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Exchange corrections for inelastic electron scattering rates in condensed matter
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A method is presented for quantifying quantum-mechanical exchange effects within the dielectric theory of
electron scattering, the prevailing model for electron energy losses in condensed-matter systems. The approach
utilizes a uniquely symmetric view of direct and exchange scattering events along with a generalized interference
phase to account physically for the reduced scattering rates required by the Pauli exclusion of final-state fermions
with corresponding spin, energy, and momentum. It is found that existing implementations either neglect or
substantially overestimate the impact of exchange interference for condensed materials with broad optical loss
spectra due to mathematical approximations or physical assumptions which are largely avoidable. The results
suggest that the impact of exchange may alter inelastic scattering cross sections by between 10% and 20% for
incident energies below 200 eV, a critical energy range for current investigations in electron and photoelectron
spectroscopies.

DOI: 10.1103/PhysRevB.100.184311

I. INTRODUCTION

Inelastic scattering rates for electrons in a solid are a
fundamental material property of critical importance to an
immense range of physical, chemical, and spectroscopic stud-
ies and, increasingly, for modern imaging and metrology [1].
Their computation is a longstanding problem harking back
to the early days of quantum theory [2], with significant
developments in the field still being made even in the last few
years. This is particularly true with respect to the behavior of
slow-moving electrons, where energies fall well below 1 keV,
whose quantitative properties are needed for developments of
the latest technologies in electron microscopy and nanoelec-
tronics.

Following recent improvements in measurement tech-
niques for low-energy electron inelastic mean free paths
(IMFPs) [3,4], a large number of theoretical investigations
have been made to critically examine the many potential
deficiencies in the prevailing theory of inelastic scattering
for slow electrons in condensed matter [5–10]. A principal
problem is that while there is a sound quantum-mechanical
basis for most of the existing calculations, first-principles
results for solids are extremely difficult to obtain and tend to
be highly limited in scope [11].

It is therefore most common to calculate electron scattering
rates in condensed matter via a dielectric theory following
either the Quinn-Penn formalisms [12,13] or the Lundqvist
model for self-energy [14,15]. These models, implemented
usually within the Born approximation, tend to be quite ac-
curate for fast-moving electrons but also tend to break down
below 100 eV [16]. In the absence of a tractable many-body
theory describing all scattering mechanisms within a well-
defined band structure beyond a few tens of eV, we thus
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require improved methods to apply the lessons of the fun-
damental quantum theory to our dielectric models to ensure
accuracy down to these critical energies.

In this spirit, this work presents an implementation of the
effects of electron exchange interference within a dielectric
model. It utilizes as its basis the coupled-plasmon model
(CPM) of Bourke and Chantler [8], which is an extension of
the full Penn algorithm [17] and thus aligned with the most
common usage of the Quinn-Penn theory. A recent review
of the CPM, including its origins from the random-phase
approximation [18] and subsequent extensions, can be found
in [19].

II. INELASTIC CROSS SECTIONS

We begin with consideration of the electron IMFP λ, which
quantifies the mean distance traveled by an electron between
successive inelastic collisions. It is standard to define it in
terms of the double-differential cross section (DDCS) as

λ−1 =
∫ ωmax

0

∫ q+

q−
N

d2σ

dωdq
dqdω, (1)

where N is the number density of atoms, ω is the energy
transferred by an inelastic scattering event, and q is the
transferred momentum in atomic units. The integration limits
are conventionally determined by kinematic constraints on the
incident electron and are given by

ωmax = T ′ − EF , (2a)

q± =
√

2T ′ ±
√

2(T ′ − ω), (2b)

where T ′ = T + EF and T is the energy of the incident
electron relative to the Fermi energy EF of the scattering
material. The DDCS is then related to the imaginary part
of the electron self-energy and, secondarily, to the complex
dielectric function via the theory of Quinn and Ferrell [12].

