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Magnetic states of iron-based two-leg ladder tellurides
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The recent discovery of superconductivity at high pressure in the two-leg ladder compounds BaFe2X3 (X= S,
Se) started the novel field of quasi-one-dimensional iron-based superconductors. In this paper, we use density
functional theory (DFT) to predict that the previously barely explored ladder compound RbFe2Te3 should be
magnetic with a CX-type arrangement involving ferromagnetic rungs and antiferromagnetic legs, at the realistic
density of n = 5.5 electrons per iron. The magnetic state similarity with BaFe2S3 suggests that RbFe2Te3 could
also become superconducting under pressure. Moreover, at n = 6.0 our DFT phase diagrams (with and without
lattice tetramerization) reveal that the stable magnetic states could be either a 2 × 2 magnetic block-type, as
for X= Se, or a previously never observed before CY-type state, with ferromagnetic legs and antiferromagnetic
rungs. In the Te-based studies, electrons are more localized than in S, implying that the degree of electronic
correlation is enhanced for the Te case.
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I. INTRODUCTION

Although the first high critical temperature iron-based su-
perconductors were discovered more than a decade ago, the
origin of their pairing mechanism is still highly debated and
the topic remains one of the most important open problems
in condensed matter physics [1–4]. It is widely believed that
the crystal structure, magnetic properties, and the degree of
electronic correlation are all fundamental aspects to clarify the
physics of these materials [2,5–7]. For the vast majority of ini-
tially reported iron-based superconductors, the crystal struc-
tures consisted of slightly distorted two-dimensional (2D) iron
square lattices made of FeX4 tetrahedra (X = pnictides or
chalcogens) [6,8,9]. The electronic correlation effects can not
be neglected [4], causing many novel physical features, such
as Fermi surfaces without hole pockets, complex magnetic
spin orders, as well as orbital selective Mott states [2,4].

Recently, the discovery of superconductivity in the so-
called 123-type compounds BaFe2X3 (X= S/Se) opened a
new branch of research in iron-based superconductors [10,11].
Different from the 2D iron square lattice arrangement, the
123-type iron chalcogenides display a dominant quasi-one-
dimensional two-leg ladder crystal structure that has been
much analyzed [12–17]. These recent developments resemble
the discovery in the 1990’s of superconductivity in Cu-oxide
ladders [18–20] that also opened a fertile area of research.

At the equilibrium structure without external pressure,
BaFe2S3 displays CX stripe antiferromagnetic (AFM) order,
AFM along the legs and ferromagnetic (FM) along the rungs,
below 120 K with a magnetic moment ∼1.2 μB/Fe [10,21].
This magnetic moment is smaller than the theoretical
maximum value of 4 μB/Fe, obtained by considering the
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high-spin S = 2 configuration and the electronic density
n = 6.0 for BaFe2S3. Superconductivity was observed at
P ∼ 11 GPa with the highest critical temperature Tc being
24 K [10,22]. Since then, several experimental and theoreti-
cal studies have followed [23–27]. Above 10 GPa, a metal-
insulator transition (MIT) and associated first-order magnetic
phase transition were recently observed for BaFe2S3 [28,29].
One possible explanation is that pressure changes the band-
width of these materials, thus altering the degree of corre-
lation [10,11]. An alternative, based on model calculations,
is that high pressure could change the Fe electronic density,
effectively doping the two-leg ladders. In fact, calculations
based on the density matrix renormalization group [30] ob-
served clear tendencies to form Cooper pairs at intermediate
Hubbard coupling strengths upon light doping. Similar self-
doping effects under pressure were also obtained using DFT
calculations [28].

BaFe2Se3 is another recently discovered superconducting
ladder under high pressure [11]. Without external pressure,
BaFe2Se3 is an AFM Mott insulator and displays an exotic
block-type magnetic order below ∼256 K, with a robust local
magnetic moment ∼2.8 μB/Fe [12,13,31,32]. This material
is theoretically predicted to be multiferroic [16] and recently
confirmed to be polar at high temperature [33]. In particu-
lar, BaFe2Se3 is in an orbital-selective Mott phase (OSMP)
according to neutron experiments at ambient pressure [17].
Moreover, there are several other two-leg ladder iron chalco-
genides, with almost all the studies focusing on iron sulfides
and selenides. For example, KFe2Se3 was observed to have a
CX-type stripe AFM order [31], similarly as CsFe2Se3 [21]
and RbFe2Se3 [23]. In particular, the KFe2S3 compound was
predicted to display a first-order transition under high pressure
in our recent work [28].

