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Motivated by recent prototypes of engineered atomic spin devices, we study a fully connected system of N
spins 1/2, modeled by the Lipkin-Meshkov-Glick (LMG) model of a collective spin s = N/2 in the presence
of Markovian dissipation processes. We determine and classify the different phases of the dissipative LMG
model with Markovian dissipation, including the properties of the steady state and the dynamic behavior in
the asymptotic long-time regime. Employing variational methods and a systematic approach based on the
Holstein-Primakoff mapping, we determine the phase diagram and the spectral and steady-state properties of
the Liouvillian by studying both the infinite-s limit and 1/s corrections. Our approach reveals the existence
of different kinds of dynamical phases and phase transitions, multistability, and regions where the dynamics
is recurrent. We provide a classification of critical and noncritical Liouvillians according to their spectral and
steady-state properties.
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I. INTRODUCTION

Quantum systems submitted to nonequilibrium conditions
support a rich set of physical phenomena yet to be clas-
sified. This endeavor encompasses emergent features found
in nonlinear classical dynamics and equilibrium quantum
matter but has also the potential to reveal effects unique to
nonequilibrium quantum degrees of freedom. Various of these
aspects have been explored recently, motivated by advances
in the manipulation and control of cold atomic and solid-state
setups.

Artificial magnetic structures deposited on metallic sur-
faces are particular examples of novel setups, where the
ability to manipulate and monitor individual atomic spins
offers the possibility to study a nonequilibrium quantum open
system in a controlled fashion [1–4]. A number of prototypes
have already demonstrated the potential of these engineered
atomic spin devices for information processing [5–10] and
spintronics applications [1,11–13]. The basic setup consists
of a set of magnetic atoms deposited on a thin insulating
layer coating a metallic surface. Atoms are individually ad-
dressable by a spin-polarized metallic tip. Applying a finite
bias voltage between the tip and the surfaces induces an
inelastic current that can be used to infer properties of the
magnetic state [14–19]. For artificial magnetic structures, the
most relevant system-environment interaction is the magnetic
exchange with the itinerant electrons of the metallic substrate
[16,20]. The environment induces an effective memory on the
dynamics of the system’s density matrix. Although memory
effects are generically non-negligible, they can, in some cases,
be assumed instantaneous as compared with timescales within
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the system. For metallic environments, this Markovian regime
is obtained for large temperatures or chemical potentials [21].
In this work, we consider regimes where the bias voltage
applied between the tip and the metallic substrate is large.
In this case, the master equation for the evolution of the
density matrix of the magnetic system, obtained in Ref. [19],
is Markovian and reduces to the Lindblad equation [22,23].

We examine the case of a fully connected magnetic struc-
ture made of N spins-1/2 and study the dynamics in the
highest spin sector, which can be modeled by a collective
spin s = N/2. In the absence of dissipation, collective spin
models have been extensively investigated. Perhaps, one of
the best studied is the Lipkin-Meshkov-Glick (LMG) model
[24–26]—a ubiquitous system featuring a fully connected set
of spins-1/2. Its ground-state properties [27–31], spectrum,
correlation functions [32–36], and dynamics [31,37–40] can
be systematically obtained in the thermodynamic limit, i.e.,
large s limit, by a semiclassical expansion with 1/s playing a
role similar to h̄. Nonperturbative effects can also be captured
by semiclassical methods [36].

Markovian dissipation in collective spin models was first
considered to describe spontaneous emission of an ensemble
of two-level atoms in a superradiant phase [41–44]. Various
variants and generalizations of these models have been studied
since then [45–49]. These systems belong to a family that
we refer to as dissipative Lipkin-Meshkov-Glick models, in
analogy with its dissipationless counterpart. In cases where an
exact construction of the steady state exists [43,50], correla-
tion functions can be computed exactly. Otherwise, semiclas-
sical methods [45,46] and perturbative 1/s expansions [47]
were employed, as well as exact diagonalization, to access
the steady state and the spectrum of the Lindblad operator.
Such studies revealed the existence of several phases charac-
terized by qualitatively different steady-state properties. These
include systems with a single or bistable steady states [46]
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FIG. 1. (a) Schematic representation of the setup. A collective
moment is obtained as an effective description of an aggregate of
N = 2s magnetic atoms, with a large charge gap, deposited on an
insulating layer coating a metallic substrate. Upon applying a voltage
difference between the metallic spin-polarized tip and the substrate,
a charge current ensues. Two polarization directions are considered:
p = pez (i.e., p ‖ h) and p = pey (i.e., p ⊥ h).

or cases where, in the thermodynamic limit, no steady state
could be found and the system attains a recurrent periodic
orbit, dependent on its initial condition [41–44]. Recently,
models featuring independent, i.e., noncollective, spin decay
have also been considered [51–53].

Contrarily to their equilibrium counterparts, a classification
of quantum critical phenomena in the presence of dissipation
has not yet been accomplished despite the significant body
of works devoted to the topic [48,54–63]. In particular, dissi-
pative phase transitions have been shown to escape Landau’s
symmetry breaking paradigm [48,55,57] in some cases but not
others [61].

In this paper, we propose a classification of the phases of
collective spin models with Markovian dissipation according
to their steady-state and spectral properties. To do so, we
study the different phases of the dissipative LMG model
with Markovian dissipation. The specific form of the jump
operators is motivated by a solid-state setup, which features
magnetic atoms deposited on a metallic surface, and where
spin transport arises by the proximity with a spin-polarized
metallic tip held at a finite bias voltage (Fig. 1). To access
these properties of the model, we employ variational methods,
a systematic Holstein-Primakoff mapping and exact diagonal-
ization studies of the Liouvillian.

Besides helping to understand nonequilibrium states of
engineered solid-state devices, our results are also of interest
to quantum optics and cold atomic setups, where dissipa-
tive phase transitions in optical cavities [64–67] have been
observed which can be modeled by variants of the dissipative
LMG model.

The paper is organized as follows. The model is introduced
in Sec. II. A description of the phase diagrams obtained for
two tip polarization directions, as well as the main char-
acteristics of each phase and phase transitions, are given
in Sec. III. Section IV A gives a summary account of the
1/s expansion using the Holstein-Primakoff mapping that

can be used to systematically compute 1/s corrections of
observables. A detailed analysis of the Liouvillian spectrum,
dynamics, and properties of the steady state in each of the
phases, as well as the phase transition lines are given in
Sec. IV. In Sec. V, we give a classification of the differ-
ent phases and summarize our main findings. We conclude
in Sec. VI with the implications of our work. Appendices
present some of the details of calculations used to derive the
results in the main text. Appendix A provides a derivation of
the semiclassical and variational equations of motion.
Appendix B contains helpful simulations of the magnetization
dynamics for finite-s systems and Appendix C details the
derivation of the linearized Liouvillian.

II. MODEL

We consider the system depicted in Fig. 1, consisting of
a magnetic moment deposited on a metallic surface and in
contact with a metallic tip having a spin polarization vector
p. The collective magnetic moment that can be of an atom,
an artificial atomic structure or a molecule, is modeled by the
LMG Hamiltonian

H = −h · S − 1

2s

(
γxS2

x + γyS2
y

)
(1)

with Sα=x,y,z obeying the su(2) commutation relations with
S · S = s(s + 1). This spin representation is obtained as the
symmetric sector of N = 2s two-level systems. The coeffi-
cients γx, γy are determined by the surface anisotropy and h
is a local magnetic field. In what follows, we consider that
the applied field always points in the direction perpendicular
to the surface, i.e., h = hez, and two possible orientations
for the polarization vector: a case where the field and the
polarization are parallel, with p = pez; and a case where they
are perpendicular, with p = pey with −1 � p � 1.

