Phys. Lett. B 248, 156
(1990).

[13] A. Maas, Prog. Part. Nucl. Phys. 106, 132 (2019).
[14] S. Willenbrock, Symmetries of the standard model, in Proceed-

ings of TASI 2004, Boulder, Colorado, USA, June 6-July 2, 2004,
edited by J. Terning, C. Wagner, and D. Zeppenfeld (World
Scientific, 2006), arXiv:hep-ph/0410370.

[15] S. Weinberg, The Quantum Theory of Fields,
Vol. 2 (Cambridge University Press, Cambridge,
2013).

[16] J. M. Drouffe, J. Jurkiewicz, and A. Krzywicki, Phys. Rev. D
29, 2982 (1984).

[17] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Adv. Part.
Phys. 2, 567 (1968); Phys. Rev. Lett. 13, 585 (1964).

[18] J. Frohlich, G. Morchio, and F. Strocchi, Nucl. Phys. B 190, 553
(1981).

[19] G. ’t Hooft, NATO Sci. Ser. B 59, 117 (1980).
[20] J. Kertesz, Phys. A (Amsterdam) 161, 58 (1989).
[21] P. Blanchard, D. Gandolfo, L. Laanait, J. Ruiz, and H. Satz,

J. Phys. A: Math. Gen. 41, 085001 (2008).
[22] A. Zee, Quantum Field Theory in a Nutshell, 2nd ed. (Prince-

ton University Press, Princeton, NJ, 2010); M. D. Schwartz,
Quantum Field Theory and the Standard Model (Cambridge
University Press, Cambridge, 2014).

[23] Y. Nambu, Phys. Rev. 117, 648 (1960).
[24] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,

1175 (1957).
[25] C. Timm, Theory of Superconductivity, https://www.

physik.tu-dresden.de/∼timm/personal/teaching/thsup_w11/
Theory_of_Superconductivity.pdf.

184513-17

https://doi.org/10.1103/PhysRevB.77.064523
https://doi.org/10.1103/PhysRevB.77.064523
https://doi.org/10.1103/PhysRevB.77.064523
https://doi.org/10.1103/PhysRevB.77.064523
https://doi.org/10.1007/BF01211599
https://doi.org/10.1007/BF01211599
https://doi.org/10.1007/BF01211599
https://doi.org/10.1007/BF01211599
https://doi.org/10.1103/PhysRevD.28.360
https://doi.org/10.1103/PhysRevD.28.360
https://doi.org/10.1103/PhysRevD.28.360
https://doi.org/10.1103/PhysRevD.28.360
https://doi.org/10.1016/0370-2693(90)90031-Z
https://doi.org/10.1016/0370-2693(90)90031-Z
https://doi.org/10.1016/0370-2693(90)90031-Z
https://doi.org/10.1016/0370-2693(90)90031-Z
https://doi.org/10.1016/j.ppnp.2019.02.003
https://doi.org/10.1016/j.ppnp.2019.02.003
https://doi.org/10.1016/j.ppnp.2019.02.003
https://doi.org/10.1016/j.ppnp.2019.02.003
http://arxiv.org/abs/arXiv:hep-ph/0410370
https://doi.org/10.1103/PhysRevD.29.2982
https://doi.org/10.1103/PhysRevD.29.2982
https://doi.org/10.1103/PhysRevD.29.2982
https://doi.org/10.1103/PhysRevD.29.2982
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1016/0550-3213(81)90448-X
https://doi.org/10.1016/0550-3213(81)90448-X
https://doi.org/10.1016/0550-3213(81)90448-X
https://doi.org/10.1016/0550-3213(81)90448-X
https://doi.org/10.1016/0378-4371(89)90390-7
https://doi.org/10.1016/0378-4371(89)90390-7
https://doi.org/10.1016/0378-4371(89)90390-7
https://doi.org/10.1016/0378-4371(89)90390-7
https://doi.org/10.1088/1751-8113/41/8/085001
https://doi.org/10.1088/1751-8113/41/8/085001
https://doi.org/10.1088/1751-8113/41/8/085001
https://doi.org/10.1088/1751-8113/41/8/085001
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://www.physik.tu-dresden.de/~timm/personal/teaching/thsup_w11/Theory_of_Superconductivity.pdf

