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Standing spin waves in perpendicularly magnetized triangular dots
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Standing spin waves in triangular dots (truncated pyramids) were investigated both experimentally and
theoretically. Arrays of nickel triangular pyramids with the base side of 270 nm and height of 70 nm were
deposited on Si (111) substrate. The spectra of ferromagnetic resonance were obtained at room temperature with
an external saturating magnetic field directed perpendicular to the array plane. The theoretical approach, which
allows to describe standing spin wave modes both in perpendicular magnetized regular prisms and in close to
prisms truncated pyramids, was developed. Theoretically calculated resonance fields for the observed modes are
in a good correlation with the experiment.
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I. INTRODUCTION

Study of ferromagnetic confined objects (nanoparticles)
and their arrays is of great interest during the last decades due
to the possibility of their applications for magnetic random
access memory (MRAM), biometric probes, magnetic logic
devices, etc. [1–3]. Investigation of magnetic dynamics of
such structures is mainly focused on the study of standing spin
waves (SW) modes in isolated elements or propagating SW
in arrays of interacting nanoparticles, which are actually the
basis of magnonics [4–6]. Spectra of these waves are mainly
determined by nanoparticles shape.

Standing SWs in thin saturated cylindrical dots [7–11],
rectangular dots [12], and microrings [13,14] were studied
both experimentally and theoretically. The investigations of
magnetic properties of triangular elements were mostly fo-
cused on the experimental study and computer simulation of
the vortex magnetic structures. The problems of the formation
and manipulation of magnetic vortices [15,16], their chirality
and polarity [17], vortex dynamics [18,19], and resonant prop-
erties of vortex core [20] were considered. There were several
attempts to simulate magnetic dynamics of triangular dots
in vortex, Y, and buckle states [21–23]. However, at present
moment, there are neither experimental results on magnetic
dynamics of triangular dots in saturated state nor analytical
theory, like that was developed for cylindrical and square dots.
Such investigation is an actual problem because the anisotropy
of magnetic properties of triangular particles results in the
diversity of SW modes and possibility to increase information
recording density.

Here we present the experimental observation of stand-
ing SW modes in triangular dots in the external saturating
magnetic field directed perpendicular to their base plane. An
analytical approach to describe the magnetic dynamics both in
the regular triangular prisms and truncated pyramids has been
developed.

II. EXPERIMENT

The samples for the experiments were made using the
well-developed method of nanosphere lithography [24]. The
process of production was realized in three stages. During
the first stage the Si (111) substrate surface was covered
with a monolayer of PS-latex beads. The size of the sample
was 1 × 1 cm2, the diameter of beads was 570 nm. During
the second stage nickel was deposited on the substrates us-
ing electron beam evaporation technique. Ni atoms penetrate
between the beads and forming islands of about h = 70 nm
height on Si surface (see Fig. 1). Then the monolayer of
PS-latex beads was removed from the surface immersing the
samples in tetra-hydrofurane for 15 minutes. Detailed descrip-
tion of the sample preparation can be found in Refs. [24,25].
Topography of the samples was investigated at room tem-
perature using the atomic force microscopy (AFM) operat-
ing in the contact mode. The size of the mapped area was
3 μm × 3 μm. Atomic force microscopy (AFM) investigation
(Fig. 1) showed that the shape of nickel islands was close
to truncated regular triangular pyramid (frustrum) with the
base side a = 270 nm. The supposition that the islands are of
triangular shape was used in the theoretical model presented
here.

Standard electron spin resonance spectrometer Bruker
ELEXSYS E500 operating at 9.86 GHz was used to record
ferromagnetic resonance spectra at room temperature. The
external magnetic field was applied perpendicularly to the
array plane. Four practically equidistant resonance peaks were
observed in the experiment (Fig. 2). The distance between
them is of about 500 Oe. Such type of spectrum is quite
similar to that was observed in thin disklike ferromagnetic
dots [7], where the dipolar eigenmodes naturally (circular
membrane oscillations) have a shape of a zeroth-order Bessel
function resulting in practically equidistant resonance peaks
position.
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FIG. 1. A schematic presentation of a formation of the triangular dots array using the nanosphere lithography method (left). AFM image
of the periodic array of nickel islands used in the experiments (middle). A schematic presentation of the triangular dots array (right). The
hexagonal array is formed by nested regular triangular lattices with basis vectors ζ1, η1 and ζ2, η2.

