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When spin ice systems undergo a sudden thermal quench, they have been shown to enter long-lived metastable
states where the monopole excitations form so-called noncontractible pairs [Phys. Rev. Lett. 104, 107201
(2010)]. While the nature of these states is well understood, the dynamical mechanisms underpinning their
formation remain largely unexplored and are the subject of this study. We find that the long-range tail of the
Coulomb interactions between monopoles plays a central role by suppressing the monopole-assisted decay of
noncontractible pairs with respect to monopole–antimonopole annihilation. In conjunction with low final quench
temperatures, where the system enters a nonhydrodynamic regime in which the monopoles effectively move at
terminal velocity in the direction of the local force acting on them, the interactions lead to a metastable plateau
that persists in the thermodynamic limit. This is a remarkable phenomenon, reminiscent of jamming and some
instances of glassiness: A transient modification of the short-time dynamics of the system allows it to enter a
metastable state whose lifetime can easily be astronomically large at (experimentally relevant) low temperatures.
We demonstrate this using Monte Carlo simulations and mean field population dynamics theory, and we provide
an analytical understanding of the mechanisms at play. When the interactions between monopoles are truncated
to finite range, the metastable plateau reduces to a finite size effect. We derive the finite size scaling behavior
of the density of noncontractible pairs in the metastable plateau for both short- and long-range interactions and
discuss the experimental implications of our results.
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I. INTRODUCTION

Spin ice materials [1] are a class of three-dimensional
frustrated magnets endowed at low temperature with topolog-
ical properties and an emergent gauge symmetry [2]. More-
over, they harbor collective excitations that take the form of
itinerant, pointlike defects carrying a net magnetic charge:
magnetic monopoles [3]. The nonequilibrium behavior of
these systems is particularly rich and exciting and they can
exhibit remarkably long relaxation and response timescales
at low temperatures. While a number of attempts have been
made to model and understand the origin of the dynamical
behavior in spin ice materials, the complete picture arguably
remains beyond our grasp.

In this paper, we make progress by investigating the
specific setting of thermal quenches in classical spin ice [4],
where these systems have been shown to enter long-lived
metastable states in which the monopole excitations form so-
called noncontractible pairs [5] (see Fig. 3). While the nature
of these states is well understood, the dynamical mechanisms
underpinning their formation remain hitherto unexplored and
are the subject of this work. Using a combination of numerical
simulations and analytical mean field theory, we are able to
provide a complete understanding of the phenomenon. We
find that the emergence of the plateau is rooted in two key in-
gredients: (i) the long-range nature of the Coulomb interaction
between the monopoles and (ii) the fact that low temperature
thermal quenches in spin ice can give rise to a nonhydro-
dynamic regime that increases the decay rate of the free
monopole density in the system. The latter feature is notably
reminiscent of jamming and some instances of glassiness. A

change in the short-time dynamics of the system allows it to
enter a metastable state, which would have been otherwise
avoided and whose lifetime can easily become exceptionally
long at (experimentally relevant) low temperatures.

Our results further demonstrate that the plateau reduces
to a finite size effect when considering a model with solely
finite-range interactions between monopoles. Hence, the ex-
perimental observation of a metastable plateau corresponding
to a finite density of noncontractible pairs in spin ice is
direct evidence of the long-range nature of the interactions be-
tween the monopoles. This adds one important experimental

FIG. 1. Schematic depiction of a noncontractible monopole–
antimonopole pair, responsible for the metastable plateau in
monopole density observed following a thermal quench to low tem-
peratures in classical spin ice. The activated decay of the pair requires
separating its members up to third-neighbor distance, as shown in the
central figure, costing an energy � (in isolation) due to their mutual
Coulombic attraction. The pair is then able to annihilate elsewhere
on the lattice, as shown for example in the rightmost figure.
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avenue to study these interactions, whose range has thus far
been probed only via the field dependence of unbinding of
monopole pairs [6], and indirectly via the appearance of a
liquid-gas phase diagram [3]. Our findings are particularly
timely thanks to the recent experimental claim that a state
rich in noncontractible pairs can be generated in classical spin
ice materials Dy2Ti2O7 and Ho2Ti2O7 [6] using a so-called
avalanche quench protocol [7].

The paper is structured as follows. We start by reviewing
the background on thermal quenches in classical spin ice
and by summarizing the main results obtained in this work
in Sec. II. We then provide an overview of the models we
consider in Sec. III, and we present our Monte Carlo results in
Sec. IV, including a finite size scaling analysis of the density
of noncontractible pairs in the metastable plateau. Section V
is devoted to the use of mean field population dynamics to
understand the differences in behavior between the various
models and types of interaction. We draw our conclusions
and highlight the relevance of our results to experiments in
Sec. VI.

II. BACKGROUND AND SUMMARY OF RESULTS

Dipolar spin ice systems have been predicted to exhibit dy-
namically arrested, monopole-rich, metastable states follow-
ing appropriate thermal and field quenches [4,8]. Reference
[4] recognised that at the heart of the dynamical arrest lies the
formation of so-called noncontractible pairs: a monopole and
an antimonopole sitting next to one another, separated by a
spin whose reversal does not lead to their annihilation. As a
result, the two defects become bound to one another and are
unable to move throughout the lattice without separating—a
process that costs Coulomb energy due to the mutual attrac-
tion between the two opposite charges [9]. This activation
energy barrier explains why a noncontractible pair per se is
metastable.

In general, two decay channels are available to noncon-
tractible pairs. Firstly, they can separate and annihilate some-
where else on the lattice at the cost of paying an activa-
tion energy barrier; the smallest barrier associated with such
activated decay processes requires separating the pair up to
third-neighbor distance, as shown in Fig. 1. Alternatively,
pairs can undergo monopole-assisted decay: When the pair
is hit by a stray (free) monopole, this causes the annihilation
of the oppositely charged member of the pair, thus freeing
up its partner [4], as in Fig. 2. This second process does not
incur an energy barrier and does not change the density of free
monopoles.

In equilibrium, a useful quasiparticle description for spin
ice is in terms of deconfined magnetic charges [3]. Conversely,
the long (intrinsic) lifetime of noncontractible pairs justi-
fies their introduction as an effectively distinct “species” of
quasiparticle when studying classical spin ice in the strongly
nonequilibrium setting of thermal and field quenches, as
demonstrated already in Refs. [4,8].

The mere existence of noncontractible pairs in the system
however does not warrant the appearance of a macroscopic
metastable state. Indeed, when free monopoles are abundant,
nonactivated (fast) monopole-assisted decay is the leading
relaxation channel with respect to thermally-activated (slow)

FIG. 2. Schematic depiction of monopole-assisted decay of a
noncontractible pair. A free monopole annihilates with the oppositely
charged member of the stationary noncontractible pair, thereby free-
ing up its partner. All moves shown lower the energy of the system
and hence monopole-assisted decay is the dominant decay avenue for
noncontractible pairs with respect to thermally activated decay when
free monopoles are abundant in the system.

decay of noncontractible pairs, and one does not expect any
metastable plateau to appear. It is only when the system
undergoes a “population inversion” (in contrast to thermody-
namic equilibrium), where noncontractible pairs become the
dominant species with respect to free monopoles, that the
activation energy barrier to decay can induce a long-lived
metastable plateau at low temperatures. This is indeed what
one observes in numerical simulations of dipolar spin ice,
following appropriate thermal quenches [4].

The aforementioned population inversion is key to the
metastable plateau. Its origin however was not investigated
in Ref. [4] and is the subject of the present work. We find
that it ultimately rests on the long-range tail of the Coulomb
interaction between monopoles. This can be qualitatively
understood as being due to the energetic bias in the motion of
monopoles in the far field. Monopole–antimonopole collision
events are subject to a Coulombic charge–charge attraction
(∝r−2), whereas collisions between a free monopole and
a noncontractible pair are subject to weaker charge–dipole
interactions (∝r−3). This leads to a bias that increases the like-
lihood of free monopoles annihilating (or forming new non-
contractible pairs) over their chance of annihilating existing
noncontractible pairs via monopole-assisted decay. Further,
since the final temperature in the thermal quenches is much
less than all other energy scales in the problem, the system
enters a nonhydrodynamic regime where the monopoles move
at terminal velocity in the direction of the local force acting
on them. This allows the system to violate the law of formal
kinetics [10] and to exhibit a decay of the free monopole
density faster than inverse time. The combination of the long-
range bias and ‘terminal velocity’ motion of free charges leads
to a rapid decay of the free monopole density in the system,
leaving behind an excess of noncontractible pairs. This is
ultimately the linchpin of the finite-density metastable plateau
observed in numerical simulations.

This behavior is most remarkable. By altering the dynam-
ics of what is ultimately a transient regime, spin ice is able
to enter a metastable state whose lifetime for experimentally
relevant temperatures and system sizes may well exceed any
realistically accessible timescales (of order one year in Fig. 3
when expressed in physical units).

We verify this scenario through extensive numerical Monte
Carlo simulations of thermal quenches in spin ice systems
with nearest-neighbor spin–spin interactions and long-range
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Ewald-summed magnetic Coulomb interactions between de-
fective tetrahedra [11]. Upon truncating the Coulomb inter-
actions to finite range, the long-range bias is removed. We
find that the finite-density metastable plateau correspondingly
disappears in the thermodynamic limit. These findings are
corroborated (in Sec. IV B) by directly simulating mutually
interacting magnetic charges hopping on a diamond lattice
(with no Dirac strings), for which we observe qualitatively
similar behavior.

To supplement the numerics, we provide an analytical
understanding of both the value of the plateau in the ther-
modynamic limit and its finite size scaling using mean field
population dynamics, treating the system as a Coulomb liquid
of magnetic charges. We show how the ratio of the rate of
monopole-assisted decay to the rate of charge–charge annihi-
lation underpins both the finite size scaling exponent in the
case of truncated interactions and the density at which the
plateau occurs in the long-range case.

III. MODELS

In this work, we contrast the effect of truncating the
Coulomb interactions between monopoles in spin ice with
the same truncation in a system of magnetic charges hopping
on a diamond lattice. The latter model is defined without
reference to any underlying spin configuration, i.e., without
Dirac strings connecting opposite charges, which allows us
further clarity in ascertaining their role in thermal quenches
and the formation of the metastable plateau.