Considering the columns of pnictogens and chalcogens in
the periodic table, the next natural step in iron ladders is to
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FIG. 1. (a) Schematic crystal structure of RbFe2Te3 (electronic
density n = 5.5) with the following convention: pink = Rb; brown
= Fe; dark yellow = Te. (b) Sketch of one Cmcm ladder. The
iron-iron distance is uniform along the legs. (c) Sketch of possible
antiferromagnetic magnetic orders in each individual ladder studied
here. Spin up and spin down are distinguished by different colored
balls.

move one row down and use Sb or Te. However, surprisingly
there is virtually no experimental literature available using
these elements. For Te, we are only aware of one publication
many years ago where it was reported that RbFe2Te3 also
favors the Cmcm crystal structure [34], similar to BaFe2S3,
where the iron-iron distances are uniform in the nontilting
ladder, as shown in Fig. 1. In RbFe2Te3, the valence of Fe is
+2.5 indicating that the realistic density is n = 5.5 electrons
per iron considering the 4s23d6 configuration in the Fe atoms.
It is important to remark that there are still no n = 5.5 ladders
being reported to be superconducting under high pressure.

In this paper, the magnetic properties and electronic
structure corresponding to RbFe2Te3 are studied based on
first-principles DFT calculations. The CX-type spin order is
predicted to be the most likely magnetic ground state in
our n = 5.5 DFT phase diagrams. For comparison, for the
n = 6.0 BaFe2Se3 compound the 2 × 2 magnetic block-type
state was found to be stable after including lattice tetramer-
ization. In the Te-based compound, we found that electrons
are more localized than in S, implying that the degree of elec-
tronic correlation is enhanced for the Te case. Future experi-
mental efforts should be devoted to this interesting Te-ladder
compound.

II. METHOD

The first-principles DFT calculations used here were per-
formed with the projector augmented-wave (PAW) potentials
as implemented in the Vienna ab initio simulation package
(VASP) code [35,36]. The Perdew-Burke-Ernzerhof (PBE) ex-
change function was employed [37] and the plane-wave cutoff
energy was 500 eV. Since different magnetic configurations

have different minimal unit cells, the mesh was appropriately
modified for all the candidates to render the k-point densities
approximately the same in reciprocal space, i.e., 6 × 6 × 8 for
block type and 6 × 5 × 10 for FM type. In addition, we have
tested that these k-point meshes already lead to converged
energies when compared with denser meshes.

As a first step, we considered the spin-polarized version of
the generalized gradient approximation (GGA) potential [37]
to study the lattice ground-state properties of bulk RbFe2Te3.
Since the PBE-GGA function is known to give an accurate
description of the two-leg ladder systems [28,38,39], we do
not consider the effective Hubbard Ueff . Both the lattice con-
stants and atomic positions were fully relaxed with different
spin configurations until the force on each atom was below
0.005 eV/Å.

To understand magnetism, we adopted the local density
approximation (LDA)+U method [40], where the onsite
Coulomb interaction U and onsite exchange interaction J
were considered. To reduce the computing time required, we
just considered the (0, 0, 0) order between ladders with a
minimum unit cell to obtain the phase diagram of the n = 5.5
and 6.0 ladders. Due to the dominance of the in-ladder mag-
netic order, the magnetic correlations between ladders can
only slightly affect the energies and physical properties.