III. THEORETICAL MODEL

The theory of SW spectrum has been developed approx-
imating shape of nickel islands by regular triangular prism
and truncated pyramid (with the base side a and height h,
see Fig. 3). Preliminary analysis using standard fiction mag-
netic charge method has shown that magnetostatic interaction
between perpendicularly magnetized dots is quite small: the
mean magnetostatic field produced by other dots is of about
130 Oe for triangular prisms and even less for truncated
pyramids array. This value is much less than the variation
of demagnetizing fields inside dots and will be disregarded
during the following theoretical analysis. Besides, in per-
pendicularly magnetized dot arrays the interdot dipole-dipole
interaction creates an additional effective perpendicular bias
field, which practically does not change the structure of the
spectrum of spin wave modes [7]. It can be introduced into
analysis of the experimental spectra by slight modification of
perpendicular anisotropy value. The resonance magnetic field
value for all observed resonance modes is large enough to

FIG. 2. The magnetic resonance spectrum of the nickel triangular
dots array recorded at room temperature at 9.86 GHz. Magnetic field
is perpendicular to the array plane. Resonance lines positions are
denoted by arrows and the corresponding values of resonance fields
are presented in Table I.

align the mean magnetization in the field direction and the
magnetization value is close to the saturation magnetization.

The magnetization precession in the linear approximation
can be described as following: z component of the magneti-
zation is constant and equal to the saturation magnetization
while the time-dependent small component (m � M0) is in xy
plane, i.e., M = M0ez + meiωt .

The magnetic free energy of the system can be
presented as

F =
∫

Vp

[
1

2
α(∇M)2 − H0 · M − 1

2
Hm · M − 1

2
βM2

z

]
dV,

(1)

where the integration is performed over the pyramid volume
Vp. The first term is the energy of inhomogeneous exchange,
the second one is the Zeeman energy, the third one is energy
of the dipole-dipole interaction, and the last term is the
anisotropy energy. H0 is the external magnetic field, which
is directed perpendicularly to the array plane; Hm is the
demagnetizing the demagnetizing field, α = 2A/M2

0 is the
exchange constant; A is the exchange stiffness constant.

The magnetic dynamics of the system can be described by
Landau-Lifshitz (LL) equation:

dM
dt

= −γ [Heff × M], (2)

where Heff = − δF
δM is the effective magnetic field and γ is the

gyromagnetic ratio.

TABLE I. The comparison of the theoretically calculated reso-
nance field values for SW modes with the experimental data.

Mode H0
j , Oe H 0

j , Oe Main basis
number j (experiment) (theory) function

1 8040 8040 |101〉
2 7500 7508 |201〉
3 6980 7000 |211〉
4 6400 6700 |301〉
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FIG. 3. (a) Coordinate system and its position with respect to
the pyramid. Here, a is the base side of the truncated pyramid, h is
its height, and hpyr is the height of the corresponding nontruncated
pyramid. (b) The sketch of prism and its transformation into the
pyramid.

Taking into account (1) and (2) the following system of
linearized LL equations can be obtained:{

iω mx = γ
[−αM0�my + (

H0 + Hm
z + HA

)
my − M0hy

]
−iω my = γ

[−αM0�mx + (
H0 + Hm

z + HA
)
mx − M0hx

] ,

(3)

where � = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian in a Cartesian co-
ordinate system, the z component of the static demagnetizing
field is

Hz = −M0
∂

∂z

∫
VP

dV ′ ∂

∂z′
1

|r − r′| , (3a)

and the planar components of the dynamic demagnetizing
field are

hη = − d

dη

∫
VP

dV ′(m · ∇′)
1

|r − r′| , η = x, y.