A. Classical spin ice

The canonical model of classical spin ice (CSI) consists of
exchange (J) and dipolar (D) interactions between classical
Ising spins Si, which live on the sites of a pyrochlore lattice
[12,13]. The crystal field anisotropy in spin ice materials
(e.g., Dy2Ti2O7 and Ho2Ti2O7) constrains the spins to point
along the local [111] directions, ei. Absorbing the magnitude
of the spins into the definition of the coupling constants, we
can therefore represent them as Si = Siei, with Si ∈ {−1,+1},
and write the dipolar spin ice Hamiltonian as

Hd ({Si}) = J

3

∑
〈i j〉

SiS j

+ D
∑
(i j)

[
ei ·e j

|ri j |3 − 3(ei ·ri j )(e j ·ri j )

|ri j |5
]

SiS j, (1)

where, in the first line, we used the fact that ei · e j = −1/3 for
any nearest neighbor pair of sites, 〈i j〉.

For the majority of this work, we use an effective Hamilto-
nian in which the exchange and dipolar interactions between
the spins are retained only at nearest-neighbor level, and
farther range couplings are accounted for effectively by a
pairwise interaction V ({Qa}) between tetrahedral charges Qa,

Hc({Si}) = Jeff

∑
〈i j〉

SiS j + Enn

∑
a<b

QaQb

rab
, (2)

where i, j index the sites of the pyrochlore lattice, a, b index
the tetrahedra, and rab = |ra − rb|/rnn is the distance between

the centres of tetrahedra a and b in units of the distance
between neighboring tetrahedra. The charge on tetrahedron a
is Qa = ±∑

i∈a Si/2, where the sign depends on the sublattice
that a belongs to. The charges Qa therefore assume the values
Qa ∈ {0,±1,±2}, where Qa = ±1 are dubbed monopoles
and Qa = ±2 double monopoles. We use the convention that
a positive charge corresponds to a majority of spins pointing
out of a given tetrahedron. Two equally charged monopoles
on neighboring sites have a Coulomb energy Enn (in an
infinite system). Throughout the paper we use an effective
exchange coupling Jeff = 1.463 K [14] and nearest-neighbor
Coulomb energy Enn = √

128/27D = 3.06 K, appropriate for
the classical spin ice compound Dy2Ti2O7. Such an effective
description (2) is quantitatively accurate, up to quadrupolar
corrections, by virtue of projective equivalence [15] (and this
is indeed the case also in thermal quenches, as illustrated in
Fig. 7). With these parameters, the macroscopically degener-
ate ground state manifold corresponds to the charge vacuum,
Qa = 0, ∀a, i.e., a two-in-two-out configuration of spins on
each tetrahedron.

We note that the nearest-neighbor exchange interaction
between spins can be viewed as a chemical potential of size
2Jeff for the monopoles (namely, the charges Qa = ±1):

Jeff

∑
〈i j〉

SiS j = 2Jeff

∑
a

Q2
a − NsJeff. (3)

This interpretation however no longer holds straightforwardly
in the presence of double monopoles.

To test the role of the long-range tail of the Coulomb
interaction in the appearance of the population inversion, we
also consider a similar model where the interactions V ({Qa})
between monopoles are truncated at nearest-neighbor dis-
tance:

Ht ({Si}) = Jeff

∑
〈i j〉

SiS j + �
∑
〈ab〉

QaQb. (4)

This model will be referred to as classical spin ice with
truncated interactions. Such a nearest-neighbor interaction
between monopoles allows for the formation of noncon-
tractible pairs without inducing any long-range energetic bias
in the motion of the monopoles.

Separating an isolated pair of nearest-neighbor monopoles
with charge Q = ±1 in this model costs an energy �. To
preserve the behavior of the system (primarily its ground
state), the truncation of the interactions must be done with
care. We choose the value of � such that the energy barrier to
separating a noncontractible pair around a hexagonal plaque-
tte (as depicted in Fig. 1) is equal in the cases of truncated (4)
and long-ranged (2) interactions [16]:

� = Enn

(
1 −

√
3

11

)
� 1.46 K. (5)

Such a choice preserves the charge vacuum ground state, and
since the energy barrier for the activated decay of noncon-
tractible pairs is equal for both types of interaction, the demise
of a possible metastable plateau will occur at similar times in
the two cases.

The difference between the single spin flip dynamics of
the two Hamiltonians, Hc and Ht , therefore rests solely in
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FIG. 3. Monte Carlo simulations of a thermal quench in spin ice
subject to Ewald-summed Coulomb interactions between monopoles
[Hamiltonian (2), system size L = 22, i.e., 170 368 spins] from infi-
nite temperature down to T = 0.06 K. The curves show the evolution
of the averaged total density of monopoles per tetrahedron ρt (blue),
the free monopole density ρ f (red), the density of monopoles forming
noncontractible pairs η (green), and the double charge density ρd

(orange). Time is expressed in units of Monte Carlo steps per site,
and the densities are averaged over 4096 histories.

the long-range energetic bias in the motion of monopoles
across the system. In a finite system containing L3 cubic
unit cells, the total number of spins is Ns = 16L3, and the
number of tetrahedra is Nt = 8L3. In our simulations, we use
periodic boundary conditions and we deal with long-ranged
interactions (dipolar as well as Coulomb) using the method of
Ewald summation [17,18].

We note that there also exists a long-range Coulomb in-
teraction between monopoles of entropic origin [19]. As we
are unable to alter the range of the entropic interactions, we
introduce in the following section a family of charge models
that live on the diamond lattice in which the charges are not
born out of underlying spin configurations. This will allow
us to observe that the role of entropic interactions in thermal
quenches is in fact negligible and hence they will not be
discussed further in our work. This is shown most directly by
the good quantitative agreement between the classical spin ice
and charge model simulations, and the mean field analytics,
for truncated interactions.

B. Charges on diamond lattice

To identify the role of the spin configuration underlying
each monopole configuration, we also consider two further
effective models of charges Qa hopping on a diamond lattice,
thereby removing any entropic effects and blocked directions
associated with the spins (in particular, by removing the
underlying spin network, there are no Dirac strings associated
with the magnetic charges in the following models). We
restrict our simulations to the relevant charge values Qa ∈
{0,±1,±2} only. These charge models (CM) also allow for
a more direct comparison with our analytical mean field mod-
eling (see Sec. V), which largely neglects the aforementioned
complications associated with the spinful description of the
system’s dynamics.

FIG. 4. Monte Carlo simulations of the total density of
monopoles ρt in spin ice in the case of long-range Coulomb inter-
actions between monopoles, Eq. (2), after a thermal quench from
infinite temperature down to final temperatures T = 0.05–0.07 K (in
equidistant steps) for a system of size L = 8, i.e., 8192 spins. The
densities are averaged over 4096 histories. Inset: the same curves
plotted after rescaling the time axis by a factor exp(�/T ), where
� � 1.46 K is the Coulomb energy barrier incurred by separating
two monopoles around a hexagonal plaquette, showing an excellent
collapse of the long-time decay of the monopole density.

In the case of long-range interactions between the charges,
we use the Hamiltonian

HCM
c ({Qa}) = 2Jeff

∑
a

Q2
a + Enn

∑
a<b

QaQb

rab
, (6)

subject to the hard constraint that each site may not be occu-
pied by more than two charges. This model will be referred to
as the long-range interacting charge model.

The Hamiltonian (6) must be further supplemented by rules
which govern the dynamics of the charges. Namely, in order
to take into account the effect of noncontractible pairs, when
two opposite (single) charges come into nearest-neighbor
contact, there exists some finite probability, pnc, of forming
a noncontractible pair. If a noncontractible pair is formed, it
is then not possible for the charges to annihilate along their
common bond. At finite temperature, their activated decay can
be accounted for by associating an energy barrier � with this
process.

The probability pnc can be estimated by counting the
number of spin configurations compatible with two oppo-
sitely charged monopoles on adjacent tetrahedra and tak-
ing the fraction thereof that correspond to a noncontractible
pair. Considering the minimal cluster of two tetrahedra only
(7 spins in total), one finds that the relevant fraction is pnc =
1/10 [4]. Extending the calculation to larger clusters does
not lead to significant variation in this value; for example,
considering a full hexagon of tetrahedra involving the two
monopoles gives pnc = 41/406. Further, small perturbations
in pnc do not appreciably modify the dynamics of the system.

For the case of truncated interactions between the tetrahe-
dral charges, the Hamiltonian becomes

HCM
t ({Qa}) = 2Jeff

∑
a

Q2
a + �

∑
〈ab〉

QaQb, (7)
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FIG. 5. Monte Carlo simulations of a thermal quench in spin
ice where the interactions between monopoles are truncated to
nearest-neighbor distance [Hamiltonian (4), system size L = 16, i.e.,
65 536 spins] from infinite temperature down to T = 0.06 K. Time is
expressed in units of Monte Carlo steps per site, and the densities
are averaged over 4096 histories. The metastable plateau due to
noncontractible pairs of monopoles remains present but occurs at
lower densities and at later times than in the case of long-range
interactions (cf. Fig. 3).

referred to as the charge model with truncated interactions.
The model is again subjected to the same constraints on charge
values and dynamics. The difference between the two charge
models, HCM

c and HCM
t , lies only in the long-range energetic

bias associated with the Coulomb interaction.

IV. MONTE CARLO SIMULATIONS

A. Classical spin ice

1. Long-range Coulomb interactions

In Fig. 3 we show the monopole density evolution fol-
lowing a thermal quench, as in Ref. [4], simulated using the
modified Monte Carlo code, corresponding to (2), instead of
the conventional dipolar Monte Carlo (for a direct compar-
ison, see Fig. 7). We use single spin flip dynamics and the
waiting time method [20,21] to access long simulation times
at low temperatures (see Appendix A for some details specific
to our simulations). The system is initially prepared in the
paramagnetic phase at infinite temperature, then at t = 0 the
temperature is set to its target value, T 	 Jeff, and we start
measuring various monopole densities as a function of time
[22]. These densities are then averaged over many histories
with different random initial conditions sampled from the
infinite temperature ensemble. We find good agreement with
the dynamical arrest observed in Ref. [4]: Rather than rapidly
equilibrating to a monopole-sparse state, we observe instead
the emergence of a metastable plateau in the monopole density
due to noncontractible monopole–antimonopole pairs.