2469-9950/2019/100(18)/184311(7) 184311-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.184311&domain=pdf&date_stamp=2019-11-26
https://doi.org/10.1103/PhysRevB.100.184311


J. D. BOURKE PHYSICAL REVIEW B 100, 184311 (2019)

The nonrelativistic formulation of this theory is described by
Tanuma et al. [20] and yields

d2σ (ω)

dωdq
= 1

N

1

πT ′
1

q
Im

[ −1

ε(q, ω)

]
. (3)

This theory and its affiliates have had great success in
tabulating accurate IMFPs for a wide range of elemental and
molecular systems [20,21]. Recent work has also extended
its applicability to the low-energy regime with improvements
in the self-consistent derivation of the energy loss function
(ELF), given by Im[ −1

ε(q,ω) ] [8].
This standard formulation, however, lacks a physical im-

plementation of the electron exchange interaction. The ex-
change interaction takes different forms depending on the
electron states being discussed. For example, the state of
the scattering material should ideally be affected by electron
exchange, such as via an exchange hole [22], and this would
alter the dielectric function and hence Im[ −1

ε(q,ω) ] [23]. In this
work we are concerned with the exchange interaction between
the two final-state electrons that propagate after a scattering
event, and thus we are interested in the direct correspondence
between the ELF and the DDCS given by Eq. (3).

III. EXISTING EXCHANGE MODELS

There exist in the literature few models that attempt to
account for exchange in the relationship between the cross
section and the ELF, but it is useful to recount two of them
explicitly not only as a comparison to the model presented
here but also as an effective explanation for the physical nature
of the effect. As with the current approach, they both rely on
an extension of the electron-electron scattering formula given
by Mott in the absence of spin polarization [2,24]:

σ = k1k2

k0

∫∫
| f (k1, k2)|2 + |g(k1, k2)|2

− Re[ f (k1, k2)g∗(k1, k2)]. (4)

Here k0 is the initial momentum of the system, while f and g
are transition amplitudes with final-state electron momenta of
k1 and k2. f is conventionally denoted as the direct scattering
amplitude, while g is the exchange scattering where the final
electron states are switched. We therefore have a symmetry
constraint [25]:

f (k1, k2) = g(k2, k1), (5)

which is necessary for the final term in Eq. (4) to be reduced
to its real component. The most direct interpretation of Mott’s
formula in terms of the electron ELF is given by Emfietzoglou
et al. [26]:

dσXI

dω
= dσ (ω)

dω
+ dσ (T ′ − EF − ω)

dω

−
[

dσ (ω)

dω

dσ (T ′ − EF − ω)

dω

] 1
2

, (6)

where σXI is the cross section inclusive of an exchange-
interference correction and we make the inference that, for

example,

dσ (T ′ − EF − ω)

dω

= 1

N

1

πT ′

∫ q+

q−

1

q
Im

[ −1

ε(q, T ′ − EF − ω)

]
. (7)

This provides a good intuitive view of the scattering
contributions. From the right-hand side of Eq. (6), the first
term relates the direct scattering, conventionally where the
incoming electron loses less than half of its initial energy,
the second term is the exchange analog where the incoming
electron finishes with less than half its initial energy, and
the third term is the interference caused by Pauli’s exclusion
principle. In the case of the final states being equivalent, the
interference reduces the differential cross section (DCS) by
half due to the 50% probability of the spins being aligned. The
total cross section is then obtained by integrating dσ

dω
from 0 to

ωmax
2 .

Physically, it is important that the direct and exchange
scatterings be treated equivalently (even if they are not equal)
because the convention dictating the definition of each is
arbitrary. This is the essence of the symmetry condition of
Eq. (5). Equation (6) satisfies this requirement in terms of the
energy integral—it does not matter whether the integration
range runs from 0 to ωmax

2 or from ωmax
2 to ωmax—but it

breaks the symmetry condition with respect to the momentum
integration because q± is dependent on the energy transfer.
This problem is not significant in terms of the actual cross
sections calculated using this approach; however, we point it
out here because it is increasingly important for extensions of
the model.

An issue that is significant numerically, however, is the way
that Eq. (6) treats the exchange interference. Because the ELF
is being treated as a substitute for the transition amplitude, the
interference term loses the phase factors intrinsic to f and g.
Thus the final-state electrons are modeled as being in phase
regardless of their respective momenta, leading to a substan-
tial overestimation of their interference and a corresponding
underestimation of the total cross section. For large energies
of the incident electron, the interference becomes negligible
due to the dominance of the direct scattering contribution, but
at energies below a few hundred eV this error becomes too
large for this model to be useful.