HA = βM0 is the magnetic anisotropy field.
In most cases it is impossible to obtain an exact analyt-

ical solution of LL equation for the SWs in nanostructures
with strongly inhomogeneous demagnetizing fields. Usually
the Ritz method is used to find approximate solutions [26].
These solutions can be chosen based on particle shape and
magnetization boundary conditions.

In the earlier considered cases [7–14], the characteristic
planar sizes of dots were mostly much larger than their
thickness. As a result, the demagnetizing field is practically
homogeneous throughout the volume of a dot. Variation
of demagnetizing fields can be observed only near the dot
borders.

For thin cylindrical dots the zero order Bessel functions of
the first kind are good approximation to describe 2D standing
SW profiles (“drum modes”) [7]. A superposition of the
Bessel functions of the first and the second kind were used
to describe SW profiles in rings [14]. Trigonometric functions
served for the description of SW profiles in rectangular dots
and stripes (planar waves) [12,27]. In the case of triangular
thin prism (a � h) the demagnetizing field is practically
homogeneous throughout the volume and 2D standing wave
profiles of a triangular medium (triangular membrane oscilla-
tions) eigenfunctions (see below) can be chosen as spin wave
profiles.

FIG. 4. The in-plane dependence of prism demagnetization field
on xy plane calculated using (3a) with the following parameters: a =
270 nm, h = 70 nm, and M0 = 484 emu/cm3.

The situation in our truncated pyramids differs from the
mentioned above. These pyramids cannot be considered as
planar particles, because a and h are comparable. As a result,
the distribution of the local demagnetizing fields is inhomo-
geneous throughout the pyramid volume. This inhomogeneity
plays a role of potential well for SWs.

Unfortunately the height of the nontruncated pyramid hpyr

[see Fig. 3(a)] cannot be exactly evaluated from the AFM
measurements. In the first approximation let the dots shape
be prismoidal (h � hpyr, here h is the height of the truncated
pyramid, see Fig. 3). This results in substantial simplifications
of the analytical calculations because of the almost homoge-
neous distribution of the demagnetizing field along the height.
This allows separating spatial variables in the eigenmodes
equation. It is worth to be noted that the analytical approach
developed here for the right triangular prisms can be applied
for arbitrary thick n-gonal right prisms (including cylinder).

A. Model of regular prism

The distribution of local demagnetizing field in regular
triangular prism Hm

z (x, y) was calculated using Eq. (3a) and
presented in Fig. 4 for the nickel prism with the parameters
which are close to that for prisms investigated in the exper-
iment. In thin disks [7–11], rings [13,14], or rectangles [12]
investigated previously, the demagnetizing field was proved
to be homogeneous over dots plane, excluding small regions
near edges. This gives a possibility to choose the Bessel
functions (for round-shaped planar particles) or trigonomet-
rical functions (for rectangular ones) as a good approxima-
tion for eigen-modes shape. However, this assumption about
homogeneous demagnetizing field over the dot plane is not
valid in our case. The calculated in-plane dependence of the
local demagnetizing field (Fig. 4) can be approximated by
symmetrical paraboloid. The calculation also showed that the
local demagnetizing field practically does not change with
height and can be considered as constant in z direction. This
gives the possibility to apply an analytical approach, devel-
oped in [28] for spin waves in parabolic potential. Hm

z was
approximated as

Hm
z = ∣∣Hm(0)

z

∣∣(−1 + C(x2 + y2)), (4)
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where |Hm(0)
z | determines the depth of the well, C is a param-

eter of well curvature. For the considered prism the variation
of a static demagnetization can be fitted using the following
parameters: Hm(0)

z = 4033 Oe and С = 5.3 × 109 cm−2.
Such behavior of the demagnetizing field is similar to the

distribution of magnetic fields inside thin ferromagnetic film
induced by magnetic sphere [28]. It has been shown [28] that
LL equation for SWs in this case can be reduced to the system
of coupled Schrödinger-like equations for quantum harmonic
oscillator. Therefore, the wave function can be presented as a
product of single-coordinate functions, which are proportional
to Hermite polynomials for x and y coordinates and harmonic
function for z. Strong pinning on the boundaries is assumed.