Specifically, we measure the total monopole density
(monopoles per tetrahedron) in the system, ρt , counting all-in
and all-out tetrahedra as doubly occupied sites; the fraction
of such doubly occupied sites, ρd ; the density of monopoles
forming noncontractible pairs, η; and the ‘free’ monopole
density [23] ρ f ≡ ρt − η, i.e., the density of monopoles that
do not form noncontractible pairs. A noncontractible pair is

FIG. 6. Monte Carlo simulations of the total density of
monopoles ρt in spin ice in the case of truncated interactions between
monopoles, Eq. (4), after a thermal quench from infinite temperature
down to various temperatures T = 0.05–0.075 K (in equidistant
steps) for a system of size L = 16, i.e., 65 536 spins. The densities
are averaged over 4096 histories. Inset: the same curves plotted after
rescaling the time axis by a factor exp(�/T ), showing an excellent
collapse of the long-time decay.

defined as a pair of adjacent, oppositely-charged monopoles
for which the reversal of the intervening spin shared by the
two tetrahedra does not lead to annihilation of the pair.

In isolation, the barrier to activated decay of a noncon-
tractible pair is � � 1.46 K. In the presence of a finite density
η of other noncontractible pairs, the distribution of energy
barriers is broadened around a mean value of � due to dipole–
dipole interactions between the pairs. Given that the Coulom-
bic approximation to the monopole–monopole interaction
neglects quadrupolar corrections, we expect the distribution
of such energy barriers to be more sharply peaked than in
the dipolar case. This is indeed confirmed by the excellent
collapse of the long-time decay of the total monopole density
for various temperatures upon rescaling the time axis by a
factor exp(�/T ), as illustrated in Fig. 4 (see also Fig. 7, where
the dipolar case shows a correspondingly broader decay of the
metastable plateau).

2. Truncated interactions

In Fig. 5 we plot the various monopole densities for an
identical thermal quench for the case of truncated interactions
between monopoles in classical spin ice [i.e., Eq. (4)]. A
metastable plateau remains present in the dynamics of the
system, and once again the behavior of the monopole densities
tells us that it is clearly due to noncontractible pairs. The
plateau however occurs at substantially lower densities and
the onset occurs at later times when compared with the corre-
sponding long-range interacting system, Eq. (2), in Fig. 3.

The decay of the monopole density at long times collapses
for a range of temperatures upon rescaling the time axis
by a Boltzmann factor exp(�/T ), as illustrated in the inset
of Fig. 6, confirming that the thermally activated decay of
noncontractible pairs is again responsible for the eventual
demise of the plateau at a time τnc ∼ exp(�/T ). Once a given
pair has separated, the two constituent monopoles may find
each other and annihilate by performing a random walk, the
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FIG. 7. Comparison of noncontractible pair densities η(t ) for
the three types of interaction for a thermal quench from infinite
temperature down to T = 0.06 K (system size L = 16, i.e., 65 536
spins) in classical spin ice. Time is expressed in units of Monte Carlo
steps per site, and the densities are averaged over 4096 histories. The
markers labeled a, b, c, and d identify the boundaries between the
four dynamical regimes discussed in the main text. At (a), nearly all
doubly occupied sites have been removed from the system. Points
(b) and (c) mark the onset of the metastable plateau for the cases
of long-range and truncated interactions, respectively. At (d), the
noncontractible pairs decay via thermal activation.

shortest of which is around a single hexagonal plaquette.
Since the noncontractible pairs do not interact beyond a
fixed, finite separation, the energy barriers are δ distributed
about �.

3. Comparison and finite size scaling

In Fig. 7 we plot the noncontractible pair density as a func-
tion of time, η(t ), for all three types of interaction introduced
in Sec. III A for classical spin ice: Ewald-summed dipolar
interactions between spins, Ewald-summed Coulomb inter-
actions between monopoles, and truncated (nearest-neighbor)
interactions between monopoles.

In each of the three cases, the time evolution of η(t ) can
be decomposed into four dynamical regimes. The crossovers
between these regimes are identified by the markers (a)–(d) in
Fig. 7.

(1) At times before (a), the large exchange energy cost
associated with double occupancy of a tetrahedron (8Jeff)
and the ability of such configurations to decay spontaneously
ensures that doubly occupied sites are removed rapidly during
this regime (exponentially fast in time, see Appendix C for
details).

(2) Between (a)–(b) and (a)–(c) the differences between
the three interaction types become manifest. In all cases we
observe a much slower decay of the noncontractible pair
density once the double monopoles have been removed from
the system. However, the rate of decay and the timescales
over which this decay occurs are vastly different for the trun-
cated [(a)–(c)] versus long-range interacting [(a)–(b)] models.
In the Coulomb and dipolar cases, the long-range nature
of the interactions leads to an energetic bias which favors
monopole–antimonopole (charge–charge) annihilation over

FIG. 8. Finite size scaling of the plateau in noncontractible
monopole density ηp(L) for long-range Coulomb and truncated
(nearest-neighbor) interactions between monopoles, and long-range
dipolar interactions between spins in classical spin ice. The data
are averaged over at least 4096 histories. The lines are fits to the
scaling ansatz ηp(L) − ηp(∞) ∼ L−ν , while the symbols represent
the Monte Carlo data. The corresponding error bars are smaller than
the width of the fit lines. In the truncated case (system sizes L = 6–
100 inclusive), the data are consistent with a plateau that vanishes
in the thermodynamic limit. This is verified using a log-log plot of
the plateau density against system size L in the inset. Conversely,
the long-range Coulomb (L = 3–22 inclusive) and dipolar (L = 3–18
inclusive) cases appear to exhibit a nonvanishing noncontractible
pair density in the metastable plateau in the thermodynamic limit:
ηp(∞) = 4.7(9)×10−3 and ηp(∞) = 4.1(5)×10−3, respectively.

monopole-assisted decay of noncontractible pairs (charge–
dipole). This means that (i) the free monopoles in the sys-
tem vanish more quickly, and, correspondingly, (ii) noncon-
tractible pairs are removed more slowly than in the case of
truncated interactions. Since the plateau forms when there are
no free monopoles left in the system, point (i) gives rise to the
earlier onset of the plateau, while point (ii) implies that the
plateau forms at a higher density.

(3) The metastable plateau occurs between (b)–(d) and
(c)–(d). This regime, in which the system contains essentially
only noncontractible pairs, spans many orders of magnitude
in time at the low final quench temperatures considered in this
paper.

(4) At times after (d), noncontractible pairs are able to
decay via thermal activation, leading to the demise of the
metastable plateau. This occurs at a time τnc ∼ exp(�/T ).

By construction, the decay of the plateau occurs at similar
times for the models with truncated and long-range Coulomb
interactions between monopoles. The difference in the decay
times between the Coulomb and dipolar models is due to the
larger variance in energy barriers for activated decay of
the pairs in the latter. Indeed, one may model the decay of the
plateau by assuming a Gaussian distribution of energy barri-
ers, P(ε), with mean � and width σ . The activated decay of
the noncontractible pair density η(t ) is then approximated as
η(t ) = ∫

dε P(ε)e−t/τ (ε), where the decay time τ (ε) ∝ eε/T .
The values σd � 0.1 K [4], σc � 0.03 K, and σt � 0, lead to
the best fit of the Monte Carlo data (not shown).
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FIG. 9. Monte Carlo simulations of charges hopping on the
diamond lattice subject to long-range Coulomb interactions [Hamil-
tonian (6), system size L = 22, i.e., 170 368 spins] from infinite
temperature down to zero temperature. Time is expressed in units
of Monte Carlo steps per site, and the data are averaged over 4096
histories. The analytic solution, (B2), to the mean field equations for
the charge densities is shown in the inset for comparison.

Notice that, in systems of finite size, the appearance of
a noncontractible plateau in the averaged monopole density
is, in fact, unavoidable. On the one hand, the probability that
all free monopoles annihilate before all noncontractible pairs
have decayed is finite, and, if this happens, the only decay
process left for the noncontractible pairs is activated decay.
On the other hand, even when the last two monopoles in the
system are free, there exists a finite probability of forming
a new noncontractible pair, rather than annihilation, when the
two monopoles come into nearest-neighbor contact. The latter
process places a hard nonzero lower bound on the density
of the noncontractible plateau of O(1/L3), which is purely a
finite size effect.

In order to understand the origin of the plateau and
the difference in behavior between the truncated and
long-range interacting models, we ought therefore to look
at the finite size scaling behavior of the plateau density.
Figure 8 shows the noncontractible monopole density in the
plateau, ηp(L), for systems of different sizes (parameterized
by the linear system size L) and the same final quench
temperature T = 0.06 K. We perform a fit to the scaling
ansatz ηp(L) − ηp(∞) ∼ L−ν , to extract the exponent ν, the
value of the plateau in the thermodynamic limit, ηp(∞),
and the constant of proportionality. The form of this scaling
ansatz is justified later in Sec. V, where we show that a power
law decay of the free monopole density with time implies
power law scaling of the metastable plateau density with
system size. Hence, the scaling ansatz only applies once any
transient (non-power-law) behavior of ρ f (t ) at short times
has subsided. For dipolar interactions between spins, it is not
numerically feasible to access system sizes sufficiently large
to observe an asymptotic power law decay regime of the free
monopole density. We nevertheless provide a fit to the data in
this case, but it should be noted that the resulting parameters
are subject to some degree of systematic error. In the case
of Coulomb interactions between the monopoles, such
asymptotic power law decay of ρ f (t ) is observed in systems

FIG. 10. Monte Carlo simulations of charges hopping on the
diamond lattice subject to truncated (nearest-neighbor) interactions
[Hamiltonian (7), system size L = 16, i.e., 65 536 spins] from infinite
temperature down to zero temperature. Time is expressed in units
of Monte Carlo steps per site, and the data are averaged over 4096
histories. The analytic solution, (13), to the mean field equations
for the charge densities is shown in the inset for comparison. The
dashed lines indicate the threshold density corresponding to the
disappearance of free charges in a system of finite size, ρ∗ = 1/Nt .

of size L � 14 (i.e., 43 904 spins), and correspondingly only
these data are included in the scaling analysis.

The inset of Fig. 8 demonstrates that the metastable
plateau in the truncated case is indeed a finite size effect:
The number of noncontractible pairs in the plateau increases
subextensively with the size of the system, ν � 2.46, and
the density ηp(∞) is consistent with a vanishing value in
the thermodynamic limit. By contrast, in the case of long-
range interactions, the number of noncontractible pairs in the
plateau scales extensively with system size, with subleading,
subextensive contributions. Hence, the density of the plateau
in the long-range case tends asymptotically towards a finite
value, also shown in Fig. 8. The subextensive corrections give
rise to the L dependence of the plateau density. The finite
size scaling exponent in this case is ν = 0.9(3). We shall
summarize these results and attempt to understand the origin
of the different behaviors and exponents by modeling the time
evolution of the system using mean field population dynamics
in Sec. V.