The collective magnetic moment is a good effective de-
scription of an atomic aggregate with a large charge gap.
The exchange interaction between the magnetic moment and
electrons in the metallic leads is induced by virtual processes
where the atomic aggregate acquires (donates) and donates
(acquires) an electron from the leads. Such processes induce
relaxation and decoherence effects to the magnetic state and
allow a charge current to ensue in the presence of a finite
applied voltage. If the effective exchange coupling is not too
strong, a perturbative treatment allows for the description of
the dynamics in terms of a (non-Markovian) master equation
for the density matrix of the magnetic moment; the details of
the derivation can be found in Ref. [19].

A simple limit is recovered for a large bias voltage, where
the environment becomes memoryless. In this limit, the effect
of the leads is simply to perform spin flips at a constant rate.
In case the leads are spin polarized, this yields a net spin
transfer. In this Markovian limit, the Liouvillian superoperator
L, determining the evolution of the system’s reduced density
matrix, ∂tρ = L(ρ), acquires the Lindblad form [22,23]

L(ρ) = −i[H, ρ] +
∑

i

WiρW †
i − 1

2
{ρ,W †

i Wi}, (2)
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where Wi, with i = +,−, z, are the so called jump operators

Wz =
√

�

2s
S̃z; W+ =

√
�

2s

1 − p

2
S̃+; W− =

√
�

2s

1 + p

2
S̃−.

(3)

The tilde “˜” denotes that the quantization axis of the operator
is taken along the polarization of the tip. In the two situations
treated here, we have S̃α = Sα for the parallel case and S̃α =
ei π

2 Sx Sαe−i π
2 Sx for the perpendicular setup. � is the rate of

the quantum jumps, proportional to the absolute value of the
applied voltage (see Appendix G of Ref. [19]).

Under Liouvillian dynamics, the evolution of the density
matrix is given by

ρ(t ) = etLρ(t0) =
∑

i

exp (t�i )Xitr[X̃iρ(t0)], (4)

where Xi and X̃i are respectively left and right eigenvectors
of the superoperator corresponding to the eigenvalue �i and
normalized such that tr[XiX̃j] = δi j . The real part of �i is
nonpositive and there is at least one zero eigenvalue �0 = 0
corresponding to left eigenvector X̃0 = 1.

III. STEADY-STATE PHASE DIAGRAM

In this section, we determine the phase diagram of the
model and characterize the different phases according to the
qualitative properties of the steady states. As in equilibrium,
nonanalyticities in the steady-state observables are only ex-
pected once the thermodynamic limit is taken, i.e.,N = 2s →
∞. Since, within the symmetric sector, the total angular
momentum is determined by s = N/2, the thermodynamic
limit corresponds to that of a large classic spin, s → ∞.

To approximate the dynamics of ρ(t ) in the large s limit,
we assume an ansatz density matrix of the form ρ ∝ em·S,
and derive the equation of motion for the vector m. Away
from phase transition points, this ansatz becomes exact in
the s → ∞ limit and allows for higher-order corrections in
powers of 1/s. In Appendices A 2 and A 1, we provide the
details of the method and show how this approach compares
with the standard mean-field approximation [41–44].

From the ansatz parameter m, we compute the rescaled
magnetization vector n = 〈S〉/s and solve the fixed-point
condition ∂t n = 0 in order to obtain the steady-state magne-
tization. The fixed points of the dynamics are classified as
attracting (stable), repulsive (unstable), mixed (saddle points,
having at least one attractive and one repulsive direction) or
marginal (no attractive or repulsive direction), according to
the dynamics in their vicinity. Regarding steady-state prop-
erties, different phases are characterized by the number and
nature of the fixed points. A change in the number or nature
of the fixed points typically corresponds to nonanalyticities
of certain observables as well as in the slowest decaying rate
towards these points.

We recall that, while all fully-polarized vectors, i.e., |n| =
1, correspond to pure states, vectors with |n| < 1 may corre-
spond both to pure or mixed states.

In the following two sections, we study the two cases
shown in Figs. 2 and 3, corresponding to an applied field
parallel (p ‖ h) or perpendicular (p ⊥ h) to the polarization.

I
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I

II
III

0

I

I
I
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FIG. 2. (Left) Phase diagram for p ‖ h, plotted for p� = 1.
(Right) Average magnetization n = 〈S〉/s shown for representative
states of each phase. Stable (unstable) infinite-s steady states are
depicted as black (red) points. Representative trajectories in the s =
∞ limit are represented in full colored (pink, green and orange) lines.
The steady state and the evolution of the magnetization for s = 20
are depicted by a blue point and blue dashed lines, respectively.
Parameters: I‖ - h = 1, γx = −0.2, γy = −0.3, p� = 0.2; II‖ -
h = 1, γx = 0.5, γy = −2.5, p� = 1; III‖ - h = 1, γx = −3, γy =
−1.5, p� = 1.

We qualitatively describe the different phases, as well as the
nature of the phase transitions between them based on the
steady-state properties and dynamics. The spectral analysis
within each phase is relegated to Sec. IV.

The main findings of this section are summarized in Sec. V
(see Table I).

A. Parallel polarization

For parallel polarization (p ‖ h) [see Fig. 2 (left panel)],
there are three stable phases, I‖, II‖, and III‖, in the γx − γy −
h parameter space, separated by critical surfaces where phase
transitions occur. Regions 0‖ and I′‖, arising only at h = 0, are
also critical and correspond either to I‖ ↔ III‖ transitions or
to transitions between phases II‖ with different steady-state
symmetries. The critical phases 0‖ and I′‖ are similar to some
of the phases found in the perpendicular case (p ⊥ h) and we
relegate their study for the next section. While phases I‖, II‖,
and III‖ can be distinguished by their number of fixed points
(1,2 and 3), the further division within region III‖, depicted
as a dashed black line, is obtained by considering steady-state
properties at finite s (see below).

Figure 2 (right panels) illustrates the dynamics of the
average magnetization 〈S〉 within each phase. Pink, green, and
yellow curves correspond to qualitatively different trajectories
obtained by our variational method. Attractive fixed points are
depicted by black dots and the red dots represent unstable
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FIG. 3. (Left) Phase diagram for p ⊥ h. (Right) n = 〈S〉/s
shown for states for the different phases. The color codes are the
same as in Fig. 2. In the middle panel (I′⊥), the separatrix separating
the two qualitative long-time states of regions 0⊥ and I⊥ is depicted
in gray. The plots are done for the following set of parameters: 0⊥-
h = 1, γx = 0.1, γy = 0.2, p� = 1; I⊥- h = 1, γx = −2, γy =
2.1, p� = 1; I’⊥- h = 0.2, γx = 0.1, γy = 1, p� = 1.

or saddle points. An example of the dynamics for a finite
s, obtained by exact diagonalization of the Liouvillian, is
depicted as blue dashed lines and the steady state attained in
the limit t → ∞ is depicted as blue dots.

1. Phases

Region I‖ is characterized by a unique stable steady state
located along the z axis. The average magnetization of the
steady state for finite s approaches the variational ansatz value
up to 1/s corrections (almost coinciding blue and black points
in Fig. 2, I‖). The variational and finite-s dynamics (green
and blue dashed lines, respectively) yield qualitatively similar
results. In addition to the attractive fixed point at the south
pole (black dot), an unstable fixed point is located at the north
pole (red dot). Saddle points, not present for the choice of
parameters of Fig. 2, I‖, may appear but do not change the
dynamics qualitatively.