Accordingly, it is more common to see calculations per-
formed using an alternative approximation inspired by Ochkur
[27]. Ochkur found that, to within a first-order application
of the Born-Oppenheimer model, the direct and exchange
transition amplitudes for an atomic ionization event can be
simply related via

g(k1, k2) ≈
(

q

k0

)2

f (k1, k2). (8)

This would notionally remove the need for a phase factor
as the entire calculation could be carried out in terms of the
direct scattering amplitude. It leads to the following form for
the cross section, used by [28,29], among others:

σ = N
1

πT ′

∫ ωmax
2

0

∫ q+

q−

1

q
[1 + fex]Im

[ −1

ε(q, ω)

]
dqdω, (9)
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FIG. 1. Contributions to the differential cross section dσ

dω
for

copper for a primary electron energy of 50 eV. Plotted are the direct
scattering (blue dotted line), exchange scattering (orange dashed
line), total scattering (solid black line), and interference terms us-
ing different models. The current model, in purple, correctly and
uniquely possesses a magnitude of half the sum of the direct and
exchange scattering terms only when the final-state excitations are
energetically similar.

where

fex =
(

q

k0

)4

−
(

q

k0

)2

. (10)

The Ochkur approximation tends to yield far more realistic
cross sections than the direct Mott analog [30,31], particularly
at energies between roughly 100 eV and 1 keV [26]; however,
this is somewhat due to canceling of errors. Although the
form of Eq. (9) has no obvious problems with symmetry, the
underlying premise that the exchange scattering can be repre-
sented by a scaling of the direct scattering is strictly true only
for a very limiting case. Specifically, Eq. (8) may be derived
within the dielectric theory only by using a single-pole model
with approximately zero plasma frequency (corresponding to
a zero-density free-electron gas) and in the limit of extremely
high incident electron energy. This limit is workable for the
atomic ionizations Ochkur was tackling, but in the case of a
solid where a broad spectrum of electron and quasiparticle
resonances exist or in a region of relatively low incident
electron energy, the model breaks down entirely.

The simplest illustration of said breakdown comes when
we consider the component of the integral when k1 = k2.
In this case Eq. (8) clearly does not satisfy the symmetry
condition of Eq. (5), so if the contribution to the cross sec-
tion is significant in this region, the result from Ochkur’s
approximation will be aberrant. The later example of copper
shown in Figs. 1 and 3 demonstrates that this is very much so
for projectile energies at or below ∼50 eV. Hybrid models
favoring aspects of the Ochkur approximation and aspects
of the direct Mott analog for different limiting cases have
been proposed [31]; however, this is also likely to be more
of an exercise in error compensation rather than the basis of a
meaningful model.

As such, we require two corrections to existing models to
obtain a satisfactory exchange-interference contribution for
the total inelastic cross section: A formalism in which the

FIG. 2. The contribution of exchange interference to the total
DCS, scaled by the sum of the direct and exchange scattering
amplitudes. The high-energy behavior resembles that of an ideal
Mott scattering between two free particles.

symmetry of the exchange interaction is rigorously main-
tained and one in which the relative phase of the final-state
excitations is properly implemented.

IV. EXCHANGE SYMMETRY

The difficulty in treating the direct and exchange terms
equivalently is primarily due to the kinematic model that
gives us our momentum integration limits q±. These limits
impose a free-electron-like final-state dispersion relation on
the incident electron, so that we have, in atomic units, E1 =
k2

1/2, where E1 is the final energy of the incident electron
(E1 = T ′ − ω in the direct scattering case). For most scatter-
ing events this is a sensible approximation, and it provides us
with a range of possible momenta for the scattered electron
(or bulk excitation) based on conservation of both momentum
and energy.

CPM

Ochkur

Mott Analogue

This Work

XAFS

EPES (Gergely et al.)