B. Charges on diamond lattice

1. Long-range Coulomb interactions

Moving to the charge description, characterized by the
long-range charge model Hamiltonian (6), HCM

c ({Qa}), we
obtain the results shown in Fig. 9 for a thermal quench down
to zero temperature. As long as the final quench temperature
satisfies T � Enn/L2, the dominant effect of changing tem-
perature is to modify the long-time activated decay of the
plateau. We therefore focus on the limit of zero temperature
for simplicity.

The initial distribution of the charges is set using an
infinite temperature distribution of spins on the bonds of the
diamond lattice, i.e., using the same initial conditions as in
Sec. IV A. After initialization of the system, all reference to an
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FIG. 11. Finite size scaling of the noncontractible plateau den-
sity ηp(L) for the case of charges hopping on the diamond lattice
subject to long-range Coulomb and truncated interactions. The data
are averaged over at least 4096 histories. The lines are fits to the
scaling ansatz ηp(L) − ηp(∞) ∼ L−ν , while the symbols represent
the Monte Carlo data. The corresponding error bars are smaller than
the width of the fit lines. As in CSI, the case of truncated interactions
(L = 6–72 inclusive) is consistent with a vanishing plateau density in
the thermodynamic limit, verified by the log-log plot of plateau den-
sity against linear system size in the inset. Conversely, the long-range
Coulomb case (L = 4–22 inclusive) exhibits a nonvanishing plateau
density in the thermodynamic limit: ηp(∞) = 6.24(2)×10−3.

underlying spin configuration is removed, and the time
evolution is determined by the dynamical rules laid out in
Sec. III B. The most significant difference therefore between
the charge model and spin ice systems is the blocked direc-
tions imposed by the spins in the latter. As in the case of
the spinful simulations, we measure the various monopole
densities as functions of time after the thermal quench and
average over histories.

In this case, we observe a plateau that occurs at finite den-
sity and which persists indefinitely since the noncontractible
pairs cannot undergo activated decay at zero temperature.
However, contrasting Figs. 3 and 9, there are some quanti-
tative differences between the dynamics of the charge and the
spin models. In particular, the decay of free monopoles occurs
much more quickly in the charge model given the same type of
interactions. This implies that the onset of the plateau occurs
significantly earlier in time than the corresponding model in
CSI (cf. Fig. 3).

2. Truncated interactions

As shown in Fig. 10, in the case of truncated interactions
between charges, Eq. (7), we again observe a plateau that oc-
curs at later times and at lower densities than in the long-range
interacting charge model (Fig. 9). The free charge density
decays approximately as 1/t in the long-time limit, i.e., after
the double charges have been removed from the system, while
the noncontractible pair density also decays as a power law
in time but with a smaller exponent. The power law decay of
these quantities is cut off when the free monopoles drop below
O(1/L3) density, as indicated by the dashed line in Fig. 10.
The noncontractible pairs that remain in the system can only

further decay by thermal activation and the noncontractible
plateau is thus established when the free monopole density
crosses this threshold.

3. Comparison and finite size scaling

The finite size scaling of the plateau in the case of charges
hopping on the diamond lattice, contrasting the behavior of
Eqs. (6) and (7), is presented in Fig. 11. We again observe that
the long-range interacting case tends towards a finite plateau
density in the thermodynamic limit, while the plateau is
merely a finite size effect in the case of truncated interactions
between the charges, i.e., limL→∞ ηp(L) = 0 with ν � 2.28.

These findings corroborate the conclusions of Sec. IV A 3
pertaining to classical spin ice. In particular, that the plateau
is not a finite size effect in the case of long-range Coulomb in-
teractions between charges. Since the subleading corrections
decay more quickly in the charge description, ν = 1.8(4), we
are able to make this claim on even stronger terms.

The fact that the finite size scaling of the plateau, i.e.,
the exponent ν, differs significantly between the spinful
and charge descriptions for the long-range case, while it is
very similar between the spinful and charge descriptions for
truncated interactions, is a puzzle that we shall attempt to
understand in Sec. V. Indeed, we will see that one can achieve
a great deal of analytical insight into the observed behavior by
means of appropriate mean field modeling.

V. SUMMARY AND MEAN FIELD MODELING

From our simulations we see that the behavior of the four
models in question is visibly similar. The key differences
are: (i) the finite size scaling of the plateau is consistent
with a finite versus a vanishing value in the thermodynamic
limit in the case of long-range versus truncated interactions,
respectively, both in CSI and the CM; moreover, in the case
of long-range interactions, (ii) the decay of ρ f (t ) is notably
faster, and the variation with system size L is stronger (i.e., ν

is significantly larger), in the charge simulations than in the
spin ice simulations.

Regarding the discrepancy in the decay of the free
monopole density, highlighted in point (ii) above, the most
significant difference between the dynamics of the two models
in the regime where monopoles are sparse is the existence
of blocked directions in classical spin ice [24]. That is, for
a given (isolated) free monopole, there always exists one of
four directions (corresponding to the minority spin) along
which the monopole cannot hop, as shown schematically in
Fig. 12. Assuming that the direction of the local Coulomb field
is distributed randomly over the unit sphere, the fraction of
charges which are unable to lower their energy due to blocking
is 
b/4π , where 
b is the solid angle for which there is a
positive projection onto exactly one of the local basis vectors
{ei}. This leads to a probability

pb = 
b

4π
= 3

2π

[
π

3
− arctan

√
2

]
� 4.4%, (8)

for a given free monopole to be pinned (at zero tempera-
ture) due to blocking, as shown in Appendix D. In addition,
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FIG. 12. Schematic depiction of a blocked direction for a free
monopole. The isolated monopole is unable to move along the bond
containing the minority spin (shown in red), since its reversal would
lead to the creation of a double charge on the central tetrahedron.
Blocked directions have a significant quantitative impact on the
dynamics of monopoles subject to long-range interactions by instan-
taneously pinning some finite fraction of free monopoles. The local
magnetic field B determines which direction(s) lower the energy of
the system; if this direction is unique and coincides with the blocked
direction (as in the figure), then the monopole is pinned and cannot
move along any direction without overcoming a finite energy barrier.

even when the monopole is not pinned, the available phase
space for motion is reduced by blocking. Notice that (8)
underestimates the effect of pinning, because at the lattice
scale the direction of the Coulomb interaction is correlated
with the bond directions, which violates the assumption of
uniformity over the unit sphere. Hence, we conclude that
a finite fraction of monopoles, lower-bounded by (8), are
instantaneously [25] pinned in the spinful description due to
the interplay of interactions and blocked directions. It is then
reasonable to expect that the free monopole density decays
more slowly in the presence of such pinned charges. While
this is an interesting aspect of stochastic processes in spin
ice that warrants further investigation (maybe by including
some effective disorder in the relevant equations governing the
dynamics of the charges), it is beyond the scope of the present
paper. We shall nonetheless see below that this effect plays a
key quantitative role in the difference between long-range CSI
and CM results.

The scaling fits to the Monte Carlo data ηp(L) − ηp(∞) ∼
L−ν give the values summarized in Table I. In the following,
we show how one can understand this behavior qualitatively
and sometimes even quantitatively using mean field popula-
tion dynamics of reaction diffusion processes. This allows us
to model the time evolution of the monopole/charge densities

TABLE I. Summary of finite size scaling results for both systems
and both types of interaction between the tetrahedral charges. The
scaling ansatz ηp(L) − ηp(∞) ∼ L−ν was used to obtain the values
shown in the table.

Model Interactions Plateau value, ηp(∞) Scaling exponent, ν

truncated 0 2.46(1)
CSI

long-range 4.7(9) × 10−3 0.9(3)

truncated 0 2.28(2)
CM

long-range 6.24(2) × 10−3 1.8(4)

and to obtain estimates of the finite size scaling exponents to
compare with our numerical results.

A. Short-time dynamics

If we want to describe the simulations in terms of reaction-
diffusion processes between (effective) particles, we ought
to consider in principle five different species: positive and
negative single and double charges, and noncontractible pairs.
The noncontractible pairs are immobile, pinned to the bond
on which they form, and can undergo the activated and
monopole-assisted decay processes discussed previously. Sin-
gle charges are able to move freely throughout the lattice
(neglecting the effects of spin blocking/pinning). The dou-
ble charges can either decay spontaneously into two single
charges of the same sign, if adjacent to an empty site, or
they can be hit by a single charge of the opposite sign and
decrease their charge by one, thus producing a single (mobile)
charge. Finally, two adjacent double charges of opposite sign
can decay to form a noncontractible pair by flipping the in-
tervening spin. All decay processes involving double charges
reduce the energy of the system, and thence are able to occur
spontaneously, even at zero temperature.

The rate of decay of double monopoles does depend on
the free monopole density; however it is easy to convince
oneself that the ‘phase space’ for decay (either spontaneous
or monopole-assisted) is always larger than that for processes
which preserve the number of double charges, and it be-
comes progressively more so as the free monopoles decay in
time. Their evolution thus rapidly decouples from the other
species and becomes exponentially fast in time: asymptoti-
cally ρd (t ) ∝ e−7t/2, as argued in Appendix C, which appears
to fit well all simulations.

The single charges that are produced in the decay of dou-
ble charges merely become a known time-dependent source
term in the corresponding equation governing their density;
as we see from the simulations, this contribution becomes
irrelevantly small for t � 1. When looking at the total or free
monopole/charge densities, the double charges contribute to-
wards the ‘hump’ observed at short times, before the onset of
the asymptotic power-law behavior. In Appendix C we discuss
this in greater detail, and we show explicitly that the double
charge contribution indeed does not affect the asymptotic
scaling behavior we are interested in understanding, affecting
only the density of the noncontractible plateau.

For these reasons, in the following, we shall ignore the
double charges altogether and focus on the three remaining
species of particle: positively and negatively charged free
monopoles living on the sites of a diamond lattice, with
densities ρq(t ) (charge q = ±); and immobile noncontractible
pairs living on the bonds, with density η(t ). The equations
determining their dynamics are presented and analyzed in the
following sections.