In region II‖ (Fig. 2, II‖), we find two variational steady
states related by symmetry. For finite-s, the degeneracy of the
eigenvalues of the Liouvillian is lifted and a unique steady
state emerges (blue dot) whose magnetization approaches
the average of the two variational ones. In the variational
dynamics, one of the two attractors is attained at large times
depending on the initial condition (green and pink lines in
Fig. 2, II‖); for finite-s (blue dashed line) there are two
separated timescales, the initial dynamics approaches one of
the variational fixed points and is followed by a decay to the
finite-s steady state. We analyze the two timescale dynamics
in Sec. IV C 1.

FIG. 4. (Top) Magnetization for the phase transition I‖ ↔ III‖ ↔
II‖ for h = 1, γy = −3, p� = 1. (Bottom) Magnetization for phase
transition I‖ ↔ II‖ for h = 1, γy = 2, p� = 1. The stable and unsta-
ble fixed points are depicted as orange and pink lines, respectively.

Region III‖ has three variational stable fixed points (two
related by symmetry and one with 〈S〉 = −sez). Which fixed
point is realized in the t → ∞ limit depends on the basin of
attraction of the initial state. The finite-s dynamics also shows
a separation of timescales, similar to region II‖, before the
finite-s steady state is attained.

2. Phase transitions

We now turn to the description of the phase transitions.
Figures 4 and 5 show the magnetization in the x (left panels)
and z (right panels) directions as a function of γx and h, for
finite values of s (blue and green dots) and for the stable
(orange) and unstable (pink) fixed point of the variational
dynamics. Figure 4 depicts the passage from phase I‖ to

FIG. 5. (Top) Magnetization at the phase transition I‖ ↔ III‖
with γy = 3, γy = 1, p� = 1. (Bottom) Magnetization at the phase
transition for II‖ ↔ II‖ with γy = 3, γy = −3, p� = 1. The stable
and unstable infinite-s results are depicted as orange and pink lines,
respectively.
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phase II‖, with (upper panels) and without (lower panels) the
presence of the intermediate phase III‖. Figure 5 shows a cross
section of the phase diagram of Fig. 2 (left panels) obtained
by varying h along two vertical lines that cross the I‖ ↔ III‖
transition (upper panels) and the II‖ ↔ II‖ one (lower panels)
that crosses the 0‖ critical plane.

Analyzing Figs. 4 and 5, we list the properties of each
transition. The transition I‖ ↔ II‖ is of second order, with the
unique steady state of I‖ giving place to two symmetry broken
ones for II‖ [see Fig. 4 (lower panels)].A good order parameter
for this transition is 〈Sz〉/s − 1, which vanishes in phase I‖ and
is nonzero in phase II‖.

At the II‖ ↔ III‖ and III‖ ↔ I‖ transitions, the quantity
lims→∞ 〈Sz〉/s computed in the steady state is analytic as seen
in Fig. 4 (upper panels). Analyticity was also observed for
all other steady-state observables. Therefore these transitions
only concern dynamic properties.

A discontinuous steady-state phase transition arises within
III‖. For finite s, quantum fluctuations select a steady state
with an average magnetization that is either that of the stable
fixed point of I‖ or the average of the fixed points of II‖, since
these three fixed points coexist in III‖. This scenario of a first-
order phase transition is similar to that reported in Ref. [63],
the only difference being that the phase equivalent to II‖ has
in Ref. [63] a unique stable fixed point.

The transition I‖ ↔ III‖ across the plane h = 0 is of first
order. However, since the symmetry is not broken for finite-s,
the steady-state magnetization is continuous, see Fig. 5.

The transition II‖ ↔ II‖ across the h = 0 plane is also of
first order. The discontinuity of 〈S2

x 〉/s2 is shown in Fig. 5.

B. Perpendicular polarization

The case p ⊥ h shown in Fig. 3 (left panel), has three
different phases: 0⊥, I′⊥, and I⊥. The corresponding dynamics
is plotted in Fig. 3 (right panels) with the same color code
of Fig. 2. In addition, the gray line in Fig. 3, I′⊥, depicts a
separatrix curve dividing orbits where variational ansatz has
qualitatively different dynamics. Note that both 0⊥ and I′⊥
support states that do not relax in the infinite-s limit.

1. Phases

Region 0⊥ has no variational stable fixed points. However,
the variational method finds a line of marginal fixed-point
solutions (brown line) where the eigenvalues of the stability
matrix, obtained by linearizing the equations of motion, have
a zero real part. This line connects two marginal steady
states that satisfy |n| = 1, depicted as red dots on the z = 0
plane in Fig. 3, 0⊥.The dynamics of any initial condition
(green and pink lines) follows closed orbits that surround
the marginal line. Thus the asymptotic long-time state of
the variational dynamics is recurrent and keeps memory of
the initial condition for all times. The existence of recurrent
classical solutions was previously identified in Refs. [41–44]
and recently studied in Refs. [48,49]. For the case γx = γy = 0
and p = −1, an explicit solution of the steady state for finite
s is known [41–43].

For finite s, a single unique steady state (blue dot), with
|〈S〉|/s �= 1, is attained. This fixed point corresponds to the
unique place along the line of marginal fixed points where

FIG. 6. Magnetization across the 0⊥ ↔ I′⊥ ↔ I⊥ transitions for
h = 0.2, γy = −2, p� = 1. The stable infinite-s steady state is
depicted as orange line.

〈Sx〉 = 0, which is consistent with the fact that the finite-s
steady state cannot break the microscopic symmetries.

The finite-s picture emerging from our variational dynam-
ics is the following: finite-size corrections destabilize the
recurrent variational evolution (valid for s → ∞) and, after
a timescale that increases with s−1 (see Sec. B), the unique
steady state is attained. Note that, if the initial state is arbi-
trarily close to one of the marginal fixed points, the evolution
to the finite-s steady state is along the lines of marginal fixed
points found by the variational method. Therefore including
1/s corrections to the variational procedure is expected to lift
the degeneracy of the states along the line and yield a unique
steady state that coincided with the finite-s one.

Region I′⊥ is characterized by a stable fixed-point solution
coexisting with recurrent states. A separatrix line(gray line in
Fig. 3, I′⊥) separates the region where an initial state attains
asymptotically the stable fixed point (e.g., green trajectory)
from the region where an initial state yields a recurrent evolu-
tion (e.g., pink trajectory). The finite-s evolution (blue dashed
line) starting from an initial state in the recurrent region, first
follows the variational recurrent evolution and, subsequently,
decays towards the unique stable fixed point.

Region I⊥ has a single stable steady state and the same
qualitative properties as I‖. This region exists only for h <

hc = p�/2.

2. Phase transitions

The phase transitions in the perpendicular case can be of
two kinds 0⊥ ↔ I′⊥ and I′⊥ ↔ I⊥. Figure 6 shows the magne-
tization in the y (left panel) and z (right panel) directions as
a function of γx for two values of s (blue and green dots) and
for the stable fixed point obtained by the variational ansatz
(orange curve). When h < 1/2, there are two points within a
fixed h plane for which the passage from 0⊥ to I⊥ can be done
directly, without passing by I′⊥. As the steady-state properties
of phases I′⊥ and I⊥ are similar, crossing the transition along
these special points will not affect qualitatively the scenario
presented in Fig. 6.

The 0⊥ ↔ I′⊥ transition is of first order, with a discontinu-
ous magnetization shown in Fig. 6. However, as there is no
stable fixed point within phase 0⊥, this transition seems to
escape the Landau paradigm [48].

The I′⊥ ↔ I⊥ transition regards only the spectral properties
of the Liouvillian and is discussed below. The steady-state
magnetization, depicted in Fig. 6 for finite s, is continuous
across the transition for s → ∞.
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IV. STEADY-STATE AND SPECTRAL AND DYNAMIC
SIGNATURES OF NONEQUILIBRIUM PHASES

In this section, we analyze the spectral and steady-state
properties of the phases described in Sec. III. For these quan-
tities, large-s predictions require to go beyond the variational
analysis. We achieve this using a Holstein-Primakoff transfor-
mation, mapping the spin into a bosonic degree of freedom,
which allow a subsequent 1/s expansion of the Liouvillian.
At leading order, the bosonic Liouvillian is quadratic and thus
exactly solvable. Details of the exact solution are given in
Appendix C. Analytic predictions obtain in this way are then
compared with exact diagonalization results.