The generalized LDA + U functional is the follow-
ing [40,41]:

ELDA+U [ρσ (r), [{nσ }] = ELSDA[ρσ (r)] + EU [{nσ }]
− Edc[{nσ }], (1)

where ρσ (r) is the charge density for electrons with spin
projection σ , while {nσ } are the elements of the density
matrix. Here, the density matrix is defined as

nσ
mm′ = −1/π

∫ EF

ImGσ
ilm,ilm′ (E )dE , (2)

where i denotes site, l indicates the orbital quantum number,
and m the spin number. Note that there is summation for
i and l implicit, Gσ

ilm,ilm′ (E ) = 〈ilmσ |(E − H )−1|ilm′σ 〉 are
the matrix elements of the Green function matrix in the
localized representation, and H is the effective single-electron
Hamiltonian. The orbital polarizations are absent in the LSDA
first term, and the second term in Eq. (1) can be described by
the Hartree-Fock (HF) mean-field theory [40,41]:

EU [{n}] = 1/2
∑
{m},σ

{〈m, m′′|Vee|m′, m′′′〉nσ
mm′n−σ

m′′m′′′

+ (〈m, m′′|Vee|m′, m′′′〉
−〈m, m′′|Vee|m′′′, m′〉)nσ

mm′nσ
m′′m′′′

}
, (3)

where Vee are the screened Coulomb interactions among nl
electrons. The double-counting term (Edc) is described by

Edc[{nσ }] = 1/2Un(n − 1) − 1/2J[n↑(n↑ − 1)

+ n↓(n↓ − 1)], (4)

where nσ = Tr(nσ
mm′ ) and n = n↑ + n↓. U and J are the

Coulomb interaction and exchange interaction, respectively.
If the density matrix becomes diagonal, the present rotation-
ally invariant method is equivalent to the ordinary LDA + U
approach [42].
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TABLE I. The optimized lattice constants (Å), local magnetic
moments (in μB/Fe units) within the default PAW sphere, and band
gaps (eV) for the various magnetic configurations, as well as the
energy differences (meV/Fe) with respect to the CX configuration
taken as the reference of energy. The experimental values (Expt. for
short) are also listed for comparison.

a/b/c M Gap Energy

NM 12.665/9.953/5.683 0 0 396
FM 13.164/10.625/5.629 2.64 0 238
CX 12.803/10.233/5.868 2.71 0.39 0
CY 12.622/10.522/5.653 2.43 0 236
G 12.771/10.326/5.795 2.54 0 90
Block 13.008/10.454/5.570 2.45 0 158
Expt. 12.486/10.126/5.921

III. RESULTS

A. Physical properties of RbFe2Te3

To find out what magnetic configuration becomes the
ground state of RbFe2Te3, we adopted the spin-polarized
method within the GGA potential to fully relax the crystal
lattices and atomic position since the PBE-GGA function was
widely used in previous DFT calculations of two-leg iron
ladder systems [26,28,38,39]. Various possible (in-ladder)
magnetic arrangements were imposed on the iron ladders [see
Fig. 1(c)], such as nonmagnetic (NM), FM, AFM with FM
rungs and AFM legs (CX), AFM with AFM rungs and FM
legs (CY), AFM in both rung and leg directions (G), and
2 × 2 block-AFM (block) [28]. Furthermore, the (π , π , 0)
order between ladders was adopted, as suggested by neutron
scattering results [31] for KxBa1−xFe2Se3. Our main results
for RbFe2Te3 are summarized in Table I.

Under ambient conditions, our DFT calculations per-
formed for several magnetic candidates [the tested spin con-
figurations are shown in Fig. 1(c)] indicate that the CX-type
magnetic order is the most stable ground state of the ensemble
used. For this CX-type state, the calculated local magnetic
moment of Fe is about 2.71 μB/Fe. It should be noted that it
is quite common to overestimate the local magnetic moment
when using the spin-polarized method within the GGA poten-
tial in calculations of iron-based superconductors [5,28,39],
which could be caused by the coexistence of localized Fe
spins and itinerant electrons [43]. Another possibility is the
existence of strong quantum zero-point fluctuations in this
quasi-one-dimensional two-leg ladder system. For compar-
ison, the calculated local magnetic moment for BaFe2S3

and KFe2Se3 are 2.08 μB/Fe [28,39] and 2.65 μB/Fe [28],
respectively, which are larger than the experimental values
1.2 μB/Fe and 2.1 μB/Fe [10,44]. Hence, it is reasonable to
assume that the experimental magnetic moment would be
smaller than our calculated value for RbFe2Te3.