EPES (Lesiak et al.)
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FIG. 3. IMFPs calculated for copper using different exchange-
interference models. The CPM curve uses the existing coupled-
plasmon model without an interference correction. The Ochkur curve
uses the exchange-interference correction from Eq. (9), while the
Mott analog uses the correction from Eq. (6). This work, in blue, uses
the model from Eq. (24). Comparisons to experimental data from the
XAFS [3] and EPES [32,33] techniques are also shown.
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The above kinematic model creates a problem, however,
in that it constrains our model to treat any final state that
does not exhibit free-electron dispersion as certainly being
the “excited” particle and not the scattered one. Although
we cannot discard this approach entirely without altering the
overall range of integration, which is known to be valid at high
energies, we can adjust our formalism in order to treat the
final states equivalently so that even though one of them must
adhere to a free-particle dispersion, it does not matter which
one it is.

We do this by transforming our expression for the DCS to
treat the problem in terms of the relative scattering angle θ

between the two final-state particles. θ is related to the final-
state momenta of the incident and scattered electrons by

θ = cos−1

(
k2

0 − (k2
1 + k2

2 )

2k1k2

)
, (11)

which, importantly, does not depend upon the choice of
particle labels. It is then possible to choose arbitrarily one
momentum, in this case k2, to define the relations needed for
the change of variable:

k2 = −k1 cos θ +
√

k2
0 − k2

1 sin2 θ, (12a)

dk2

dθ
= k1 sin θ − k2

1 cos θ sin θ√
k2

0 − k2
1sin2θ

. (12b)

We can then express the total cross section, in the absence
of exchange interference, as

σ =
∫ ωmax

0

∫ π

0
N

1

πT ′
1

−k1 cos θ +
√

k2
0 − k2

1 sin2 θ

× Im

[ −1

ε(q, ω)

]⎛
⎝k1 sin θ − k2

1 cos θ sin θ√
k2

0 − k2
1 sin2 θ

⎞
⎠dθdω,

(13)

where the integrand is the new DDCS, d2σ
dωdθ

.
With this representation it is possible to revisit the Mott

analog of Eq. (6), but instead using the DDCS so that the
interference term can depend explicitly on the momentum
transfer:

d2σXI

dωdθ
= d2σ (ω)

dωdθ
+ d2σ (T ′ − EF − ω)

dωdθ

− Re

{[
eiτ (k1,k2 ) d2σ (ω)

dωdθ

d2σ (T ′ − EF − ω)

dωdθ

] 1
2
}

,

(14)

where we have included a generalized phase term that will
be discussed in the next section and have specified the real
component by analogy with Eq. (4). This transformation
affects only the interference term and is a surprisingly small
correction when the phase term is neglected. The reason
for this, however, is of physical interest. Transforming to
an angular integral aligns scattering events which produce
two free-electron-like final-state particles to states where
θ = π/2. This means, for example, that in a model absent

of quasiparticle states or electrons modulated by a material
potential, Eq. (14) would produce results identical to Eq. (6)
because it aligns all excitations that lie along the Bethe
ridge (i.e., all such excitations correspond to the same θ ).
It also produces results identical to Ochkur’s approximation
when the incident energy is sufficiently high because then
the material behaves like a low-density free-electron gas in
keeping with Ochkur’s derivation. As such, differences in this
approach from the existing models of exchange interference
are significant only insofar as the material in question varies
from an ideal low-density free-electron gas.

V. PHASE-DEPENDENT INTERFERENCE

Despite the minor impact of the transformation to an
angular-dependent model, it is quite necessary to the theory
because it facilitates a solution to the problem of the relative
phase in the interference term. The phase factor is necessarily
momentum dependent but must also be treated symmetrically
with respect to the final state particles.