The main findings of this section are summarized in
columns 4 and 5 of Table I and discussed in Sec. V.

A. Holstein-Primakoff transformed Liouvillian

The Holstein-Primakoff (H-P) transformation maps a spin
s into a bosonic degree of freedom. A generalized version of
this transformation, which conserves the spin commutation
relations, can be obtained by the usual mapping

Sz = −s + a†a, (5)

S+ = a
√

2s − a†a, (6)

S− =
√

2s − a†a a†, (7)

followed by a shift in the bosonic operators a → a +√
2s α√

1+ᾱα
, with α ∈ C. This generalized H-P mapping al-

lows a systematic 1/s development around a spin-coherent
state, |α〉c = eαS+ |s,−s〉, parametrized by α, with average
magnetization

〈S〉 = s

{
α + ᾱ

1 + ᾱα
, i

α − ᾱ

1 + ᾱα
, 1 − 2

1 + ᾱα

}
+ O(

√
s).

(8)

Inserting the expansion of the spin operators in the Liouvillian
and developing in powers of s, up to order s0, we obtain a
quadratic Liouvillian in the bosonic operators, where H can
generically be casted in the form

H = A† · H · A + A† · ζ + ζ † · A + O(s−1/2) (9)

with A = {a, a†}T , the single-particle Hamiltonian H is a 2 ×
2 matrix and ζ a two-component complex vector. In the same
way the jump operator Wi can be written as

Wi = w
†
i · A + ci (10)

with wi a two-component complex vector and ci a complex
constant. The quantities H and wi are of order s0 and ζ and
ci are of order s1/2. A suitable choice of the shift, α, can
be used to set to zero the terms proportional to ζ or c0 in
the linearized Liouvillian, obtaining an operator with only
quadratic terms. The values of α that have this property are
those that fulfill fixed-point conditions of the variational and
semiclassical dynamics given in Appendix A 1. This step, is
thus, equivalent to choose as linearization points the fixed
points of the infinite-s equation of motion with |n| = 1.

Properties of quadratic bosonic Liouvillians were stud-
ied in Ref. [68]. We derive some of these results in the

FIG. 7. 1/s corrections to 〈Sz〉 − s (left) and SE (right) with h =
1, γy = 2, � = 1/p.

Appendix C using an approached similar to that developed
in Ref. [21] for quadratic fermionic Liouvillians. Using this
method, we compute the single particle correlation matrix,
χ = 〈A.A†〉, which encodes the properties of the steady state,
the spectral gap, and derive the simple structure of the
low-energy spectrum.

B. Steady state

In this section, we study steady-state properties starting
with the parallel polarization case (p ‖ h).

For phase I‖, there is only one stable solution, α1, of
the variational equations, thus to leading order in s, ρ0 �
|α1〉c〈α1|c. Analytic predictions for the steady-state observ-
ables to next-to-leading order can be obtained using density
matrix ρ0 = χ1, where χ1 is the density matrix obtained by
linearizing the Liouvillian around α1.

For phase II‖, at leading order in s, L has two eigen-
states with eigenvalues exponentially close to zero that
are well approximated by ρ0 = 1

Z0
(|α1〉c〈α1|c + |α2〉c〈α2|c),

with Z0 = tr(|α1〉c〈α1|c + |α2〉c〈α2|c), and ρ1 = |α1〉c〈α1|c −
|α2〉c〈α2|c, from which only ρ0 is a physical density ma-
trix. At next to leading order in s, the density matrix is
given by ρ0 = 1

2 (χ1 + χ2), where χ1,2 are the finite en-
tropy density matrices obtained by linearizing the Liouvil-
lian around α1,2, respectively. Since the overlap 〈α1|α2〉c
is exponentially small in s, χ1 and χ2 are exponentially
nonoverlapping, i.e., ln tr(χ1χ2) ∝ −s. As a consequence,
mean values of operators can be approximated by tr(ρ0O) �
1
2 [tr(χ1O) + tr(χ2O)]. The entropy of ρ0 is also well approx-
imated by SE � ln 2 − 1

2 tr(χ1 ln χ1) − 1
2 tr(χ2 ln χ2) = ln 2 −

tr(χ1 ln χ1), since by symmetry the entropy of χ1 and χ2 are
equal.

Figure 7 shows the 1/s corrections to the magnetization
〈Sz〉 − s and the von Neumann entropy, SE = −tr(ρ ln ρ), of
the steady state as a function of γx, in phases I‖ and II‖
and across the I‖ ↔ II‖ transition. Since in phase I‖, the
magnetization satisfies 〈Sz〉 = −s + δSz + O(s−1), the values
of δSz = s + 〈Sz〉 for finite s converge to the analytic pre-
dictions obtained using the linearized Liouvillian around the
stable steady state. For the entropy, Fig. 7 shows that the
numerical results tend to the analytic predictions as s → ∞.
The convergence is much slower around the phase transition
point.

At the phase transition, the perturbative expansion is no
longer valid and the above estimate breaks down. When
the linearized steady state is a good approximation of the
finite-s one, the von Neumann entropy in the s = ∞ limit
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FIG. 8. Numerical eigenspectrum of L for regions I‖ (left) and
II‖ (right) and analytical predictions obtained from the linearized
Liouvillian around the stable fixed point (light orange) and around
the unstable one (light blue). Parameters from Fig. 2.

approaches a constant value. The proximity with the critical
point where the linearized procedure breaks down, explains
the slow convergence with s.

For the perpendicular polarization case (p ⊥ h) and in the
regions where a stable steady state is present (I⊥and I′⊥), the
properties of the steady state are similar to those of region I‖.
On the other hand, the recurrent region 0⊥ has no stable fixed
point to approximate the finite-s steady state. In this case,
as presented below, the entanglement entropy of the finite-s
steady state grows as ln(s). It is tempting to interpret this
logarithmic growth as an extension of the argument above
for phase II‖, where O(s) degenerate steady states contribute
equally to SE.

C. Spectrum and characteristic timescales

We now focus on spectrum of the Liouvillian linearized
around each steady state. For the case of a single bosonic
mode obtained by 1/s expansion of the H-P transformation,
the eigenvalues �n,m of the Liouvillian are given by �n,m =
i(nλ − mλ̄), with m, n ∈ N+

0 , where λ is a complex number
that can be obtained from H and wi (see Appendix C ). Each
eigenvalue corresponds to a decaying mode of the dynamics
towards the steady state with a characteristic timescale τ =
−(Re�)−1.

1. Parallel case

Figure 8 depicts the spectrum of the Liouvillian L in I‖ and
II‖. The gray level coded dots correspond to spectrum of the
full Liouvillian for increasing values of s. The orange (blue)
dots correspond to the spectrum of the linearized Liouvillian
around the stable (unstable) fixed points, the orange (blue)
lines were drawn to highlight the simple periodic structure of
the spectrum.

For the case of Fig. 8, I‖, the spectrum is generated by λ =
λs = √

(h + γx )(h + γy) − 1
2 i�p (see derivation in Sec. C 3).

Note that the agreement between the finite-s spectrum and
the linearized one is faster for small values of |Re(�n,m)|.
For larger values, we can still observe a convergence to the
linearized prediction with increasing s. The decay towards the
unique steady state, after the fast decaying modes vanish, is
ruled by the two slowest decaying modes depicted in Fig. 8,
I‖, with a characteristic timescale τ0 = |Im(λs)|−1.