nml (r) = ϕn(Kx)ϕm(Ky)φl (z), (5)

where φl (z) = √
2/h sin(kzlz), kz = π/h, n , m , l are inte-

ger numbers; the value K = ( C|Hm(0)
z |

αM0
)1/4 has a dimension

of a wave vector, ϕi(u) = 1√
2i

√
2π

Hi(u)e− u2

2 ; i = m, n; u =
Kx, Ky, m, n are the indexes of the mode, Hi(u) =
(−1)ie

u2

2
di

dui e− u2

2 are the Hermite polynomials. K in ϕm(Kx)
and ϕn(Ky) has the same value due to the symmetry of
potential well in xy plane.

In such a case, 
nml (r) are the eigenfunctions of the
Hamiltonian-like operator Ĥ(r):

Ĥ(r)
nml (r) ≡ (−� + K4(x2 + y2))
nml (r) = εnml
nml (r)

where εnml = [(2n + 1) + (2m + 1)]K2 + k2
z l2 are its eigen-

values. This is valid only for the low-energy levels with
the corresponding wave functions localized inside the prism
boundaries.

Neglecting hx and hy terms in (3) exact solutions of the LL
equation can be obtained. The corresponding SW modes can
be considered as independent.

A diagonal approximation is used here for the theoretical
explanation of SW resonances in triangle prisms, like it was
done before in Refs. [9,11,28]. Without the integrodifferential
terms hx, hy in (3), the set of orthogonal functions (5) can be
an exact solution of the equations (3) with the demagnetizing
field (4). In this case, modes with different indices are not
coupled. The existence of the dynamic dipolar field hx, hy

leads to the interaction between modes with different indices.
To avoid this problem, the diagonal approximation, developed
in [9,11,28] was used as a first approximation. This approxi-
mation is based on the supposition of small values of nondiag-
onal terms of the dynamic dipolar operator in comparison with
diagonal ones. Our numerical calculations have shown this is
valid for the prismoidal shape dots. According to Eqs. (3)–(5),
the matrix representation of corresponding operator in this
case has a simple diagonal form with corresponding allowed
set of localized standing modes and eigenvalues.

In the diagonal approximation, the dispersion relation takes
the form:

ωnml = γ

√
(H0 + Hnml − 〈hx〉nml )(H0 + Hnml − 〈hy〉nml ),

(6)

where Hnml = αM0εnml + HA − |Hm(0)
z | and resonance field

H0 at fixed frequency is

H0 = −Hnml + 〈hx + hy〉nml

2
+

√
ω2

nml

γ 2
+ 〈hx − hy〉2

nml

4
.

Here, 〈hx〉nml and 〈hy〉nml are

〈hη〉nml = −M0

∫
VP

dV
∫

VP

dV ′
nml (r)
nml (r′)

× d2

drηdr′
η

1

|r − r′| . (7)

The following parameters were used for numerical cal-
culations of SW resonance fields: M0 = 484 Oe, A = 8 ×
10−7 erg/cm, K = 2.6 × 105 cm−1, and f = 9.86 GHz. The
saturation magnetization M0 and the exchange stiffness con-
stant A values are typical for Ni. Resonance frequency value
f is the same as in the experiment. The magnetic anisotropy
constant K was used as a parameter to fit the position of
the most intensive resonance line. In our case this parameter
does not effect on the distances between peaks but shifts the
position of the spectrum.