B. Truncated interactions

The mean field equations (i.e., neglecting spatial fluctua-
tions) describing the time evolution of the monopole densities
in the case of truncated interactions between monopoles are
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(for q = ±)

dρq

dt
= −Kρ+ρ−, (9)

dη

dt
= −R

2
(ρ+ + ρ−)η + K′ρ+ρ−. (10)

Equation (9) describes the annihilation of oppositely charged
free monopoles, which occurs with rate K. The first term
in Eq. (10), with rate R, describes the monopole-assisted
decay of noncontractible pairs—a free monopole annihilates
the member of a noncontractible pair with the opposite sign.
Such a process removes two monopoles previously forming
a noncontractible pair, but preserves the number of free
monopoles in the system, and therefore does not appear in
(9). Finally, the second term in (10) describes the probabilis-
tic formation of noncontractible pairs when two oppositely
charged monopoles come into nearest-neighbor contact. As
we want to understand the origin and scaling behavior of
the noncontractible pair plateau, we are not interested in the
very long-time behavior of the system. We have therefore
disregarded the terms corresponding to the activated decay of
the noncontractible pairs. Equivalently, (9) and (10) describe
the zero-temperature dynamics of the system.

Charge neutrality ensures that ρ+(t ) = ρ−(t ) for all times,
allowing us to solve (9) for the time evolution of the free
monopole densities ρq(t ):

ρq(t ) = ρ0
q

1 + Kρ0
qt

, (11)

where ρ0
q ≡ ρq(0). This solution may then be substituted into

(10) describing the noncontractible monopole density η(t )

dη

dt
+ Rρq(t )η = K′ρ2

q (t ), (12)

which can also be solved exactly to give

η(t ) = (K′/K)ρ0
q

(R/K − 1)
(
1 + Kρ0

qt
)

+
[
η0 − (K′/K)ρ0

q

R/K − 1

]
1(

1 + Kρ0
qt

)R/K . (13)

Evidently, the long-time behavior of the noncontractible
monopole density η(t ) depends crucially on the ratio of rate
constants R/K. If R/K < 1, then the second term in (13)
dominates at long times and the noncontractible pairs decay
more slowly than the free monopoles, as is observed in the
numerics, illustrated in particular in Figs. 5 and 10 (this is also
consistent with the analytic estimates of R/K that we present
below).

In the thermodynamic limit, these equations predict that
there is no plateau in the noncontractible pair density since
both ρq(t ) and η(t ) may become arbitrarily small. However,
in a system of finite size containing 8L3 tetrahedra, the decay
of ρq(t ) is cut off when the free monopole density reaches
O(1/L3): ρq(t∗) ∼ L−3, i.e., at a time t∗ ∼ L3 corresponding
to the removal of all free monopoles in a finite system. If the
noncontractible pair density decays more slowly, as is the case
for R/K < 1, there is still a finite density of noncontractible
pairs present in the system at t∗, and they can further decay

only via thermal activation. The value of this density scales as
η(t∗) ∼ t−R/K

∗ for sufficiently large t∗ � (Kρ0
q )−1, allowing

us to deduce the leading order term in the dependence of the
noncontractible plateau on system size:

η(t∗) ∼ L−3R/K, (14)

and therefore extract the exponent ν = 3R/K.
We can estimate the ratio R/K from the microscopic

details of our system as the product of two contributions,

R
2K = NR

NK
· τK
τR

� 3

4
· 1

2
. (15)

The first factor in (15), NR/NK, comes from the fact that a
free monopole has four adjacent free legs along which another
free monopole may approach, while a noncontractible pair has
only three (one of the four total legs being blocked by the other
member of the pair) [26]. Therefore the factor 3/4 encodes the
relative sizes of the basins of attraction in the two cases. The
second factor τK/τR derives from the ratio of timescales—
in the case where two free monopoles are approaching one
another, both are mobile, while in the case of a free monopole
approaching a noncontractible pair, the noncontractible pair
is pinned and only the free monopole is mobile. This leads
to a factor of 2 difference in the (random walk) timescales
for the two processes. The factor of 1/2 on the left hand
side of (15) originates from the definition of R in (10). We
therefore estimate that R/K � 3/4, and correspondingly the
noncontractible plateau scales approximately as

η(t∗) = ηp(L) ∼ L−9/4, (16)

in the case of truncated interactions between charges.
This estimate can be improved upon by examining larger

clusters. Indeed, including next-nearest neighbors in the clus-
ter, the presence of blocked directions leads to a small cor-
rection to the finite size scaling exponent in the case of CSI,
as shown in Appendix E, while it remains unchanged for the
CM:

νCSI = 90
37 � 2.43, νCM = 9

4 = 2.25. (17)

These exponents are consistent with the values ν = 2.46(1)
and ν = 2.28(2) obtained from the Monte Carlo data in Figs. 8
and 11, respectively. Note that the absolute values of R and
K differ substantially between CSI and the CM due to the
presence of blocked directions in the former, but their ratio
remains essentially the same.

We are now able to understand why the spinful and charge
descriptions exhibit quantitatively similar behavior. In both
cases, the charges exhibit diffusive motion (until they be-
come nearest neighbors, at which point they deterministically
annihilate). The numerical results suggest that the annealed
(random) blocked directions do not significantly affect the
diffusive motion of the charges, and therefore do not alter
the form of the decay of the free monopole density. This
is because the motion of monopoles across the system (i.e.,
beyond nearest-neighbor separation) is not subject to any
energetic bias controlling the direction of their motion. Hence,
the insertion of blocked directions at random has little effect
on the purely random motion of charges when averaged over
histories—no monopoles are instantaneously pinned due to
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blocking. This is also evidence of the fact that entropic inter-
actions in CSI due to the underlying spins do not play a signif-
icant role in the evolution of the monopole density following
a thermal quench. The free monopole density decays as 1/t
in both CSI and the CM with truncated interactions, and we
consequently obtain a vanishing plateau in the thermodynamic
limit. Further, the value of ν is set by the ratio of the rates
of monopole-assisted decay to free monopole annihilation,
which is common to both descriptions, up to small corrections
which result from the impact of blocked directions on the
microscopic annihilation process.

C. Long-range Coulomb interactions

In Sec. V B we were able to develop a rather complete
understanding of the case of truncated interactions, which
largely hinged on the 1/t scaling of the free monopole density.
We would now like to study how the behavior changes in
the presence of long-range interactions. One could naively
try to introduce them at the level of the reaction diffusion
equations; however, this is known to recover the law of formal
kinetics at long times, i.e., 1/t behavior of ρ f (t ), which leads
to the same conclusion of a vanishing plateau value in the
thermodynamic limit. This is however in contradiction with
the observation that ρ f (t ) decays faster than 1/t in our Monte
Carlo simulations of long-range interacting systems (and with
the observation of a finite value for the metastable plateau).

As is often the case, the devil lies in the details. In order
to observe a long-lived metastable plateau, we need to quench
to very low temperatures, T 	 Jeff. In a discrete system with
long-range interactions and finite lattice spacing, the hydro-
dynamic description of Refs. [10,27] does not always apply
to the Monte Carlo time evolution of our simulations. Take
for example the limiting case of a quench to zero temperature.
The quasiparticles move only downwards or across in energy,
δE � 0, and they move at ‘terminal velocity’ (i.e., one lattice
spacing per unit time) irrespective of the strength of the
force acting upon them. On the contrary, the hydrodynamic
description applies when the Monte Carlo process is a (lightly)
biased random walk, |δE | 	 T , and the equations of motion
approximately take the familiar overdamped form where the
velocity of the particles is proportional to the force acting
on them. This is how our simulations violate the law of
formal kinetics (at intermediate times) and achieve a decay
of free monopole density which is faster than 1/t at the low
temperatures studied in this paper.

Modelling the strictly-biased motion at terminal velocity is
a tall order. However, at mean field level, one can put forward
the following approximate argument: The free monopole den-
sity decays with a time constant given by the time taken to
travel at terminal velocity to the next free monopole, some
characteristic distance ρ−1/d away, namely τtv ∼ ρ−1/d , where
d is the dimensionality of the system. Then we have

dρ

dt
∝ − ρ

τtv
⇒ ρ(t ) ∼ 1/t d . (18)

This behavior is in very good agreement with the ρ f (t )
decay observed in the CM with long-range interactions if one
neglects the formation of noncontractible pairs. We shall delay
the discussion of the CSI case to later in this section.

In the absence of long-range interactions, there are no
forces beyond a fixed finite separation between monopoles
and they perform an unbiased random walk, even at zero
temperature. It then takes a characteristic time, ρ−1, corre-
sponding to the time taken for a monopole to explore its
characteristic volume in three dimensions, to come in contact
and annihilate with another monopole. In this case, τtv should
be replaced by τrw ∼ ρ−1 and one recovers the 1/t scaling
obtained more rigorously in Sec. V B.

In order to express all these considerations more formally,
and to take into account explicitly the noncontractible pair
density η(t ), which has been ignored thus far, it is convenient
to introduce the following phenomenological reaction diffu-
sion equations

dρq

dt
= −K[ρ+(t )ρ−(t )](1+β )/2, (19)

dη

dt
= −R

2
(ρ+ + ρ−)η − K′

K
dρq

dt
, (20)

with the parameter β � 1 (with β = 1 corresponding to the
truncated case, and β = 1/3 corresponding to the termi-
nal velocity argument given above, neglecting the effect of
nonzero η) [28].

Using charge neutrality ρ+(t ) = ρ−(t ), the first of these
equations gives rise to a free monopole density

ρq(t ) = ρ0
q(

1 + βK0ρ0
qt

)1/β
, (21)

where we have defined for convenience K0 ≡ K(ρ0
q )β−1. The

parameter β sets the asymptotic rate of decay of the free
monopole density in the system: ρq(t ) ∼ t−1/β . This decay
is faster than the truncated case (ρq ∼ 1/t) when β < 1.
Defining

(t ) =
∫ t

0
dt ′ ρq(t ′) (22)

= 1

1 − β

1

K0

[
1 − (

1 + βK0ρ
0
qt

)(β−1)/β]
, (23)

the solution for the noncontractible monopole density may be
written as

η(t ) = e−R(t )

[
η0 +

∫ t

0
dt ′eR(t ′ )K′[ρ+(t ′)ρ−(t ′)](1+β )/2

]
.