In case of Fig. 8, II‖, there are two stable fixed points re-
lated by symmetry. Linearizing the Liouvillian around each of
these fixed points yields a spectrum that is doubly degenerate.

A quasidegeneracy is also observed in the finite-s spectrum
obtained by exact diagonalization with a convergence to the
linearized prediction with increasing s.

In region II‖, the dynamics for finite-s is thus characterized
by two different timescales. The first timescale, of order s0,
is given by τ0 = |Im(λs)|−1, with λs obtained by linearizing
the Liouvillian around one of the two symmetry-related stable
steady states. The choice of the particular steady state depends
on which basin of attraction the initial conditions belong to.
Within this timescale, the evolution of a finite-s system tends
to the infinite-s evolution as the value of s increases. For times
t > τ0, the dynamics resolves the degeneracy between the
steady state ρ0 and the first excited state ρ1 of L defined in
Sec. IV B and the decay is dominated by the inverse of the first
nonzero eigenvalue �1 of L, τ1 = −(Re�1)−1. As Re(�1)
is exponentially small in s, these two timescales become
increasingly separated for large s and can be well identified
in the dynamics (see Appendix B for more details).

The spectrum of region III‖ is thrice degenerate in the
infinite-s limit and we also observe convergence as s increases
(plot not shown). The dynamics in the region is similar to
phase II‖ with the exception that now there are three rel-
evant timescales. The first, τ0 = |Im(λs)|−1, determines the
convergence to the basin dependent steady state. One of the
two other timescales (τ1 or τ2) corresponds, as in phase II‖,
to the decay from one of the symmetry related states to
the symmetric mixed state. The other, to the decay between
the mixed-symmetric state and a state with 〈S〉 � −sez (as the
steady state of I‖). Which eigenvalue, �1 or �2, corresponds
to each of these processes depends on what side of the first-
order transition the system is in.

Interestingly, there is a set of low-lying eigenvalues (blue
dots) obtained by exact diagonalization that do not converge to
the spectrum of the bosonic Liouvillian linearized around the
stable fixed points. Instead, these second set of eigenvalues
can be obtained by linearizing the Liouvillian around the
unstable fixed points. This spectrum has a similar structure
(blue lines) to that of the stable fixed point but the element
with the smallest real part within this set of eigenvalues has
a finite negative value, i.e., it is not a steady state. For the
case I‖, we obtain λ = λuns = √

(h − γx )(h − γy) + i�p
2 (see

derivation in Sec. C 3) and the conelike structure is displaced
from the real axis by −�p. A convergence to this second set
of analytical predictions is also observed in cases I‖ and II‖.

Therefore the lower part of the spectrum of the full Liou-
villian, that rules the long-time dynamics, is an overlap of
the spectra of linearized Liouvillians around both stable and
unstable fixed points. Thus, in addition to the characteristic
timescales determined by the stable fixed points, the long-time
dynamics also carries information about the unstable fixed
points.

We now focus on the spectrum at the phases transitions of
the parallel case. As noticed before, there are three kinds of
steady-state phase transitions in the system: two first-order,
one with coexisting stable fixed points (I‖ ↔ III‖ ↔ II‖) and
one with no coexistence (II‖ ↔ II‖), and a second-order phase
transition (I‖ ↔ II‖). The I‖ ↔ III‖ ↔ II‖ transition is hard to
locate numerically and an analytical treatment of the spectral
properties beyond the heuristic picture given above requires a
nonperturbative treatment that is out of the scope of this work.
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FIG. 9. (Left) Real part of the smallest eigenvalues at the tran-
sition I‖ ↔ II‖ as a function of s, parameters of Fig. 2. (Inset) von
Neumann entropy of the steady state as a function of s. (Right)
Spectrum of L at the I‖ ↔ II‖ transition, gray dots represent numeric
values from s = 60 up to s = 500 and the lines are trajectories as
function of s.

The transition II‖ ↔ II‖ is realized passing by the 0‖ critical
plane in Fig. 2 (left panel); the spectral and the steady-state
properties of this phase are similar to those of phase 0⊥ and
will be analyzed in the next section.

The spectrum at the I‖ ↔ II‖ critical point is depicted
in Fig. 9. As s increases, a larger number of eigenvalues
approaches zero following a process sketched in Fig. 9 (right
panel): for increasing s (see arrows), two complex conjugate
eigenvalues meet and become real; after that one eigenvalue
approaches zero. The behavior of the firsteigenvalue of the
Liouvillian that converges to 0 with s is given in Fig. 9 (right
panel), showing �1 ∝ s−ν with ν � 0.5. The entropy of the
finite-s steady state is given in the inset of Fig. 9 (left panel).
The scaling seems to be logarithmic in s, i.e., SE ∝ ln (s).
Away from the phase transition points, all steady states have a
finite entropy in the infinite s limit.

2. Perpendicular case

The spectrum and dynamics of the magnetization and the
entropy in phase I⊥, is similar to that of phase I‖ in the previ-
ous section. Therefore, we refer the reader to the discussion of
phase I‖ (above) for the physical understanding of that phase.

Phases 0⊥ and I′⊥ allow for recurrent states in the infinite-s
limit with a time-independent amplitude and frequency which
depend on the initial condition. In the s → ∞ limit, this
corresponds to a spectrum of L with an accumulation of
points on the imaginary axis. This property, recently studied
in Ref. [49], is shown in Fig. 10 for the case of a point in
region 0⊥. For finite s [see Fig. 10 (right panel)], we observe
that some eigenvalues indeed approach the imaginary axis,
and, when sufficiently close to the imaginary axis, fall along
lines predicted for the marginal fixed points of the linearized
Liouvillian. In this phase, the Liouvillian gap �1 and the real
part of the first few Liouvillian eigenvalues (�2, �3,...) vanish
as s−1 [see Fig. 10 (left panel)].

This implies that in phase 0⊥, the approach to the unique
finite-s steady state is done with a rate of the order of s−1. The
entropy of the finite-s steady state increases logarithmically
with s (inset of Fig. 10, blue dots). In the same inset, we com-
pare the entropy of state chosen by our variational procedure
(blue line) in Sec. III B 1 and find a remarkable agreement (no
fitting performed).

FIG. 10. (Left) Real part of the smallest eigenvalues as a function
of s in region 0⊥, parameters of Fig. 2. (Inset) von Neumann entropy
as function of s. (Right) Spectrum of L for region 0⊥, light (dark)
gray dots represent numeric values for s = 100 (s = 300), the orange
and blue dots are obtained by linearizing the dynamics around the
two marginal infinite-s fixed points located on the sphere.

The spectrum in phase I′⊥ (not shown) is a direct overlap
of the spectra of 0⊥ and I⊥. Properties of the finite-s steady
state are always well approximated by a quadratic Liouvillian,
linearized around the stable fixed point of I′⊥.

V. CLASSIFICATION OF STEADY-STATE PHASES

We can now establish a complete classification of the
different phases of the model. A summary of the following
discussion and acronyms table is presented in Table I and
should be understood as the main result in our paper.

We start by classifying the different systems in two major
classes: noncritical system (NCS), where the number of zero
eigenvalues of the Liouvillian operator is finite for s → ∞;
and critical systems (CS) that have a spectrum where an
infinite number of eigenvalues approaches the imaginary axis
as s → ∞.