The DFT calculated energy gap corresponding to the CX-
type AFM order is about 0.39 eV, which is close to the activa-
tion gap reported for CsFe2Se3 [14]. This calculated gap for
RbFe2Te3 is larger than the experimental value of BaFe2S3 ∼
0.06–0.07 eV [45]. According to the empirical knowledge
gathered on iron ladders, the larger gap indicates that a much
higher pressure will be needed in the Te case to achieve an

FIG. 2. DOS near the Fermi level using the CX-AFM states
(π , π , 0) for (a) RbFe2Te3 (at electronic density n = 5.5) and
BaFe2S3 (at electronic density n = 6.0), respectively. Blue = Rb;
black = Ba; red = Fe; green = Te; cyan = S.

insulator-metal transition, or to suppress magnetism, than in
the S or Se cases.

Considering the intraladder magnetic order, the magnetism
of RbFe2Te3 could be described by a simple Heisenberg
model:

Hspin = −J1

∑
〈i, j〉

Si · S j − J2

∑
[k,l]

Sk · Sl − J3

∑
{m,n}

Sm · Sn,

(5)

where J1 and J2 are the exchange interactions in the rung and
leg directions, respectively, while J3 is the exchange coupling
along the plaquette diagonal of iron atoms [Fig. 1(b)]. By
fitting the DFT energies of various magnetic states, all the
coefficients of this Heisenberg model can be obtained: S2J1 =
44.2 meV, S2J2 = −96.1 meV, and S2J3 = −23.1 meV, re-
spectively [46]. Similar to two-dimensional magnetic stripe
iron superconductors and other two-leg iron ladders [3,23,47],
they all display that the magnitude of the FM rung exchange
coupling is smaller than the magnitude of the AFM leg
coupling.

According to the calculated density of states (DOS) of the
CX-type AFM order of RbFe2Te3 [see Fig. 2(a)], the bands
near the Fermi level are mainly contributed by Fe-3d orbitals
which are hybridized with Te-5p orbitals. For comparison, we
displayed the DOS of the CX-type AFM state of BaFe2S3 in
Fig. 2(b). The bandwidth of the five iron bands of RbFe2Te3

(∼6.8 eV) is smaller than BaFe2S3 (∼8 eV), which indi-
cates that effectively the iron orbitals in RbFe2Te3 are more

184419-3



ZHANG, LIN, MOREO, DONG, AND DAGOTTO PHYSICAL REVIEW B 100, 184419 (2019)

localized than in BaFe2S3. As remarked below, remember that
the Fe-Fe effective hopping is mediated by Te as a bridge, thus
iron bandwidths are a consequence of Fe-Te-Fe hoppings. It
is interesting that the weight of Fe and Te near the Fermi level
are smaller than in the case Fe and S. One possible reason is
that RbFe2Te3 has 0.5 electrons less than BaFe2S3 per iron
ion, resulting in fewer iron states in RbFe2Te3.

B. Magnetic phase diagrams for two-leg ladders
at electronic densities n = 5.5 and 6.0

To understand better the magnetic properties of two-leg
iron ladders, we used the LDA + U method with the equi-
librium structural parameters to compare different spin con-
figurations by changing the onsite Coulomb interaction U
and onsite exchange interaction J . Here, to save computing
resources, the (0, 0, 0) order between ladders was considered
because the in-ladder magnetic coupling is dominant in two-
leg iron systems.

Let us start our description of the main results consider-
ing the ladder electronic density n = 5.5, corresponding to
RbFe2Te3, using periodic boundary conditions, based on the
experimental crystal structure [34]. As shown in Fig. 3(a),
there is only one magnetic state (CX-type) stable in our
phase diagram [except for one anomalous point (U = 1.5 eV
and J/U = 0.15)] even when the Hubbard coupling U and
exchange interaction J are varied in a wide range. This clearly
indicates that the CX-type order is quite stable in our n = 5.5
phase diagram, which is consistent with existing studies of
magnetism in n = 5.5 iron ladders [10,23,31]. Hence, we
arrive to the reasonable conclusion that CX-type AFM is the
most likely magnetic ground state of Te-based ladders, and
likely other iron ladders with electronic density n = 5.5. This
CX state of iron ladders can be considered quite similar to
the prevalent stripe C-AFM order of iron 2D-layered sys-
tems [4,48,49].