(24)

It is possible to obtain an analytic expression for η(t ) by
expressing the integral in (24) in terms of the incomplete
Gamma function, which is presented in Appendix B. Since,
for β < 1, (t ) tends towards a constant at large times, the
solution for η(t ) exhibits a plateau at finite density, η(t ) →
η∞, as t → ∞. The density at which this plateau occurs is

η∞ = e−αR/K0

{
η0 + ρ0

q

αK′

K eαR/K0

[
αR
K0

]−α

γ

(
α,

αR
K0

)}
,

(25)

where α ≡ 1/(1 − β ), and γ (s, x) is the lower incomplete
gamma function. Hence, the value of the plateau is expo-
nentially sensitive to the ratio of rate constants R/K0, and
vanishes as β → 1− (i.e., α → ∞).
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At sufficiently large times,

η(t ) � η∞

[
1 + αR

K0

(
βK0ρ

0
qt

)(β−1)/β
]
. (26)

The finite size scaling of the noncontractible plateau then
follows from the fact that the free monopole decay is cut off
at a time t∗, defined by ρq(t∗) ∼ L−3. As before, t∗ equals the
time at which free monopoles are completely removed from a
system of finite size. This gives t∗ ∼ L3β and correspondingly
the finite size scaling of the plateau satisfies

η(t∗) − η∞ ∼ t−(1−β )/β
∗ ∼ L−3(1−β ). (27)

The scaling exponent of the plateau, ν, can therefore be
directly related to the exponent β which quantifies the asymp-
totic rate of decay of the free monopole density,

ν = 3(1 − β ). (28)

This relationship is consistent with the discrepancy between
the finite size scaling exponents in the long-range interacting
CSI and CM cases: The rapid decay of the free monopole
density permitted by the lack of blocked directions in the CM
case implies a larger β−1 and, hence, a larger ν. Indeed, nu-
merically fitting the exponent of the asymptotic free monopole
decay, we obtain β−1 � 1.4 and β−1 � 2.3 corresponding,
through (28), to scaling exponents ν � 0.86 and ν � 1.7 for
the cases of long-range CSI and the CM, respectively. These
values are in reasonable agreement with those obtained from
the numerical finite size scaling analysis: ν = 0.9(3) and ν =
1.8(4).

Notice that the mean field equations (19) and (20) can
only be expected to hold at asymptotically long times for
zero-temperature quenches. For any finite T , as the monopoles
become sparser, the forces between them become weaker and
eventually one reaches the hydrodynamic regime, |δE | 	 T ,
discussed earlier, and a 1/t decay of ρ f (t ) ensues. The typical
Coulomb interaction felt by a given monopole through the
separation ρ(t )−1/d is (in d = 3 for concreteness)

〈Ec(t )〉 ∼ −Ennρ(t )1/3. (29)

The corresponding change in Coulomb energy when moving
a free monopole to an adjacent site then scales as

〈δEc(t )〉 ∼ Ennρ(t )2/3. (30)

Assuming ρ(t ) ∼ 1/t1/β , the time threshold 〈δEc(t )〉 ∼ T
corresponding to the crossover to 1/t decay of ρ f can then be
estimated to scale with temperature as tT ∼ (Enn/T )3β/2 [29].
The crossover can be observed in our Monte Carlo simulations
at sufficiently high temperatures; however it is barely visible
within the accessible system sizes and the corresponding
plots are not very informative, and we refrain from showing
them here. From (20), we deduce that the noncontractible
plateau therefore begins to decay at times t � tT . The rate
of decay however vanishes as temperature is lowered, i.e.,
ln η ∼ −T ν/2 ln t . The zero-temperature limit therefore does
not commute with the limit of infinite time. If the latter is
taken first, the plateau decays to a vanishing thermodynamic
value at large times. If the former is taken first, then a finite
plateau survives. Since the timescale for activated decay of the
plateau scales exponentially with temperature, while tT scales

algebraically [at least for a power law decay of ρ f (t )], it will
be the case that tT < exp(�/T ) at the low but nonzero quench
temperatures that we considered in this paper. For systems
of finite size, the relevant question then becomes whether tT
is larger or smaller than the time t∗ that it takes for the free
monopole density to become less than O(1/L3).

We finally note that even at zero temperature the mean field
equations will eventually break down at a time corresponding
to single charge densities ρq at which free charges become
so dilute that the bias for free charge–charge annihilation
over monopole-assisted decay is removed. We term such a
time td , which may be obtained by comparing 〈δEc(t )〉 with
the typical energy due to charge–dipole interactions with the
noncontractible pairs present in the metastable plateau regime.
Once this bias disappears, monopole-assisted decay may once
again become favorable and the plateau is able to gradually
decay.

The phenomenological model that we have presented illus-
trates in a simple manner the mechanisms at play, but we note
that the precise functional form or even the asymptotic power
law decay of the free monopole density implied by the model
are not a requirement in order to observe a noncontractible
plateau in the thermodynamic limit. Indeed, at the mean field
level, any decay of ρ f (t ) faster than 1/t will give rise to a
plateau in the density of monopoles forming noncontractible
pairs. Even if ρ f (t ) does exhibit a crossover to 1/t behavior
at long times, the plateau will still be present in the thermo-
dynamic limit, but will only exist for a finite period of time
before it starts to decay.

VI. CONCLUSIONS

Using a combination of Monte Carlo simulations and
detailed mean field modeling, we investigated the origin of
the metastable plateau that is observed in thermal quenches
to low temperatures in classical spin ice [4]. Our results
show that it is a consequence of the long-range nature of
the Coulomb-like interactions between monopoles combined
with the system entering a nonhydrodynamic regime which
is controlled by nonuniversal lattice physics. The claim that
such a plateau may have been observed in recent experiments
[6] therefore provides further compelling evidence for the
long-range nature of the interactions between the emergent
monopoles in these systems.

In particular, we have shown that when the interactions
between the monopoles are truncated to finite range, the
plateau reduces to a finite size effect. This is because the free
monopoles in the system perform independent random walks
(when their density is sufficiently low) leading to a 1/t decay
of their density with time t . Although this is sufficient to create
the “population inversion” (in which noncontractible pairs
become the dominant species in the total monopole density),
the slow decay of free monopoles implies that monopole-
assisted decay remains effective and continues to remove
noncontractible pairs from the plateau indefinitely.

On the contrary, in the presence of long-range Coulomb
interactions between monopoles, there exists an energetic
bias in their motion across the system. At sufficiently low
temperatures, which are relevant for the formation of a
thermodynamic noncontractible plateau, the system enters a
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nonhydrodynamic regime in which the monopoles move at
terminal velocity in the direction of the local force acting
on them. This combination of long-range interactions and
nonhydrodynamic behavior leads to a rapid decay of the free
monopole density, faster than 1/t and violating the law of for-
mal kinetics. The decay of free monopoles is then sufficiently
rapid to stop the monopole-assisted decay of noncontractible
pairs at long times, and therefore one observes a plateau of
finite density in the thermodynamic limit.

In this paper we studied the case of sudden quenches
to the target temperature. Spin ice systems and materials
are well known to exhibit long relaxation timescales at low
temperatures and a relevant and interesting question would
be to investigate how much of the phenomenology observed
in the present work survives in the case of ramps, where
the temperature is lowered continuously to its target value, a
question that is indeed of experimental importance. It would
be particularly interesting to see if there is a threshold in the
ramp speed beyond which the behavior changes qualitatively.
We note however that such studies, which are beyond the
scope of the present work, will likely require accessing sig-
nificantly lower monopole densities and therefore simulating
larger system sizes, possibly beyond the current numerical
capability.

Our numerical results are in quantitatively good agreement
with analytics from mean field modeling. This may come as a
surprise if one thinks that fluctuations in the charge density
ought to bring about corrections that are not captured by
mean field theory. However, emergent charges in spin ice
systems are subject to a hard-core, hyperuniform constraint
in their spatial distribution: The charges are born out of the
underlying spins and one can easily verify that the maximal
net charge that can be accumulated in a volume �3 scales
as �2 (as opposed to free charge systems, where the latter
can scale as �3). As a result, long-wavelength fluctuations
are suppressed, and one can expect mean field calculations to
be in fact rather accurate in describing spin ice behavior. We
note that the charge model introduced in this paper is not in
general subject to the same constraint. However, we impose
the same initial conditions as in the spin ice system, which
are therefore hyperuniform. The good agreement with mean
field theory suggests that this seeding is sufficient to maintain
hyperuniformity throughout the time evolution following the
quench (at least within the system sizes and time scales
accessible in our simulations).

Given the importance of including exchange interactions
between spins beyond nearest-neighbor separation in de-
scribing the equilibrium (and out-of-equilibrium) properties
of spin ice [30–33], it is pertinent to ask what the effect
of such farther-ranged interactions might be on the thermal
quenches discussed in the present work. Consider the inclu-
sion of second- and third-neighbor interactions J2 and J3,
respectively. The latter is subdivided into J3a and J3b, as
described in Appendix F. In the special case J2 = −3J3a and
J3b = 0, these interactions can be summed to give exactly
the truncated (nearest-neighbor) interactions between charges:
∝J2

∑
〈ab〉 QaQb (in addition to a shift of Jeff, see Appendix F).

The inclusion of such farther-ranged interactions hence mod-
ifies the short-distance physics of monopoles and leads, for
example, to a modification of the barrier to activated decay

of noncontractible pairs. When the interactions do not satisfy
this condition, we expect nonetheless that the behavior of
the system will remain qualitatively similar provided that the
long-range bias for monopole motion across the system is
active during the transient (terminal velocity) regime in which
the plateau is established.

Direct observation of the behavior studied in this work
requires experimental probes that measure the monopole
density in spin ice materials. One could envisage using the
width of the pinch points in the neutron scattering structure
factor [19,34] (with a caveat on the contribution from nearest-
neighbor pairs, such as the noncontractible pairs, as discussed
in Ref. [35]). Alternatively, small quenches in the magnetic
field, and a measurement of the magnetization M(t ) that
ensues, give access to the time evolution of the free monopole
density, since dM/dt ∝ ρ f [36]. Further experimental probes
of monopole density in spin ice would be very much welcome
in this respect.

The potential departure of long-range interacting lattice
systems from a hydrodynamic description, and thence from
the law of formal kinetics, is somewhat expected: At suffi-
ciently low temperatures, the change in energy incurred by
a microscopic discrete update in the system becomes larger
than the thermal energy. However, one generally expects
this phenomenon to affect only the short-time dynamics, and
that at long times the universal hydrodynamic behavior is
recovered. Thermal quenches in spin ice demonstrate that,
while this expectation must ultimately be satisfied, the al-
tered nonuniversal, transient dynamics during times t � 1 s
can induce very long-lived metastable states that change the
behavior of the system over a large range of ‘intermediate’
times spanning many orders of magnitude (easily growing
to be of the order of one year or longer for experimentally
relevant parameters and temperatures).