NCS correspond to the phases I‖, II‖, III‖, and I⊥. For these
systems, the spectrum is well approximated by a linearized
bosonic Liouvillian obtained after a Holstein-Primakoff trans-
formation around the (stable and unstable) fixed points of
the infinite-s dynamics. Each stable point in the dynamics,
αi=1,2,3, corresponds to a zero eigenvalue on the Liouvillian
in the s → ∞ limit with an eigenvector that is well approxi-
mated by the density matrix ρ � |αi〉c〈αi|c, with |αi〉c a spin
coherent state. In NCS phases with more than one infinite-s
steady state, the dynamics follows the two timescale paradigm
observed in phases II‖ and III‖. This corresponds to a first
decay towards the infinite-s state in the basin of attraction of
the initial point, with a timescale of order s0, and a second
decay to the finite-s steady state, with a timescale that diverges
exponentially as s increases. Observables, such as the steady-
state magnetization and entropy, can be obtained, at every
order in s, by systematically computing 1/s corrections to
the leading-order linearized Liouvillian. In particular, the von
Neumann entropy is finite in the infinite-s limit.

NCS systems can be divided into three subclasses: non-
degenerate (nCnD), with unique single steady state (I‖, I⊥);
degenerate-symmetric (nCDS) and degenerate-nonsymmetric
(nCDnS) where more than one steady state exist (II‖ and III⊥,
respectively).

For nCDS phases, a pair of symmetry broken steady
states becomes exponentially degenerate, � ∼ exp(−s), in the
infinite-s limit. Because the states break the symmetry of the
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TABLE I. Classification of steady-state phases.

Description Abbreviation Region Spectral Gap S.S. Entropy

Noncritical nondegenerate nCnD I‖, I⊥ � ∼ s0 SE ∼ s0

degenerate-symmetric nCDS II‖ ln � ∼ −s SE ∼ s0

degenerate-nonsymmetric nCDnS III‖ ln � ∼ −s SE ∼ s0

Critical
nonrecurrent CnR I‖ ↔ II‖ � ∼ s− 1

2 SE ∼ ln s
coexistence CC I’⊥, I′‖ � ∼ s−1 SE ∼ s0

recurrent CR 0⊥, 0‖ � ∼ s−1 SE ∼ ln s

underlying Liouvillian in the infinite-s limit, the finite-s steady
state is well approximated by a symmetric combination of the
two infinite-s states and we say that the transition I‖ ↔ II‖ is
of second order.

nCDnS phases can encompass multiple pairs of symmetry
broken steady states and symmetric states. All steady states
are exponentially degenerate in the infinite-s limit, however
in order to compute which of the steady states is realized for
finite s, a nonperturbative calculation in s is needed that goes
beyond the scope of the current work.

CS are represented in this work by regions 0⊥, I′⊥ and by
the phase transition planes, including: 0‖, I′‖ and the transitions
lines I‖ ↔ II‖. These can be divided into three sub-classes:
recurrent (CR) with all the initial states displaying recurrent
behavior (0⊥, 0‖), coexistence (CC) whose properties depend
on the initial state (I’⊥, I′‖) and nonrecurrent (CnR) where a
(likely infinite) number of eigenvalues vanish (I‖ ↔ II‖).

CR have a massive degenerate spectrum with nonzero
imaginary parts, therefore allowing for recurrent dynamics in
the infinite-s limit. While the infinite-s limit does not include
a stable-steady state, our variational approach, together with
symmetry considerations, can be used to predict both the
magnetization and the entropy to leading order in s. In this
phase, we have that lims→∞ ‖〈S〉‖/s < 1 and the von Neu-
mann entropy diverges logarithmically with s.

In CC phases, a stable steady state may still exist. In
this case, the degenerate spectrum coexists with a regular
one that is well approximated, as for NCS, by linearizing
the Liouvillian around the stable fixed point. Moreover, the
finite-s steady state are well approximated by those obtained
perturbatively from the linearized Liouvillian. This implies
that steady-state observables have a convergent 1/s expansion
and that the entropy of the steady state is finite in the infinite-s
limit.

For CnR systems, eigenvalues approach zero with a spec-
tral gap that vanishes as a power law. Here, the fitted numeri-
cal value is compatible with a mean-field exponent s−1/2. This,
together with the perturbative results obtained in region I‖,
suggests that the approach to the steady state for a generic
observable, 〈O(t )〉 − 〈O(∞)〉, follows a scaling function of
the from s− 1

2 �(|λ|t, |λ|2s
1
2 ), where λ is the eigenvalue of the

linearized problem that vanishes at the transition. Assuming a
scaling hypothesis, this implies a t−2 power-law relaxation at
the infinite-s limit. However, with the system sizes available
to us, we were not able to numerically confirm this prediction.
For a CnR, the steady-state entropy is observed to grow
logarithmically with increasing s.

Although our classification focuses only on the properties
of stable and marginal steady states, we have also shown that
the low-lying spectrum of the Liouvillian operator in the large
s limit cannot be reproduced only by analyzing the stable
fixed points. Instead, the spectrum is obtained as a superpo-
sition of two sets of eigenvalues, coming from the stable and
unstable fixed points. Since these eigenvalues with a small
real part rule the decay to the steady state at large times, the
decay rates also carry information about the unstable fixed
points. Such understanding is relevant for experimental setups
aimed at studying the characteristic timescales described in
Sec. IV C.

VI. CONCLUSION

In summary, we present a detailed analysis of the LMG
model, featuring a collective spin system, in the presence
of a Markovian dissipative environment. Motivated by re-
cent prototypes of engineered atomic spin devices we fo-
cus on two polarization cases. Our analysis is also of in-
terest to other variants of the dissipative LMG model that
have previously been studied in the contexts of quantum
optics and cold atomic setups. By employing a variational
approach, as well as a 1/s perturbative method, we are
able to systematically study the model. Despite its apparent
simplicity, this model exhibits a rich phase diagram where
different phases are shown to possess qualitatively different
steady-state and dynamical properties. We identify a num-
ber of different phases and provide a tentative classification
with terms of their spectral and steady-state properties (see
Table I).

One of the open issues, not addressed in the present work,
is to understand the nature of the coexisting region near first-
order phase transitions. Detailed studies [69,70] have already
reveled some of the properties of distribution functions near
the transition. However, in the coexisting region, a criterion
to predict which fixed point is realized at finite s, similar
to Maxwell’s construction for equilibrium first-order phase
transitions [71], is still lacking.
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APPENDIX A: EQUATIONS OF MOTION
IN THE LARGE s LIMIT

In this section, we present the details of a derivation of the
semiclassical equations of motion of the model. We do this
in the next two sections in two slightly different ways. The
first is the usual semiclassical analysis. The second method
consists of approximating the dynamics by constraining the
possible states within a family of variational density matrices.
To treat both parallel and perpendicular cases at the same time,
in this section, we assume that the Hamiltonian and the jump
operators are generically given by

H = −
∑

α

(
hαSα + 1

2s
γ αS2

α

)
, (A1)

Wi = 1√
2s

∑
α

ηα
i Sα, (A2)

where hα=x,y,z and γ α are real and ηα
i are complex parameters.

1. Semiclassical dynamics

A close set of equations of motion in the semiclassical
limit is obtained assuming that, for a typical state, 〈SαSβ〉 =
〈Sα〉〈Sβ〉 + O(s1). Assuming this factorization in the equa-
tions of motion for the magnetization

∂t 〈Sβ〉 = tr[SβL(ρ)], (A3)

one obtains the semiclassical equations of motion for the
quantity nα = 1

s 〈Sα〉:

∂t nβ =
∑
αγ

εαβγ hαnγ +
∑
αγ

εαβγ γαnαnγ

−
∑

i,αα′γ

1

2
εαβγ Im

[
η̄α′

i η
γ
i

]
nαnα, (A4)

where εαβγ is the antisymmetric tensor.
The stability of the fixed points of the semiclassical dynam-

ics, i.e., points obeying ∂t nβ = 0, is obtained by linearizing
the equations of motion in their vicinity

∂tδnβ = M(n∗
β )δnβ,

where n∗
β is the value of the fixed point and δnβ = nβ − n∗

β .
Besides the trivial fixed point with |n| = 0, which is found

to be generically unstable, all the other fixed points found have
|n| = 1.