Profiles of the modes with odd indexes m and n are anti-
symmetrical and these SWs cannot be registered using FMR
technique, because of zero amplitude of the corresponding
resonance signals. Only the modes with even indexes m and n
can be experimentally observed. It should be noted that these
modes could be observed in the experiment on Brillouin light
scattering, but there are technical problems for the application
of this technique for the investigation of the standing spin
waves in the studied structures. The modes with the smallest
indexes having highest intensity, namely |001〉, |201〉, and
|221〉 should be observed in the experiment. It should be noted
that the profile of the second resonance mode is symmetrical
with respect to x and y and as a result, it is doubly degenerated
(indexes |201〉 and |021〉). These spectrum lines are practically
equidistant as it is observed in the experiment. The calculated
interval between the resonance lines of the corresponding
modes is of about 1200 Oe. It should be noted that described
analytical approach could be used for wide variety of dot
shapes where demagnetizing field dependence on plane coor-
dinates could be approximated with paraboloid. However, the
distances between resonance peaks obtained in the frame of
the prism shape model are twice larger than in the experiment.
This discrepancy is related to the fact that nickel islands are
not prisms. The shape of islands can be better approximated
by truncated pyramid shape (frustrum).

B. Model of truncated pyramid

In truncated pyramid the in-plane dependence of the local
demagnetizing field Hm

z (x, y) dramatically changes with the
height z, nevertheless its shape is close to paraboloid. In the
case of truncated pyramid, it is impossible to separate the vari-
ables in (3). One of the most straightforward way to overcome
this problem is to use the quantum-mechanical variational
method approach: displacing boundaries of prism to obtain
frustrum [see Fig. 3(b)]. Taking the height of nontruncated
pyramid hpyr as a free parameter the best correlation with the
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experiment can be obtained for hpyr = 2h. However, in this
case, only one energy level is located inside parabolic poten-
tial. All other modes are above the paraboloid potential and
confined by triangular well boundaries. The eigenfunctions of
a quantum oscillator in this case are not already a good set to
describing the eigenmodes of frustrum due to strong variation
of demagnetizing field with height. Therefore the orthogonal
set of the 2D standing wave profiles of a triangular medium
[29], instead of Hermitian functions, was used as the basis:



(pr)
nml (r) = Amψ (tr)

nm (x, y)φl (z), (8)

where φl (z) = √
2/h sin(π lz/h) and ψ (tr)

nm = sin[(n − m)kxxc]
cos[(m + n)kyy] + sin[(2m + n)kxxc] cos[nkyy]− sin[(2n+m)

kxxc] cos[mkyy], n > m, xc=x−a/
√

3, kx=2π/a
√

3 and ky =
2π/a.

Am = 4(3
√

3a2(1 + δm0))−1/2 is the normalization con-
stant, δnm is the Kronecker delta. Corresponding Laplace
operator eigenvalues for these functions are

−�x,yψnm(x, y) = 4k2
x (n2 + m2 + nm)ψnm(x, y).

SW eigenmodes in frustrum can be expanded into the “pris-
moidal” SW basis: 
 (pyr) = ∑

Cα
nml


(pr)
nml and dynamical mag-

netization components take form:

mx =
∑

n

Xn

(pr)
n , my =

∑
n

Yn

(pr)
n ,

where for brevity n = (n, m, l ). The diagonal approximation (6) for frustrum would be too rough because 

(pr)
n functions are

the eigenfunctions only for the Laplacian disregarding a coordinate dependence of the demagnetizing field Hm
z (r). Taking into

consideration prismoidal modes interaction, (3) is reduced to standard eigenvalues equation:

−(H0 + HA)

(
Xn
Yn

)
=

∑
m

(
Enδnm + 〈

Hm
z

〉
nm − 〈hx〉nm −i ω

γ
δnm

i ω
γ
δnm Enδnm + 〈

Hm
z

〉
nm − 〈hy〉nm

)(
Xm
Ym

)
, (9)

where En = αM0(4k2
x (n2 + m2 + nm) + ( π l

h )
2
), 〈Hm

z 〉nm =∫
Vpyr

dV 

(pr)
n (r)Hm

z (r)
 (pr)
m (r), and 〈hx(y)〉nm are calculated

using (7), where integration over the frustrum volume is
performed. A truncated basis set of triangular eigenfunctions
(8) with lowest eigenvalues {