To qualitatively describe the Mott insulator of RbFe2Te3,
we calculated the magnetic moment and energy gap by in-
creasing U at the realistic J/U = 0.25 [4], as displayed in
Fig. 3(b). When U is small, the magnetic moment of iron
is zero, all the iron bands overlap, and the system is in a
metallic state. By increasing U to a critical value, the spin-up
and -down bands split, resulting in the CX-type AFM order
while the system is still metallic in a very narrow U range
near 1.25 eV. Continuing to increase U , the valence band and
the conduction band separate from each other, opening a gap
and producing an insulating phase. Our results for J/U =
0.25 qualitatively describe the Mott metal-insulator phase
transition. In our LDA + U approximation, the Hubbard U
splits the the spin up/down near U = 1.2 eV, and opens the
gap at U = 1.4 eV.

Let us consider now the results for ladders with electronic
density n = 6.0, corresponding to BaFe2Se3, which exper-
imentally is known to display the exotic 2 × 2 block-type
AFM order [31]. As a first step, we use the crystal structure
without lattice tetramerization. Here, we adopted the crystal
structure based on the Pnma phase obtained from neutron
experiments [44] which does not consider the magnetic ex-
change striction effect. The phase diagram that we obtained
for n = 6.0 iron ladders becomes far richer than at n = 5.5,

FIG. 3. (a) Phase diagram based on the experimental lattice
constants of RbFe2Te3, employing the LDA + U technique at the
electronic density n = 5.5. (b) Evolution of local magnetic moments
and band gaps of RbFe2Te3 for the CX-type AFM magnetic state, as
a function of U , at J/U = 0.25.

as displayed in Fig. 4(a), including five different magnetic
states, with a surprising dominance of the CY state, followed
by CX with regard to area covered in the phase diagram [50].
Note that here there is only a small region of the block-type
order in our DFT phase diagram, although this state is the one
found experimentally in Se-based ladders. However, it should
be remarked that the energy between block-type and CY-type
is less than 10 meV/Fe at U = 3 and 3.5 eV. In other regions
of our phase diagram, the energy of the block-type remains
only slightly higher than the energy of the CY-type. To address
better this issue, note that the block-type AFM order naturally
brings up the issue of exchange magnetostriction related to a
possible lattice tetramerization induced by this block order,
which would reduce the overall energy. Hence, the block-
type order will likely become more stable than the CY-type
in some region by considering the lattice tetramerization.
Moreover, according to related DFT calculations and actual
experiments [16,33,38], the symmetry of the crystal structure
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FIG. 4. (a)–(c) Phase diagrams of BaFe2Se3, employing the
LDA + U technique with electronic density n = 6.0. (a) Without
tetramerization. (b) With tetramerization. (c) Combination, which is
the most reliable prediction, obtained by comparing energies with
and without tetramerization.

of BaFe2Se3 is reduced due to intraladder and interladder
lattice distortions.

Thus, next we include the lattice tetramerization in our
calculations [51], where the intraladder Fe-Fe two lattice
distances involved are 2.58 and 2.82 Å (for the Pnma phase
these numbers are much closer, 2.69 and 2.72 Å). In the lattice

tetramerization we include the displacements of Se as well,
due to the exchange striction magnetostriction of iron. All
these distortions are confirmed by both theory and experi-
ment [16,33,38]. By comparing the energies with different
magnetic orders, we obtain the new phase diagram shown now
in Fig. 4(b). The previously remarked small energy difference
favoring CY over block states is now reversed in order, and
in the new phase diagram with tetramerization, the CY-type
AFM state does not appear in the whole U -J plane. Instead,
the block-type state becomes more stable because its energy
naturally decreases due to the tetramerization. However, it
should be noted that the energies of other magnetic orders
increase due to the reduced symmetry. In fact, different mag-
netic orders have different favorable symmetries. Therefore, it
is natural that the phase diagram has changed fairly dramati-
cally by considering the lattice tetramerization.

Comparing the different magnetic states using the same
lattice arrangement is incomplete because each particular
magnetic order increases its stability, lowers its energy, only
with the help of a particular lattice distortion. Thus, the best
methodology for further progress would be to fully optimize
the crystal for each different magnetic order at various values
of J and U . However, this is a formidable task. Given the
information we have collected thus far, our best path to arrive
to our final conclusion is to compare the data of the different
magnetic states with and without the lattice tetramerization.