This phenomenon may play a role in other aspects of the
behavior of spin ice models and materials at low temperature
(for example, a departure from hydrodynamic behavior could
be a contributing factor to the deviation from the so-called
‘quasiparticle kinetics’ in Ref. [6]). It may also be relevant
to other long-range interacting natural and artificial lattice
systems of interest.
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APPENDIX A: SIMULATION DETAILS

Ewald summation leads to the following expression for the
Coulomb energy of a set of interacting charges {qa} and their
periodic images

Ec({qa}) =
∑
a<b

qaKabqb + μ
∑

a

q2
a, (A1)

where we have defined Kaa ≡ 0, ∀a, having separated out
the diagonal terms, which may be absorbed into the effective
chemical potential for charges. Supposing that we flip a spin
Si, the charges on the two adjacent tetrahedra, labeled by
a, b, are modified: qa → Qa, and qb → Qb. The change in
Coulomb energy when flipping this spin is therefore

δEc(Qa, Qb) =
∑

c:qc �=0

[δqaKac + δqbKbc]qc

+ δqaKabδqb + μ
[
δ
(
q2

a

) + δ
(
q2

b

)]
, (A2)

where δqa = Qa − qa, and δ(q2
a ) = Q2

a − q2
a. Such an expres-

sion already represents an improvement over the conventional
dipolar Monte Carlo code—one needs only to sum over the
nonzero charges, which are dilute in the metastable plateau.

However, one can further speed up the computation of the
Coulomb energy by considering the change in the Coulomb
spin flip energies when going from time step t → t + 1. Sup-
pose that in the waiting time Monte Carlo (WTMC) update at
time t , spin S j , adjacent to tetrahedra c, d , was flipped. We
then propose flipping Si, adjacent to tetrahedra a, b. If there
is no overlap between tetrahedra a, b and c, d (i.e., none of
a, b, c, d are equal), the change in spin flip energy between
time steps t and t + 1 is simply

δEc(t + 1) − δEc(t ) = (δqa δqb)

(
Kac Kad

Kbc Kbd

)(
δqc

δqd

)
.

(A3)

Computing the Coulomb energy using the above expression
(A3) is substantially faster than (A2) since it involves an O(1)
number of terms as opposed to O(L3). If one or both of the
tetrahedra a, b and c, d do overlap, then the expression (A3)
must be modified, but it remains O(1) in complexity per spin.
Hence, the overall complexity scales as O(L3) per WTMC
sweep.

The dipolar interaction between spins, Ed = ∑
i< j SiKi jS j ,

can also be implemented in a similar way with O(1) complex-
ity per spin. Suppose that at time t the spin Sr was flipped,
and we would like to then propose flipping Sk both before and
after flipping spin Sr . We find that in the case k �= r

δE (k)
d (t + 1) − δE (k)

d (t ) = −4Sk (t )KkrSr (t ). (A4)

In the special case k = r, we are proposing to reverse the
previous spin flip and therefore δE (k)

d (t + 1) − δE (k)
d (t ) =

−2δE (k)
d (t ).

The absolute values of the spin flip energies must be
recomputed periodically using (A2), or the equivalent expres-
sion in the case of dipolar interactions between spins, in order
to prevent the accumulation of numerical error. For truncated
interactions, we need not generate fresh waiting times for all
the spins at each step—only those affected by the previous

update [20]. Hence, the complexity in this case scales as
O(ln L) per WTMC sweep, allowing much larger systems to
be accessed.

APPENDIX B: SOLUTION TO THE MEAN
FIELD EQUATIONS

Making use of the integral∫
dx

e−r/(1+x)s

(1 + x)t
= r−(t−1)/s

s
�

(
t − 1

s
,

r

(1 + x)s

)
, (B1)

for t > 1, we find that the full time dependence of the noncon-
tractible pair density may be expressed in terms of the upper
incomplete gamma function �(s, x) as

η(t ) = e−R(t )

{
η0 + ρ0

q

αK′

K

(
αR
K0

)−α

eαR/K0

×
[
�

(
α,

αR
K0

(
1+βK0ρ

0
qt

)(β−1)/β
)

− �

(
α,

αR
K0

)]}
.

(B2)

Note that the behavior of (t ) determines whether or not
a metastable plateau appears; if (t ) tends to a constant
for large times then the system will necessarily exhibit a
plateau in the noncontractible pair density η(t ). This function
is plotted in the inset of Fig. 9 for comparison with the charge
model with long-range interactions.

APPENDIX C: DOUBLE CHARGES

In this Appendix we show that the presence of double
monopoles does not significantly alter the conclusions of our
mean field modeling in Sec. V of the main text. In particu-
lar, we show by explicitly solving the mean field equations
governing the density of monopoles subject to truncated in-
teractions in the presence of double charges that, although the
value of the plateau (in a finite system) is altered, the finite
size scaling exponent ν remains unchanged. We argue that
this feature is true more generally—further modifications of
the mean field equations may change the short-time dynamics
of the free monopole density, but leave its asymptotic decay
(∝1/t) unchanged. This implies that the exponents derived in
Sec. V are in some sense universal, while the precise value of
the plateau is not (by universal we mean that the exponents
are independent of how precisely the system is prepared, and
are robust to the addition of terms in the mean field equations
that lead to modifications of the short-time dynamics).

In addition to the species considered in Sec. V, we intro-
duce two new densities, dq(t ) (where q = ±), which equal
the fraction of sites that host a charge Q = ±2, respectively.
Notice that a double charge can always decay by reacting with
any of its neighboring tetrahedra (be them empty, occupied
by a single, or by a double charge), with the only exception
being when it neighbors a single charge of the same sign,
in which case flipping the intervening spin merely swaps
the single and double charge without annihilating either of
them. In principle the time evolution of the double charges
depends therefore on the evolution of the single monopole
density. Indeed, the average number of bonds surrounding an
isolated double charge 2q along which it is able to decay is
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FIG. 13. Decay of the various monopole densities for a thermal
quench from infinite temperature down to T = 0.06 K in spin ice
(system size L = 20, i.e., 128 000 spins). The double charge density
ρd (t ) decays exponentially with time with rate constant Kd = 7/2.
At very short times, t � 1, the effect of a nonzero free monopole
density cannot be neglected, and the rate of double charge decay is
reduced due to obstructed decay channels.

4(1 − ρq) at the mean field level, i.e., assuming that each site
is independent. The asymptotic decay of the double monopole
density is however determined by neighboring double charges
of opposite sign since the number of bonds along which the
pair may decay is 7/2 − 3(ρq + ρq̄)/2 per site. Therefore, for
all but the shortest times where the effect of nonzero ρq cannot
be neglected, we expect the double charge density to decouple
from the other monopole densities and to decay exponentially
with a rate constant Kd � 7/2, i.e.,

ddq

dt
= −Kd dq. (C1)

Adding the two equations for q = ±, we obtain ρd (t ) =
ρ0

d e−Kd t . This expectation is indeed confirmed by our Monte
Carlo simulations of CSI, where we observe asymptotic ex-
ponential decay of the total double charge density ρd (t ) =
d+(t ) + d−(t ) with time (see Fig. 13), consistent with the
prediction Kd = 7/2.

The equation governing the free charge density ρq must
also be modified to include the effect of double monopole
decay:

dρq

dt
= −Kρ+ρ− + 2K′

d dq(t ). (C2)

The rate constant K′
d corresponds to the spontaneous decay

channel into adjacent empty sites only, implying that K′
d <

Kd . Hence, the effect of including a nonzero density of double
charges on the free monopole density is to add an exponen-
tially decaying source term that corresponds to the production
of free monopoles when double charges decay spontaneously.
If we took into account spatial fluctuations, then we would
also need to include a term ∝(dqρq̄ − dq̄ρq) in this equation,
but at the mean field level, charge neutrality of the single and
double charges separately implies perfect cancellation of such
a term. That is, when a single free charge q meets a double
charge 2q̄, a free charge q is removed and a free charge q̄
is created. However, the rate at which this process occurs

is identical for q = ±. Substituting the exponential decay of
ρd (t ) into this equation, we must solve the nonlinear equation

dρq

dt
+ Kρ2

q = K′
dρ

0
d e−Kd t , (C3)

for ρq(t ), in which we have made use of charge neutrality,
ρ+(t ) = ρ−(t ). This equation has the exact solution

ρq(t ) = y
Kd

2K
K1(y) − cI1(y)

K0(y) + cI0(y)
, (C4)

where we have written, for convenience of notation, y(t ) ≡
2
√
KK′

dρ
0
d/K2

d e−Kd t/2. The constant c is determined by the

initial conditions ρq(0) = ρ0
q , and In(x) and Kn(x) are modi-

fied Bessel functions of the first and second kind, respectively.
Finally, the expression for η(t ) must also be modified

for direct comparison with our numerical results. When two
double charges (of opposite sign) are adjacent to one another,
the bond necessarily hosts one contractible pair and one
noncontractible pair. The number of adjacent doubly occupied
sites is simply proportional to ρd (t ) at long times, and the cor-
responding contribution to η(t ) contributes towards the kink
in the noncontractible pair density observed in our numerical
simulations at the characteristic decay time t ∼ K−1

d of the
double charges. At later times, the equation for η(t ) remains
unchanged [39]

dη

dt
= −1

2
R(ρ+ + ρ−)η + K′ρ+ρ−. (C5)

The form of the solution is

η(t ) = e−R(t )

[
η(0) − K′

K

∫ t

0
dt ′eR(t ′ )ρ̇q(t ′)

]
, (C6)

where we recall that (t ) ≡ ∫ t
0 dt ′ ρq(t ′). Hence, the asymp-

totic behavior of η(t ) is directly determined by the asymptotic
behavior of ρq(t ). In order to derive this behavior, we require
the expansions of In(x) and Kn(x) for small values of the
argument x [40]:

I0(x) = 1 + O(x2), (C7)

I1(x) = 1

2
x + O(x3), (C8)

K0(x) = − ln
eγ

2
x + O(x2 ln x), (C9)

K1(x) = 1

x
+ 1

2
x ln x + O(x), (C10)

where γ � 0.5772 is the Euler–Mascheroni constant. These
expansions allow us to deduce that

ρq(t ) = Kd

2K y
1/y + (y/2) ln y + O(y)

ln 2 − ln eγ y + c + O(y2 ln y)
(C11)

= 1

Kt
+ O(t−2), (C12)

independent of the initial conditions and independent of the
initial rapid decay of double monopoles. The subleading term
∝1/t2 depends on the short-time dynamics through log y0 and
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through c. Correspondingly, for sufficiently large times,

η(t ) ∝ 1(
Kρ0

qt
)R/K . (C13)

The constant of proportionality is slightly renormalized in the
presence of double charges since the asymptotic expansion
of the second term in (C6) depends on

∫ ∞
0 dt eRρ̇q, which

in turn depends on the full time dependence of ρq(t ), in-
cluding its short-time dynamics. However, the exponent ν is
insensitive to such details [being determined by the exponents
of the leading terms in (C12) and (C13)], and the scaling
arguments presented in the main text remain robust to the
addition of doubly occupied sites. That is, the precise value
of the plateau is sensitive to the addition of double monopoles
into the model, but the finite size scaling exponent ν = 3R/K
remains unchanged.