2. Variational density matrix

Here we detail the variational approach employed in the
main text. The results of this approach only differ from
those in the previous section for phase 0⊥ and I’⊥, where it
allows to find a line of variational steady states to which the
magnetization vector of the finite-s steady state belongs.

The variational states are parameterized by

ρ(m) = em.S/s

Zm
(A5)

with Zm = tr[em.S/s]. This family of states includes thermal
states of Hamiltonian that are linear in S. Within this family,
expectation values 〈Sα〉 and 〈SαSβ〉 are given by

〈S〉 = R · 〈S〉z, (A6)

〈S · ST 〉 = R · 〈S · ST 〉z · RT , (A7)

where 〈. . . 〉z = tr[. . . e|m|Sz/s]/tr[e|m|Sz/s] and R is a rotation
matrix chosen such that m = |m|R · ez. In the large s limit
these expressions simplify to

〈S〉/s = L(m)
m
m

, (A8)

〈S · ST 〉/s2 = G(m)m · mT + L(m)

m
1, (A9)

where

L(x) = coth (x) − 1

x
, (A10)

G(x) = x2 − 3x coth(x) + 3

x4
. (A11)

Replacing this expressions in the equations of motion one
obtains

∂t

[
mβ

L(m)

m

]
= Yβ (A12)

with

Yβ =
∑
αγ

εαβα′hα

L(m)

m
mα′ +

∑
αα′γ

[
1

2
εαβα′ (γα − γα′ )

+ i

4

∑
i

(
η̄α′

i η
γ

i εαβγ − η̄
γ

i ηα
i εα′βγ

)]

×
[

G(m)mαmα′ + L(m)

m
δαα′

]
(A13)

Steady states must satisfy the condition
∑

β Yβmβ = 0.For
Yβ �= 0 this implies: |m| → ∞ (fully polarized state) or∑

i,αγ εαβγ (η̄α
i η

γ

i − η̄
γ

i ηα
i ) = 0 for all β. Since the second

condition is not verified in either models, steady states must
be fully polarized and the equations for steady states for
m̂ = m/|m| reduce to those of n in the last section, for |n| = 1.
Therefore, for fully polarized steady states, both approaches
coincide. We may also have solutions satisfying Yβ = 0. Al-
though a general analytical treatment of the phase diagram
of these solutions is beyond this paper’s scope, we propose
that the existence of these solutions lead to the recurrent
regions observed. In general, a solutions of Yβ = 0 will be a
continuous line of marginal points connecting the marginal (or
saddle) steady states obtained semiclassically. In this paper,
such marginal line only occurs for p ⊥ h and in the plane
z = 0.

APPENDIX B: DYNAMICS FOR FINITE-S

In this section, we present some helpful simulations of
the magnetization dynamics for finite-s and all regions of
the phase diagram. Figures 11 and 12 show the long-time
dynamics of a state initially polarized along the y and x
directions, respectively, for different spins (s = 20, 40, 100).
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FIG. 11. Dynamics for p ‖ h: time evolution of 〈Sy〉/s (top) and von Neumann entropy SE (bottom) of an initial state polarized along the y
direction, for different values of s. The parameters are those of Fig. 2.

In parallel case, Fig. 11, we highlight the visible separation
of timescales in region II‖(center panels), first a decay towards
the mixed-symmetric state, followed by an exponential decay
towards the true steady state. Unfortunately, the same separa-
tion between the three timescales of region III‖ is not so clear.
The s scaling convergence towards the infinite-s magnetiza-
tion dynamics (depicted as blue full line) and its entropy (blue
dashed lines) shows that the variational approach correctly
captures the dynamics in the large s limit.

Similarly to the parallel case, the variational approach
also captures the dynamics in the large s limit perpendicular
case Fig. 12, even when no stable steady state exists. As
discussed in Sec. IV C the finite-s steady state in phase I′⊥
is well approximated by the unique stable steady state at
infinite-s even though the short-time dynamics suggests a
recurrent regime. In Fig. 12 (center), we plot the recurrent
magnetization dynamics (upper plot) as blue full line and the
entropy of the stable steady state as dashed blue line (lower
plot).

A similar situation occurs in region 0⊥ [Fig. 12 (left)]
with the finite-s steady state being in the variational line with
〈Sx〉 = 0.

APPENDIX C: THE LINEARIZED LINDBLAD OPERATOR

1. Steady state

In this section, we derive explicit expressions for the steady
state of a linearized Lindblad operator. The presentation is
done in a generic way such that the approach can be used
for more than one species of bosons, in which case A =
{a1, a2, . . . , an, a†

1, a†
2, . . . , a†

n}
T

.
As for the case of fermions [21,72], it is useful to consider

the single-body density matrix χ = 〈A.A†〉. The particular
choice of the value of ζ and w̄0 in the Sec. IV leads to
the the vanish of the linear terms in a and a†, therefore we
consider that H = A†.H.A, where single-particle Hamiltonian
is a 2n × 2n matrix respecting: H† = H and Ĥ = SHT S, with

S = ( 1
1 ), and Wi = w†.A, where w is a C-valued vector

with 2n components.
Under these assumptions the steady state is Gaussian with

a vanishing first moment 〈A〉 = 0. Thus the second moment
matrix χ completely characterizes the steady state density
matrix. This can be seen explicitly for a density matrix of the
form ρ0 = e−�0/Z0, with Z0 = tr(e−�0 ) and �0 = 1

2 A† · �0 ·
A where �0 is Hermitian, �†

0 = �0, and particle-hole sym-
metric, �̂0 = S�T

0 S. In which case, the single-body density
matrix is explicitly given by

χ0 = −nb(−J · �0)J (C1)

with nb(z) = 1
ez−1 the Bose function and J = (1

−1).

Considering the adjoint of L, Lad = L†, defined as
tr[OL(ρ)] = tr[Lad(O)ρ], for the linearized Lindblad oper-
ator the equation of motion ∂t A · A† = Lad

lin(A · A†) can be
written as

∂t A · A† = − i[K · A · A† − A · A† · K†] + J · N · J, (C2)

where we defined

K = J · (H − i�), (C3)

N =
∑

μ

wμ · w†
μ, (C4)

and

� = 1
2 (N − N̂), (C5)

M = 1
2 (N + N̂). (C6)

Taking the mean value with respect to some density matrix
〈. . . 〉 = tr[. . . ρ], we obtain the equation of motion for the
single-body density matrix given by

∂tχ = − i[K · χ − χ · K†] + J · N · J (C7)

184422-11



JOÃO S. FERREIRA AND PEDRO RIBEIRO PHYSICAL REVIEW B 100, 184422 (2019)

FIG. 12. Dynamics for p ⊥ h : time evolution of 〈Sx〉/s (top) and von Neumann entropy SE (bottom) of an initial state fully polarized along
the x direction for different values of s. Parameters of Fig. 2.

A solution for the steady state ∂tχ = 0 can be given explicitly
as

χ∞ = − i
∑
αβ

|α〉 〈α̃|J · N · J|β̃〉
λα − λ̄β

〈β|, (C8)

where |α〉 and 〈α̃|, with 〈α̃|β〉 = δαβ , are right and left
eigenvectors of the operator K which can be decomposed as
K = ∑

α |α〉λα〈α̃|. It is worth noting that the particle-hole
antisymmetry K, i.e., K̂ ≡ SKT S = −K†, implies that the
eigenvectors of K appear in pairs: |α〉 with eigenvalue λα and
S|ᾱ〉 with eigenvalue −λ̄α .