The resulting “combined” phase diagram is presented in
Fig. 4(c). The CY-type state with no lattice distortion remains
stable in some portions of the phase diagram, while the
block state with lattice tetramerization distortion is stable in
other regions. The G, CX, and FM states complete the phase
diagram. For the widely used ratio J/U = 0.25, the qualitative
tendency with increasing U is first to form a CX-type AFM in
a narrow region, followed by a robust block-type AFM area,
and then another robust CY-type AFM region, finally arriving
to FM order with further increasing U [52].

The proliferation of many competing states at n = 6.0 as
compared with n = 5.5 probably arises from a combination
of correlation effects, increasing Hubbard U and decreasing
bandwidth, as well as spin frustrating tendencies between
the fully FM state in one extreme and the purely AFM G
state (in small regions) in the other, as discussed in previous
Hartree-Fock calculations [15]. However, given the informa-
tion at hand, it can be reasonably assumed that the magnetic
state of the n = 6.0 Te-based iron ladders, if ever prepared
experimentally, will not be the CX-type AFM but more likely
either the block- or CY-type arrangements.

C. Projected band structure and density of states

In Fig. 5, we present the “projected” band structure of the
nonmagnetic states restricted only to the five iron 3d orbitals
corresponding to both RbFe2Te3 and BaFe2S3. It is shown
that, in general, the band structure is more dispersive from �

to Z than along other directions, which is compatible with the
presence of quasi-one-dimensional ladders along the kz axis.
We also observed that the full bandwidth of the five iron 3d
orbitals of RbFe2Te3 is smaller than for the case of BaFe2S3,
which suggests that the electrons of RbFe2Te3 are more
localized than in BaFe2S3. More specifically, the maximally
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FIG. 5. (a), (b) Projected band structures of RbFe2Te3 (electronic
density n = 5.5) and BaFe2S3 (electronic density n = 6.0) for the
nonmagnetic (NM) state, respectively. The Fermi level is shown with
dashed lines. The weight of each iron orbital is represented by the
size of the circle. (c) The original band dispersion is shown by red
solid, while the Wannier interpolated band dispersion is shown using
green dashed curves for RbFe2Te3.

localized Wannier functions (MLWFs) were employed to fit
the five Fe’s 3d bands by using the WANNIER90 packages [53].
In these Wannier calculations, the bandwidth of the 3d orbitals
for RbFe2Te3 and BaFe2S3 become approximately 3.56 and
4.06 eV [54], respectively.

In addition, there are 0.5 electrons per Fe less in RbFe2Te3

than in BaFe2S3. In RbFe2Te3, the Fermi surface is mainly
contributed by the dx2−y2 orbital while the contribution of

FIG. 6. The projected density of states of the Fe-d orbitals for
the nonmagnetic state of RbFe2Te3 (electronic density n = 5.5). The
five iron 3d orbitals are distinguished by different colors.

the dyz is much reduced, as shown in Fig. 5(a) (note that
the apparent green color dominance of the dx2−y2 bands is
misleading: these green bands are actually a mixture of green
and blue, the latter arising from dyz). The band crossings at
the Fermi level along the Y to � and � to Z paths have the
largest dyz orbital contributions but always heavily hybridized
with the dx2−y2 orbital. For comparison, in BaFe2S3, the Fermi
pockets are mainly contributed by the dx2−y2 , dxy, and dxz

orbitals as displayed in Fig. 5(b). This clearly suggests that
the Fermi pockets of RbFe2Te3 are different from BaFe2S3.

Using the DOS for the Te ladder (Fig. 6), we calculated
the relative proportion of the Fermi surface associated with
each of the five iron orbitals: 64% are contributed by dx2−y2

and 26% are from dyz. For this reason, it seems reasonable
to assume that RbFe2Te3 can be described by a two-orbital
model or even just one with a combined orbital description
(dx2−y2 hybridized with dyz).

