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Dynamics of two-dimensional topological quadrupole insulator and Chern insulator
induced by real-space topological changes
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The dynamics of two-dimensional (2D) topological quadrupole insulator (TQI) and Chern insulator (CI) after
the real-space configuration is transformed from a cylinder or Mobius strip to open boundary condition (OBC)
and vice versa is analyzed. Similar dynamics of both models are observed, but the quadrupole corner states of
the TQI makes the signatures more prominent. After the systems transform from a cylinder or Mobius strip to
OBC, the occupation of the corner state of the TQI and the edge state of the CI exhibits steady-state behavior.
The steady-state values depend on the ramping rate of the configuration transformation, manifesting a type of
quantum memory effect. On the other hand, oscillatory density ripples from the merging of edge states persist
after the systems transform from OBC to a cylinder or Mobius strip. If the final configuration is a cylinder, the
density ripples are along the edges of the cylinder. In contrast, the density ripples can traverse the bulk after the
systems transform from OBC to a Mobius strip. The transformation of real-space topology thus can be inferred
from the dynamical signatures of the topological edge states.
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I. INTRODUCTION

The discovery of topological insulators has revolution-
ized our classification of electronic systems and accelerated
the search for novel materials [1–7]. The bulk-boundary
correspondence connects the quantized topological invari-
ants defined in systems with periodic boundary condition to
the numbers of edge states in systems with open boundary
condition. Recently, a class of topological insulators called
the higher-order topological insulator (HOTI) [8,9] has been
shown to have hinge or corner states with codimensions larger
than one. The mechanism of higher-order topological insula-
tors transcends material properties. In addition to electronic
materials [10], HOTIs have been realized in photonic [11],
mechanical [12], phononic [13,14], and acoustic [15,16] sys-
tems and electric-circuit simulators [17]. Moreover, possible
higher-order topological superconductors have been discussed
[18,19] and HOTIs may also be found in twisted bilayer
graphene [20].

While the topology of the band structure gives rise to non-
trivial transport properties [1–6], the topology in real space
may also lead to interesting phenomena. One simple yet topo-
logically nontrivial manifold is the Mobius strip, compared to
the topologically trivial cylinder [21]. There have been studies
of static properties of topological systems on a Mobius strip,
showing nontrivial states across the bulk that is not possible
in the cylinder configuration [22,23]. On the other hand, the
dynamics of topological systems after a global change in the
parameters [24–29] or a local change of boundary condition
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[30] can show signatures of the topological states in time
evolution. Here we present our study of the dynamics of two-
dimensional (2D) topological quadrupole insulator (TQI) and
Chern insulator (CI) as the real-space configuration changes
from a rectangle with open boundary condition (OBC) to a
cylinder with periodic boundary condition along one direction
or a Mobius strip with twisted boundary condition along one
direction, and vice versa. The TQI is an example of the HOTI
supporting a quadrupole moment in the presence of OBC
while the CI has chiral topological edge states at the boundary.
The 2D cases studied here exhibit richer physics compared to
the one-dimensional (1D) cases shown in Ref. [30] because
(1) the HOTIs require the codimension of edge states to be
greater than one, and (2) twisted real-space manifolds, such
as the Mobius strip, are realizable in higher dimensions.

Although the dynamics of the 2D TQI and CI show many
similarities as the boundary changes, the quadrupole corner
states of the TQI make the signatures more prominent. Thus,
we present the results of the TQI first and then compare with
the CI. For the 2D TQI from a cylinder or Mobius strip to
OBC, the initial condition decays away and the system de-
velops a quadrupole moment in both scenarios. Interestingly,
we have not introduced any dissipation mechanism, but the
system reaches a steady state with the density distribution
becoming time independent after the transient behavior dies
out. Moreover, the steady-state occupation of the quadrupole
corner state exhibits an explicit dependence on the rate of the
boundary-condition change. The slower the ramping rate, the
higher the occupation of the corner state can be observed. This
type of behavior is a rate-dependent quantum memory effect
[31], which has been discussed in the dynamics of 1D topolog-
ical models as the boundary condition changes from periodic
to open [30]. Moreover, the dynamics of the quadrupole
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moment exhibits similar quantum memory effect, although the
fluctuation of the steady-state value is more significant. While
the 2D CI does not have a finite quadrupole moment, it has
chiral topological edge states at the boundary. The occupation
of the edge state of the 2D CI shows similar rate-dependent
memory effect after the system transforms from a cylinder
or Mobius strip to OBC. We mention that parameter-induced
dynamics of HOTI models with open boundary condition has
been studied recently in Ref. [32].