Without a first-principles calculation for the transition am-
plitudes f and g it is impossible to account for the phase term
exactly; however, it is certainly possible to derive a meaning-
ful approximation via established functional forms. For this
purpose we take the transition form given by Rudge [30]:

f (k1, k2) = −(2π )−5/2 exp [i	(k1, k2)]

×
∫


(H − E )�dr1dr2, (15)

where 
 is the total wave function, r1, r2 are the spatial
indices of the interacting electrons, and � is a radial function
constrained to ensure a normalized, asymptotic form over
all space. This amplitude is designed to describe ionization
in hydrogen but can be applied more generally to a central-
potential scattering problem. The original derivation is given
by Peterkop [34], while the specific form we have adopted was
developed by Rudge and Seaton [35]. Although the details of
both 
 and � are certainly dependent not only on the nature
of the scattering atom but also on the band structure of the
material, for our purpose it is the phase term exp [i	(k1, k2)]
that is important, and this can be expressed directly in terms
of the respective momenta:

	(k1, k2) = 2

[
z1

k1
ln

(
k1

k0

)
+ z2

k2
ln

(
k2

k0

)]
, (16)

where k0, k1, and k2 are as previously defined and the z pa-
rameters are effective charge distributions which satisfy [30]

z1

k1
+ z2

k2
= 1

k1
+ 1

k2
− 1

|k1 − k2| . (17)

Given this phase factor, coupled with the symmetry condi-
tion, we can see that the interference term in Eq. (14) must be
modulated by a factor of exp[iτ (k1, k2)], where

τ (k1, k2) = 	d (k1, k2) − 	e(k2, k1). (18)

The above expression is modified from that of Peterkop [36] to
include the subscripts d and e, corresponding to the direct and
exchange contributions. We do this to clarify that, although the
expressions are analogous, it is necessary to compute the k1
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and k2 values separately for each case. This is because they are
dependent on the energy transfer, which we denote ω for the
direct scattering case and T ′ − EF − ω for exchange, and thus
cannot be interchanged freely except along the Bethe ridge or
in the high-energy limit. Therefore the only difference mathe-
matically in the direct and exchange contributions throughout
our model is whether the initial electron loses more or less
than half of its available energy.

The only ingredient then missing is a set of forms for z1, z2,
which satisfy Eq. (17). Since the difference term |k1 − k2|
depends also on the relative angle of scattering, it is conve-
nient to reparameterize the effective charges, without loss of
generality, as

z1 = 1 − k1

|k1 − k2|G1, (19a)

z2 = 1 − k2

|k1 − k2|G2. (19b)

We can now rewrite our mathematical constraint as

G1 + G2 = 1, (20)

where G1 determines the transition from direct- to exchange-
dominated scattering regimes and vice versa for G2. This is
analogous to Rudge’s physicality conditions [30]:

lim
k1→0

z1 = 1; z2 = 0, (21a)

lim
k2→0

z1 = 0; z2 = 1, (21b)

which give us the exchange and direct boundary conditions,
respectively, for G1 in the high-energy limit,

lim
k1→0

G1 = 0, (22a)

lim
k2→0

G1 = 1, (22b)

and corresponding values for G2 from Eq. (20). Rudge has
demonstrated nonsymmetric forms for zn that can reasonably
be applied in the high-energy limit for direct scattering [30]
or can even reproduce Ochkur’s result [27]. It is also possible
to derive trivial forms for G1 and G2 that exactly reproduce
the exchange-interference phase obtained by Mott for isolated
free electrons, thus showing Mott’s formalism to be a special
case of this model [37].

Our parametrization, however, allows us to go a step fur-
ther. We already possess knowledge of the relative strengths
of the two regimes in the form of their double-differential
cross sections. Therefore we can meaningfully quantify our
G functions, and thus the effective charge distribution, via

G1 = d2σ (ω)

dωθ

[
d2σ (ω)

dωdθ
+ d2σ (T ′ − EF − ω)

dωdθ

]−1

. (23)

This not only gives us a physical constraint via the actual
dielectric response of the material but also guarantees adher-
ence to the boundary conditions [Eqs. (21) and (22)] in the
high-energy limit. We can now express the cross section more
generally as

σXI =
∫ ωmax

2

0

∫ π

0

{
d2σ (ω)

dωdθ
+ d2σ (T ′ − EF − ω)

dωdθ
− cos[τ (k1, k2)]

[
d2σ (ω)

dωdθ

d2σ (T ′ − EF − ω)

dωdθ

] 1
2
}

dθdω, (24)

where the double-differential terms correspond to the inte-
grand of Eq. (13), the range of the energy integral is now
halved, and the phase term becomes a cosine as the real part
of a complex exponential. This generalized form allows us to
incorporate a momentum- (or angle-) dependent phase term
into our interference model, facilitating a far more physical
account of the effects of exchange within the DDCS.