Because with increasing pressure the superconducting
phase dome of n = 6.0 BaFe2S3 appears in experiments in the
vicinity of the CX-AFM region, the driving force of supercon-
ductivity in real systems seems to be the CX spin fluctuations
in the nonmagnetic state. According to our previous results
for the n = 5.5 pressured iron ladders [28], the NM phase
can indeed be obtained in theoretical calculations at high
pressure. Due to these similarities, it is reasonable to assume
that n = 5.5 RbFe2Te3 could also become superconducting
at high pressure due to the magnetic similarity with Se- and
S-123 ladders, dominated by the CX state, as it was shown in
Fig. 3(a).

IV. DISCUSSION

Both experimental and first-principles theoretical results
revealed a clear tendency for the bandwidths W of the iron 3d
orbitals to be enlarged under pressure in BaFe2X3 [10,38,55],
thus enhancing the itinerant nature of the 3d iron electrons.
Thus, in this respect pressure reduces the electronic correla-
tion strength given by the ratio U/W . To better understand
the electronic correlations of RbFe2Te3, we calculated the
“electron localization function” (ELF) [56], quantity widely
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FIG. 7. The calculated electron localization function (ELF) in the
iron ladder plane for (a) n = 5.5 RbFe2Te3, (b) n = 6.0 BaFe2S3,
and (c) n = 6.0 BaFe2Se3, respectively. To better understand the
localization of iron ladders, we set the range of ELF from 0 to 0.65.
Generally, ELF=0 indicates no electron localization and ELF=1
indicates full electron localization.

used within ab initio methods to characterize the electron
localization. As shown in Figs. 7(a) and 7(b), the electrons
of RbFe2Te3 are more localized than in BaFe2S3, implying
that the electronic correlation of Te-based ladders is stronger.
More specifically, electrons in Te are more localized than in
S, and because Te provides the “bridge” between irons for the
electronic mobility, then the net effect is that the tunneling
amplitude Fe-Te-Fe is reduced as compared with Fe-S-Fe.

Based on the band structure of the NM state, when
compared against BaFe2S3 (∼4.06 eV) the bandwidth of
BaFe2Se3 (∼3.73 eV) [38] has decreased, which also indi-
cates the electronic correlation effectively is enhanced. This
trend was also observed in our previous theoretical study of
the magnetic phase [16,38]. Hence, it is reasonable to assume

the electronic correlation effects for n = 6.0 Te ladders, if they
are ever synthesized, would be stronger than in BaFe2S3 as
well. Considering also the block-type AFM order of BaFe2Se3

that is believed to originate in an orbital-selective Mott state
induced by electronic correlations [57–59], it is reasonable to
conclude that the ground magnetic state of n = 6.0 Te ladders
could display similarly interesting properties.

V. CONCLUSION

In this work, the two-leg iron ladder compound RbFe2Te3,
with the iron density n = 5.5, was systematically studied
using first-principles calculations. The CX-type state was
predicted to be the most likely magnetic ground state. The
bandwidths of the iron 3d bands in the case of RbFe2Te3 are
smaller than in BaFe2S3.

In addition, the phase diagram of ladders at electronic iron
density n = 6.0, corresponding to BaFe2Se3, is found to be
much richer than for n = 5.5. In particular, the 2 × 2 magnetic
block-type state could be stable at n = 6.0 according to DFT
phase diagrams, particularly due to lattice tetramerization.
Also, the exotic CY state, with AFM rungs and FM legs,
which has not been observed before neither in experiments
nor in calculations, has a large area of stability in the DFT
phase diagram at n = 6.0.

Moreover, considering the predicted dominance of the
magnetic CX state and similarity in electronic structure with
other iron ladders, n = 5.5 RbFe2Te3 may become super-
conducting under high pressure. Also, according to our ELF
analysis, the electrons of Te-123 are more localized than in S,
implying that the degree of electronic correlation is effectively
enhanced for the Te case because the Fe-Te-Fe hopping is
reduced. This potential relevance of strong correlation in Te-
123 ladders could also induce exotic phenomena, such as
the “orbital-selective Mott physics” recently discussed using
multiorbital Hubbard models [57–59]. Our overarching con-
clusion is that experimental studies of iron ladder tellurides
are worth pursuing because using Te could lead to interesting
results, such as exotic magnetic states and superconductivity
under high pressure.
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