Similarly, when the charges are subject to mutual Coulom-
bic interactions, if the leading term in the asymptotic expan-
sion of ρq(t ) remains proportional to t−β−1

, then the leading,
time-independent term in (t ) = const. + O(t−(1−β )/β ) will
be sensitive to the presence of double charges. Therefore,
since this term contributes to the value of the plateau in the
thermodynamic limit, η∞ from (25) will be modified slightly
in the presence of doubly occupied sites. However, the sub-
leading contribution (∼t−(1−β )/β ), which determines the finite
size scaling exponent ν, will again be robust to the addition of
doubly occupied sites, and the relation ν = 3(1 − β ), which
relates the asymptotic decay of ρq to the finite size scaling
behavior, also remains unchanged.

More generally, adding further terms to our mean field
equations (which depend on higher powers of the various
densities) will indeed modify the short-time dynamics of
ρq(t ). The precise density at which the plateau occurs in a
system of finite size in the case of truncated interactions, and
the value of the plateau in the thermodynamic limit in the case
of long-range interactions depend—through (C6)—on the full
history of ρq(t ), and therefore will be modified. However, the
asymptotic behavior of ρq(t ), which directly determines the
finite size scaling exponent ν for both types of interaction, is
insensitive to such details.

APPENDIX D: BLOCKED DIRECTIONS

To derive the probability that a given monopole is pinned,
it is convenient to use the following convention for the nor-
malised basis vectors:

e0 = ez, (D1)

e1 = 2
√

2

3
ex − 1

3
ez, (D2)

e2 = −
√

2

3
(ex +

√
3ey) − 1

3
ez, (D3)

e3 = −
√

2

3
(ex −

√
3ey) − 1

3
ez. (D4)

Now, the probability that a given monopole is instantaneously
pinned, pb, is 
b/4π , where 
b is the solid angle over
which there exists a positive projection onto exactly one of eμ

(μ = 0–3). In this case, there exists only one direction which
lowers the energy of the monopole, and so the monopole will
be pinned if the minority spin coincides with this direction.

For convenience, let us consider the solid angle 
0 cor-
responding to a positive projection onto e0, and a negative
projection onto the remaining three basis vectors. By sym-
metry, 
b = 
0. We therefore require that the following
conditions are simultaneously satisfied

cos θ > 0, (D5)

2
√

2 sin θ cos φ − cos θ < 0, (D6)

√
2(− sin θ cos φ −

√
3 sin θ sin φ) − cos θ < 0, (D7)

√
2(− sin θ cos φ +

√
3 sin θ sin φ) − cos θ < 0, (D8)

where we have parameterized the unit sphere using polar and
azimuthal angles θ and φ, respectively. The corresponding
solid angle defined by this region is (taking advantage of the
D3 symmetry about the z axis)


0 = 6
∫ π/3

0
dφ

∫ f (φ)

0
dθ sin θ (D9)

= 6
∫ π/3

0
dφ [1 − cos f (φ)], (D10)

where f (φ) is defined implicitly by the condition
2
√

2 sin f (φ) cos φ − cos f (φ) = 0, i.e., the limiting case
of condition (D6). The other conditions (D7) and (D8) are
also automatically satisfied if (D6) is satisfied in the region
0 < φ < π/3. Hence,

cos f (φ) = 2
√

2 cos φ√
1 + (2

√
2 cos φ)2

, (D11)

and the integral (D10) over the azimuthal angle φ may be
evaluated exactly to give


0 = 6

[
π

3
− arctan

√
2

]
, (D12)

and finally pb = 
0/4π , giving the result stated in the main
text.

APPENDIX E: CORRECTIONS TO THE FINITE SIZE
SCALING EXPONENT FOR CSI WITH TRUNCATED

INTERACTIONS

Here we show how the finite size scaling exponent ν,
which determines the finite size scaling behavior of the
plateau in classical spin ice with truncated interactions be-
tween the monopoles (Sec. V B), ηp(L) ∼ L−ν , is affected
by the inclusion of blocked directions. As shown in Sec. V,
the expression for the exponent ν is given in terms of the
ratio of the rate of monopole-assisted decay, R, to the rate
of monopole–antimonopole collision events, K (during which
the two monopoles either annihilate or form a new noncon-
tractible pair); specifically, ν = 3R/K. In order to estimate
the ratio R/K microscopically, we consider a symmetrical
cluster consisting of a central tetrahedron, and its first and
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FIG. 14. Fraction f of spin configurations in which the positively
and negatively charged monopoles are able to annihilate (or form a
new noncontractible pair), for different configurations of spins on the
central tetrahedron (which hosts the positively charged monopole).

second neighboring tetrahedra (considering only the first near-
est neighbors reproduces R/K = 3/4, i.e., blocked directions
have no effect at this level). For concreteness, suppose that
the central tetrahedron hosts a single, positively charged
monopole. This positively charged monopole is either (1)
isolated, corresponding to the calculation of the rate constant
K, or (2) one half of a noncontractible pair, with its negatively
charged partner sitting on one of the first nearest-neighbor
tetrahedra, corresponding to the calculation of R. Assuming
that there is an equal probability of finding the negatively
charged monopole on any of the second-neighbor sites, we
then deduce that the ratio of rates equals

R
K = P2

P1
, (E1)

where Pn (n = 1, 2) is the probability that a negatively charged
monopole situated at second-neighbor distance is able to
reach the positively charged monopole at the central site and
annihilate (for n = 2) or either annihilate or form a new
noncontractible pair (for n = 1).

The probabilities Pn may then be computed by enumerating
the possible spin configurations:

P1 = 1

N

N∑
i=1

fi = 1

4

[
3 × 6

7
+ 3

5

]
= 111

140
(E2)

P2 = 1

N

N∑
i=1

fi = 1

4

[
3 × 6

7
+ 0

]
= 9

14
, (E3)

where N ≡ 12 is the number of second neighbors, and fi is
the fraction of paths starting on site i that can reach the central
tetrahedron. In both expressions, the factor 6/7 corresponds to
the fraction of paths that are not blocked when the negatively
charged monopole is approaching a vertex on the central tetra-
hedron that hosts a majority spin [Fig. 14(a)]. Conversely, 3/5
of the paths are not blocked when approaching the minority
spin [Fig. 14(b)], unless the first-neighbor site is occupied
by the negatively charged member of a noncontractible pair
[Fig. 14(c)], in which case the fraction is zero.

Using these probabilities, we obtain the ratio of rates

R
K = 30

37
. (E4)

Finally, the finite size scaling exponent is therefore ν =
90/37.

J3b

J2J2

J3aJ3a

J1J1

FIG. 15. Illustration of the various coupling constants J1 (blue),
J2 (green), J3a (orange), and J3b (red). The solid lines denote interac-
tions between the central spin, represented by the solid black circle,
and its neighboring spins, represented by the coloured circles.

APPENDIX F: FARTHER-RANGED INTERACTIONS

Consider the generalised dipolar spin ice Hamiltonian,
which includes interactions Ji j between spins beyond nearest-
neighbor separation [30–33]:

H = −
∑
(i j)

Ji jSi · S j + D
∑
(i j)

[
Si ·S j

|ri j |3 − 3(Si ·ri j )(S j ·ri j )

|ri j |5
]
,

(F1)
where Si = Siei, with Si ∈ {−1,+1}.

Let us focus in particular on J2- and J3-type interactions, of
the form shown in Fig. 15, where the latter is divided into J3a

and J3b, corresponding to spin–spin interactions between adja-
cent hexagons and across hexagonal plaquettes, respectively.
These interactions may be written in terms of the Ising spins
Si as follows:

−
∑
(i j)

Ji jSi · S j = J

3

∑
〈i j〉1

SiS j + J2

3

∑
〈i j〉2

SiS j

−J3a

∑
〈i j〉3a

SiS j − J3b

∑
〈i j〉3b

SiS j , (F2)

where 〈i j〉n denotes nth neighbors on the pyrochlore lattice.
In the special case J2/3 + J3a = J3b = 0, the spin–spin inter-
actions assume the form

−
∑
(i j)

Ji jSi · S j

= 2

3
(J − 2J2)

∑
a

Q2
a + 4J2

3

∑
〈ab〉

QaQb + const.. (F3)

That is, the farther-ranged interactions between spins may
be summed to give nearest-neighbor truncated interactions
between the tetrahedral charges Qa, in addition to a shift in the
chemical potential for monopoles (i.e., a shift in the value of
2Jeff). As a result, only the short-distance physics of monopole
dynamics is affected, leading to modifications of, for example,
the energy barrier associated with thermally activated decay of
noncontractible pairs.

When J2/3 + J3a �= 0 or J3b �= 0, the spin–spin interactions
in (F2) can no longer be written in terms of tetrahedral
charges Qa only, leading to a form of effective disorder in the
dynamics of monopoles. However, as long as the long-range
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bias for monopole motion across the system is active, we
expect the phenomenology discussed in the main text to
remain qualitatively similar.

For example, if the magnitude of the interactions J2 and
J3 is significantly smaller than Enn, the dynamics of the

monopoles remains essentially unaffected during the transient
regime in which the plateau is established.

This is indeed the case in Dy2Ti2O7, where estimates
of J2 and J3 typically range from O(1mK) to O(10 mK)
[30–33].
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