(pr)
101 , 


(pr)
201 , 


(pr)
211 , 


(pr)
301 , 


(pr)
311 ,



(pr)
321 , 


(pr)
401 , 


(pr)
411 , 


(pr)
421 and 


(pr)
501 } was chosen to describe the

resonances observed in the experiment. The corresponding
matrix (9) is strictly diagonally dominant matrix where the
fourth diagonal element values already does not exceed 2% of
the corresponding main diagonal element values. According
to Gershgorin circle theorem the matrix eigenvalue deviation
from diagonal value does not exceed the sum of the absolute
values of the nondiagonal entries in this row: |λi − Hii| <∑

j 
=i |Hi j |. Therefore, even for the first six eigenfunctions
from the truncated basis set, the error in the determination of
the corresponding eigenvalues does not exceed 5%.

For the prism (h/hpyr → 0), only triangular eigenmodes
with index m = 0 have nonzero net amplitudes and can be
experimentally observed using FMR technique (see Appendix
for the details):

Inm ∼
(∫

ψ (tr)
nm (x, y)dxdy

)2

= 33/2

2

( a

πn

)2
δm0. (10)

All modes with observed intensity have the symmetry of
an equilateral triangle (Fig. 5).

Strictly speaking, Eq. (10) is valid for the prism but cannot
be applied for the frustrum. Transition to the frustrum results
in a decrease of system symmetry and previously nonvisible
modes can be observed. As an example to demonstrate this,
let us consider mode |211〉. The profile of this mode is pre-
sented in Fig. 5(a). Unperturbed mode (prismoidal) has seven
extrema. The oscillations taking place in three regions situated
near the triangle sides compensate antiphase oscillations in
four others regions in the vicinity of the triangle center and
corners. Because planar prismoidal wave function ψ (tr)

nm (x, y)

does not depend on z then its net intensity is equal to zero.
But the profile of corresponding frustrum mode is changing
with height and as a result this mode has nonzero net intensity.
For example, only one extremum of magnetic oscillations
amplitude of |211〉 can appear near the frustrum top base,
like it was shown in Ref. [30]. The similar effect should be
observed here [see Fig. 5(b)].

Our calculations show that for chosen parameters the |301〉
mode eigenvalue E301 is close to E102 of |102〉 mode. Because
this mode is altering with the height and due to its strong
in-plane localization it cannot be observed both in prism and
frustrum cases.

Therefore the frustrum spectrum is mainly determined by
“prismoidal” SW |101〉, |201〉, |211〉, and |301〉. However,
in the case of frustrum, there is a substantial admixture of
neighboring states. It should also be pointed out that |211〉
mode can be observed by FMR for a frustrum but cannot be
observed for a prism.

FIG. 5. The triangular membrane oscillations eigenfunction ψ
(tr)
21

profile (a) calculated using (8) with the parameters described in the
text. Bright and dark colors correspond to the areas oscillating in
antiphase. (b) The same eigenfunction profiles for heights z = 0, h/2,
h in truncated pyramid.
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FIG. 6. Magnetic resonance spectrum of nickel dots: the experi-
ment (dotted line) and the theory for frustrum (solid line). Theoretical
lines positions (see bottom inset) for the cases of regular prisms
(circles) and frustrums (stars) were obtained solving Eqs. (6) and (9)
correspondingly. The intensities of the lines were calculated using
standard approach Ij ∼ (

∫

 jdV )2. The theoretical spectrum was

plotted in supposition of Gaussian shape of the lines. The dispersion
was evaluated from the experiment.

The comparison of experimental and theoretical (cal-
culated for frustrum) resonance fields is presented in Ta-
ble I. The following parameters were used for the cal-
culations: M0 = 484 Oe, A = 8 × 10−7 Erg/cm, γ = 1.82 ×
107 s−1 Oe−1, and f = ω/2π = 9.86 GHz.