VI. RESULTS

The test case of elemental copper is utilized as it is widely
studied through both experiment [3] and theory [38] and pos-
sesses a broad loss function which is likely to be sensitive to
the details of the exchange model. It is instructive to consider
the various components of the differential cross section dσ

dω
,

which are plotted in Fig. 1 for an incident electron energy of
50 eV.

Here the dotted blue curve is the “direct” scattering con-
tribution, where the incident electron may lose up to ωmax =
(50 − EF ) eV but is more likely to lose something closer to the
plasma energy around ∼10 eV. Integration of this curve over
the whole energy range yields the total inelastic cross section,
absent exchange interference. The dashed orange curve is the

exchange contribution, where the final states are reversed, and
the black curve is their sum. Integration of the black curve
over half the range, or 0 to ωmax

2 , will also yield the total
inelastic cross section, absent interference, corresponding to
the first two terms of the right-hand side of Eq. (6).

The final term of Eq. (6), corresponding to the inter-
ference within the direct Mott analog, is shown in green.
Here we see clearly one of the most significant problems
with this model. Although it correctly infers a maximum
relative interference when the final-state energies are equal,
it also does so whenever the direct and exchange DCS val-
ues coincide, as they do around 2 eV. At this energy, the
interference term is half the sum of the direct and exchange
terms, meaning that half of all possible excitations are lost
even though the final states are not at all similar. This is
somewhat alleviated by the transformation to a momentum-
/angular-dependent model, shown in red, where interference
is included at the DDCS level. This transform alone does
not, however, prevent highly dissimilar states from interfering
strongly.

It is only when the phase term is included, as in the
solid purple curve, that the model becomes satisfactory. It
then yields qualitatively correct behavior both when the fi-
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nal states are similar to one another and when they more
closely resemble their distinct initial states. The result is a
total inelastic cross section which, at 50 eV, is reduced by
around 15% due to exchange interference. If we were to use
the direct Mott analog (dashed green curve), the reduction
would instead be a massive 46%. Given that we are assuming
no spin polarization, this is close to the maximum possible
reduction of 50% which would be obtained if the final-state
electrons were otherwise always in the same quantum state.
Accordingly, it is clear that the current approach leads to far
more physically plausible values.

The form of the exchange-interference correction is highly
energy dependent for copper due to its broad loss function.
Figure 2 shows the strength of the interference term relative to
the total DCS for different incident electron energies between
50 and 5000 eV. We see that as the energy is increased, the
primary interference peak widens to encompass almost the
entire energy-transfer range.

This leads to a result which, in the high-energy limit,
approaches the Mott limit that is derivable from Eq. (4) for
two free electrons subject only to their Coulomb interaction.
The residual difference between the correction at 5000 eV and
the Mott limit comes from the complex form of the plasmon
excitations, which remain relevant for transitions where one
electron state finishes close to the Fermi energy. Although it
may appear from Fig. 2 that the impact of exchange interfer-
ence is greater at high energies, the opposite is true due to the
fact that at high energies relatively few excitations occur in
the central region of the plot where the final-state electrons
are similar.

The absolute energy dependence of the effect is best illus-
trated by the variation in the electron IMFP, defined relative to
the DDCS by Eq. (1). This is plotted for copper for incident
electron energies up to 5000 eV relative to the Fermi energy,
EF = 8.7 eV, in Fig. 3.

We can see that all of the approaches converge for high
energies, which is primarily due to the highly disparate values
of the DCS at opposite ends of the spectrum. This means that
the interference term becomes vanishingly small compared
with the sum of the direct and exchange amplitudes, so we
revert to the result which is commonly reported in “exchange-
free” theories.