Higher moments of ρ0 can be completely determined by
χ0. For example, the entanglement entropy is given by

S = tr[χ∞J ln(χ∞)]

for such quadratic bosonic model. This expression can
be computed from the eigenvalues of χ0J (or of J�0)
that can be diagonalized by a symplectic transformation
(JU )χ0J(JU†) = DJ, where D = SDS is a diagonal matrix
and U†JU = J.

2. Spectrum and eigenstates of the linearized Lindblad operator

In this section, we obtain the spectrum and eigenstates of
the linearized Lindblad operator by acting on the steady state
with a set of eigenoperators of [Llin, . . . ]. We assume at first
that ζ and w̄0 are nonzero to see what are the implications and
set them to zero later. As for the last section, the formalism is
generic and can be used in the case there are several species
of bosons.

For the following treatment, it is helpful to write the
Lindblad operator in the form

Llin = − i

2
a†

[
H − iM iN̂

iN −H − iM

]
a + i

1

2
tr(K ) (C9)

with

a = {
a1 ⊗ 1, a2 ⊗ 1, . . . , a†

1 ⊗ 1, . . . ,

1 ⊗ aT
1 , . . . , 1 ⊗ a†T

1 , . . .
}T

. (C10)

Since a · a† − (a†T · aT )T = J, with J = diag(J,−J), a
transformation a → Ra that leaved the matrix J invari-
ant, i.e., R† · J · R = J, respects the bosonic commutation
relations.

In order to reveal the upper tridiagonal structure of Llin, we
perform the transformation ã = Ua with U = 1√

2
(1 1
1 −1),

yielding

Llin = − i

2
ã†J̃

[
K −2iJM
0 JK†J

]
ã + i

1

2
tr(K ), (C11)

where J̃ = U−1†JU−1 = [0 J
J 0]. Note that, in this basis, to

preserve the bosonic commutation relations, canonical trans-
formations, ã → R̃ã, have to leave the form J̃ invariant, i.e.,
R̃

† · J̃ · R̃ = J̃. We can now use the upper tridiagonal from
of Eq. (C11) find the transformation ã = R̃b̃ with

R̃ =
[

R XR−1†J
0 JR−1†J

]

that diagonalizes Llin. Here, the matrix R is taken
to diagonalize K, i.e., R−1KR = D, with D =
diag(λ1, λ2, . . . ,−λ̄1,−λ̄2, . . . ) and X , is defined by
KX − XK† = 2iJMJ, and can be given explicitly as

X =
∑
αα′

2i|α〉 〈α̃|JMJ|α̃′〉
(λα − λ̄α′ )

〈α′|.

In this basis, we thus have

Llin = − i

2
b̃

†
J̃

[
D 0
0 JD†J

]
b̃ + i

1

2
tr(D).

Finally transforming back b = U−1b̃, defining the single
mode variables bα = (U−1

R̃
−1
Ua)α and the real and imag-

inary parts of the eigenvalues of K, λα = εα − iγα , we can
write

Llin =
∑

α

(
− i

2
b†

α

[
εα1 −iγαJ
iγαJ −εα1

]
bα + γα

)
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with bα = {bα ⊗ 1, b†
α ⊗ 1, 1 ⊗ bT

α , 1 ⊗ b†T
α }, where bα are

bosonic operators. In this form, it is easy to see that the
eigenoperators of Llin respecting the property

[Llin, ξ ] = μξ

with μ the respective eigenvector, are given by

ξα± = 1√
2

(
bα ⊗ 1 ∓ 1 ⊗ bT

α

)
,

ξ
†
α± = 1√

2

(
b†

α ⊗ 1 ∓ 1 ⊗ b†T
α

)
,

with eigenvalues given respectively by

μα± = ∓γα + iεα,

μ̄α± = ∓γα − iεα.

There have the property [ξα′σ , ξ
†
ασ ′] = δαα′δσ,−σ ′ and

[ξα′σ , ξασ ′−] = 0.
The eigenoperators, ξ , are useful because they allow to

explicitly construct the eigenstates of Llin starting from a
reference state ρ0, for which Llin(ρ0) = �0ρ0, for example,

Llin.ξα+(ρ0) = (μα+ + �0)ξα+(ρ0),

i.e., ξα+(ρ0) is an eigenstate of Llin with eigenvalue � =
(μα+ + �0). In general, we have

Llin

∏
i

ξαi,σi

∏
j

ξ
†
α′

i ,σ
′
i
(ρ0)

=
⎛
⎝∑

i

μαi,σi +
∑

j

μ̄α′
i ,σ

′
i
+ �0

⎞
⎠ ∏

i

ξαi,σi

∏
j

ξα′
i ,σ

′
i
(ρ0).

In the case where ρ0 is the steady state, i.e., �0 = 0, we have
that, for a single mode α, all the eigenstates of Llin can be
written as ρn,m = (ξ †

α+)
n
(ξα+)m(ρ0) with eigenvalues �n,m =

−(n + m)γα − i(n − m)εα . Moreover one can show that for
the steady state

ξ
†
α−(ρ0) = ξα−(ρ0) = 0.

3. Explicit example: region I‖

In most of the examples given in the main text, although
linearization can be simply performed, explicit expressions
of physical quantities are too cumbersome and bring no
further significant understanding. However, it is instructive to
present explicit results for a particular case. In this section,
we illustrate the treatment of the preceding sections for the
particularly simple case of region I‖ characterized by a stable
and an unstable fixed points.

a. Stable fixed point

Assuming p > 0, region I‖ is characterized by a stable
fixed point at α = 0, the linearized Lindblad operators around
this point is defined by the matrices

Hs =
(−h − 1

2 (γx + γy) 1
2 (γy − γx )

1
2 (γy − γx ) −h − 1

2 (γx + γy)

)

and

Ns =
(

1
2 (p + 1)� 0

0 1
2 (1 − p)�

)

which yield eigenvalues of Ks given by λs,± =
±√

(h + γx )(h + γy) − 1
2 i�p and to a single-particle density

matrix given by

χ0 =
(

κ + 1 δ̄

δ κ

)

with

κ = η[(2h+γx + γy)2 − 4p(h+γx )(h+γy)+(1 − p)p2�2],

δ = η(γy − γx )(2h + γx + γy + ip�),

η−1 = 2p[4(h + γx )(h + γy) + �2 p2].

This expression yields a steady-state expectation value for the
magnetization that is given by

〈S〉 = (−s + κ )ez

and to the steady-state entanglement entropy

SE =p+ ln (p+) + p− ln (−p−),

where p± = 1
2 (1 ±

√
(1 + 2κ )2 − 4δδ̄) are the eigenvalues of

χ0J. In the main text, the expressions λs,±, 〈S〉 and SE are
compared to the numerical results.

b. Unstable fixed point

Although the unstable fixed point does not contribute to
the steady-state properties, its signatures can be traced in the
spectrum. The linearized Lindblad operator for α = ∞, can
most easily be obtained considering the alternative Holstein-
Primakoff (H-P) transformation

Sz = s − a†a, (C12)

S− = a†
√

2s − a†a, (C13)

S+ =
√

2s − a†a a. (C14)

After linearization, we obtain

Huns =
(

h − 1
2 (γx + γy) 1

2 (γy − γx )
1
2 (γy − γx ) h − 1

2 (γx + γy)

)

and

Nuns =
(

1
2 (1 − p)� 0

0 1
2 (1 + p)�

)

which gives λuns,± = ±√
(h − γx )(h − γy) + i�p

2 , confirming
that the point is indeed unstable for p > 0. This fixed point
is responsible for a second “cone” of eigenvalues of L,
determined by � = in+λuns,+ + in−λuns,− with n± = N+and
shifted by −p�.
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