The distances between resonance lines are determined by
static and dynamic demagnetizing fields and exchange field
calculated above, while lines position strongly depends on
HA. Best fit of the experimental data was obtained using
HA = βM0, where β = −5.8, i.e., in supposition that there
is an easy plane magnetic anisotropy in nickel dots. Usually
tensile stresses in nickel films result in the formation of per-
pendicular to the film plane uniaxial anisotropy. However, the
investigated nickel dots were grown on 111 Si single crystal
substrate which results to their compression stresses. This
statement (tensile stresses on the silicon substrate surface and
corresponding compressive stresses in Ni dots) is confirmed
by the experiments on surface phonon propagation in such
structure [31].

Obtained analytical results (see Fig. 6) are in good agree-
ment with experimental data. However proposed theoretical
approach can be improved considering next nonlinear terms in
Eq. (2) [32] or by more delicate analysis of integrodifferential
LL equations (3) [33].

IV. SUMMARY

Standing spin waves in triangular dots in perpendicu-
lar saturating magnetic field have been investigated both

experimentally and theoretically. Four resonance modes were
observed in the experiment. Although these modes are quite
similar to that observed before for thin magnetic submicron
dots of different shapes (circular, rectangular, etc.), the well
developed theoretical approach [7–11,14] cannot be applied
for our case because of strong lateral variation of the demag-
netizing fields. First it has been assumed that the geometrical
shape of dots is a prismoidal. Then the variation of the demag-
netizing fields can be approximated by paraboloid function
and SW mode with lowest energy can be presented as ground
state eigenmode of two-dimensional harmonic oscillator. The
upper energy modes have been taken as triangular membrane
eigenmodes. It should be noted that the developed theoretical
approach can be applied for magnetic particles of n-gonal
right prism shapes (including cylinder) where the aspect ratio
is not negligibly small and a spatial dependence of a demagne-
tizing field cannot be neglected. But in this approximation the
theoretical intervals between resonance fields are twice larger
then experimentally observed. To improve the correlation
between the theory and experiment it has been taken into
account that the real shape of dots is closer to truncated
pyramids. SW eigenmodes in frustrum was obtained as the
superposition of prismoidal eigenfunctions taking into consid-
eration the intermodes interaction in the frame of the quantum
mechanical variational method. This allows to achieve perfect
agreement between the theory and experiment.
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APPENDIX

According to Ref. [29], the 2D standing wave profiles of a
triangular medium are

ψ (tr)
nm /Am = sin[(n − m)kxx] cos[(m + n)kyy]

+ sin[(2m + n)kxx] cos[nkyy]

− sin[(2n + m)kxx] cos[mkyy], (A1)

where n > m � 0, kx = 2π/a
√

3, and ky = 2π/a; Am =
4(3

√
3a2(1 + δm0))−1/2 is the normalization constant; δnm is

the Kronecker delta; x = a
√

3/2 and y = ±x/
√

3 are the side
lengths of the triangular prism cross-section.
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The resonance signal intensity for the corresponding eigenmodes is proportional to the integrated eigenfunction profile:

Inm ∼
(∫

ψ (tr)
nm (x, y)dxdy

)2

= A2
m

(∫ a

0
dx

(∫ x/
√

3

−x/
√

3
ψ (tr)

nm (x, y)dy

))2

.

The integral over the cross-sectional area for sine and cosine products in (A1) can be reduced to∫ a
√

3/2

0
dx sin(βkxx)

∫ x/
√

3

−x/
√

3
cos(αkx

√
3y)dy = 2

αkx

√
3

∫ a
√

3/2

0
sin(βkxx) sin(αkxx)dx

= 1

αkx

√
3

∫ a
√

3/2

0
(cos(α − β )kxx − cos(α + β )kxx)dx

= 1

αk2
x

√
3

(
sin(α − β )π

α − β
− sin(α + β )π

α + β

)
,

and this expression for integer α and β is nonzero only when α ± β = 0. For positive n and nonnegative m, this takes place only
if m = 0. Thus for |n0〉 functions:

In0 ∼ A2
0

(∫
[2 sin (nkxx) cos

(
nkyy

) − sin(2nkxx)]dxdy

)2

= A2
0

(√
3π

k2
x n

)2

= 33/2

2

(
a

πn

)2

.
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