For lower energies the choice of model becomes very
important. While the Mott analog gives somewhat aberrant
results below around 500 eV, the Ochkur approximation ap-
pears to perform much better, despite not being symmetric
mathematically or obtaining the correct behavior at the crit-
ical point where k1 = k2. The current model provides some
insight into why this may occur. We predict that at sufficiently
high energies, the contributions to the direct, exchange, and
interference terms are all dominated by their values on the
Bethe ridge where k1 � k2 or k1 	 k2, regions which Ochkur
approximates well without the need for a phase correction. As
such, the Ochkur approximation manages to agree with the
current result down to around 250 eV. At lower energies, how-
ever, the asymmetry of the Ochkur model means the exchange
and interference terms become badly wrong, most obviously
below 20 eV, where the IMFP is more than doubled, which
is not a physically possible consequence of the interference
effect.

VII. SIGNIFICANCE AND DISCUSSION

The impact of the exchange-interference model presented
here is significantly weaker than previous approaches and is
also far more consistent across energies up to a few hundred
eV. At 5 eV it predicts an increase in the IMFP of 25%,
while at 100 eV the increase is 14%. These increases will
have significant consequences for the analysis of many exper-
iments, including electron microscopy [39], low-energy elec-
tron diffraction, electron energy loss spectroscopy [40], and
photoelectron spectroscopies. In particular, the introduction of
exchange increases the discrepancy with IMFP measurements
from x-ray absorption fine structure (XAFS) by more than
two standard errors, as seen in Fig. 3 [3]. At energies above
500 eV, the calculated IMFPs remain relatively consistent with
the elastic peak electron spectroscopy (EPES) measurements
of Lesiak et al. [33].

This result presents further challenges in rectifying the
low-energy scattering anomalies that have been observed in
recent years via not only XAFS but various other experimental
methods [41,42]. It is, however, important to address each
aspect of the theory thoroughly if we are to resolve these ob-
served discrepancies. This is especially true when we consider
that some results, such as those of Emfietzoglou et al. [26,42],
suggest that in certain cases our calculated IMFPs may, in
fact, need to be increased further at low energies, rather than
decreased.

Such inconsistencies are suggestive that there are still sig-
nificant effects that need correcting and that they may be more
or less dominant for different kinds of materials. In addition to
the likelihood that there still exist some systematic and other
errors hidden within the experimental data, potential theoret-
ical issues include, but are not limited to, effective exchange-
correlation potentials impacting the dielectric function [43],
the vertex correction [44], and second-order corrections to
Quinn’s self-energy model [15]. Even within the model pre-
sented here, some error is expected at low energies in the
absence of an explicit modeling of the initial bound states,
an effect which will scale with the Fermi energy/momentum
[45]. In particular, while the dominant impact of the inter-
ference term exists when the energy transfer is roughly half
of T , the lower bound of the momentum transfer integral at
that point can be evaluated as q− ≈ √

T (
√

2 − 1) ≈ 0.3k0.
So these results can be considered quantitatively robust only
when T is several times larger than EF , while at lower
projectile energies the uncertainty of the initial bound-state
energy is likely to introduce a decoherence effect which would
lower the interference contribution.

In terms of the exchange-interference correction presented
herein, it should be considered that this model likely repre-
sents an upper bound of the plausible increase to the IMFP.
This is because the extent to which the standard Mott scatter-
ing picture should be applied to excitations involving quasi-
particles, which in this case chiefly pertains to the prevalence
of plasmon excitations, is not entirely clear. It seems, on the
one hand, unwise to directly apply Pauli’s exclusion to the
case of a single electron interfering with a bulk excitation,
even if they possess the same energy and momenta. However,
it could be that some level of the effect persists depending
on the plasmonic spin polarization. It is also probable that,
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because this model aligns excitations that lie along the Bethe
ridge, the majority of the interference we quantify is, in any
event, arising from the interference of excited single-electron
states. So while the current result may still be an overestimate
of the effect, it is reasonable to expect that the residual errors
should be relatively small.

We have thus developed an improved model for the cal-
culation of exchange interference within the framework of
a dielectric theory. The model permits a far more physical
view of the scattering processes whereby the choice of direct
and exchange channels is rendered inconsequential and where
the interference of final-state excitations corresponds far more
directly to their differences in energy and momentum. These

advances should improve our quantification of the exchange-
interference effect and aid the rigor of further expansions of
the standard dielectric scattering theory.
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