As the systems transform from OBC to a cylinder or
Mobius strip, there is no longer a steady state because the
systems exhibit oscillatory density ripples for both the TQI
and CI. For the 2D TQI, the density ripples in the final cylinder
configuration only oscillate along the two edges of the cylin-
der. In contrast, the density ripples in the Mobius strip only
oscillate along a line perpendicular to its edge. As pointed out
in Refs. [22,23], the Mobius strip can frustrate the would-be
topological edge state and cause it to traverse the bulk instead.
The different dynamics of the density ripples from OBC to
a cylinder and Mobius strip clearly shows how a change in
the real-space topology can drive the topological edge states
and allows observable effects out of equilibrium. On the other
hand, the topological edge state of the 2D CI leads to a weaker
contrast between the cylinder and Mobius-strip configura-
tions. After a transformation from OBC to a cylinder, the den-
sity ripples of the 2D CI are still confined in the two edges of
the cylinder. However, the density ripples of the CI from OBC
to a Mobius strip oscillate in both directions, with the ampli-
tude in the direction perpendicular to the edge dominating.

The rest of the paper is organized as follows. Section II
summarizes the TQI and CI models in different configura-
tions. The time evolution and initial state are also explained.
Section III presents the dynamics of the systems when the
real-space configurations are transformed. Features of quan-
tum memory effect and density patterns are analyzed, and the
similarities and differences between the TQI and CI models
are summarized. Section IV discusses some implications for
experiments and possible realizations. Section V concludes
our work. The Appendix summarizes the details of the TQI
and CI models.

II. THEORETICAL FRAMEWORK

A. Topological quadrupole insulator and its
real-space configurations

We consider a 2D TQI model given by the following
Hamiltonian of a four-band model in k space [8]:

H =
∑
k,a,b

ψ
†
k,ahab(k)ψk,b, (1)

h(k) = (m + w cos kx )�4 + w sin kx�3

+ (m + w cos ky)�2 + w sin ky�1 + δ�0. (2)

Here ψk = (ck,1, ck,2, ck,3, ck,4)T with the superscript T de-
noting the transpose, �4 = σ1τ0, �i = σ2τi with i = 1, 2, 3,
and �0 = σ3τ0. σi and τi with i = 1, 2, 3 are the Pauli matrices
and σ0, τ0 are the 2 × 2 identity matrices in different internal
spaces. m gives the on-site potentials and w is the hopping co-
efficient. This model may be viewed as a 2D generalization of
the Su-Schrieffer-Heeger (SSH) model [33]. The topological

nontrivial phase arises when |m| < |w| and has a quantized
electric quadrupole moment Qxy. There are two reflection
symmetries given by the operators m̂x = σ1τ3 and m̂y = σ1τ1,
whose operations on the Hamiltonian are

m̂xh(kx, ky)m̂†
x = h(−kx, ky ), (3)

m̂yh(kx, ky)m̂†
y = h(kx,−ky). (4)

Those symmetries quantize both components of the polariza-
tion and also the quadrupole moment. The term δ�0 breaks
those two reflection symmetries, so the quadrupole moment is
not quantized exactly. In the following, we will assume δ < w

and use it to fix the sign of Qxy.
In real space, the model is given by

H =
∑

n

{
ψ†

n [m(�4 + �2) + δ�0]ψn

+ wn

2
ψ†

n (�4 − i�3)ψn+x̂ + w

2
ψ†

n (�2 − i�1)ψn+ŷ

+ wn

2
ψ

†
n+x̂(�4 + i�3)ψn + w

2
ψ

†
n+ŷ(�2 + i�1)ψn

}
.

(5)

Here n = (nx, ny) is the coordinate of a 2D square lattice with
nx, ny ∈ {1, . . . , N}. x̂ and ŷ are the unit vectors along the x
and y axes, respectively. We introduce ψn = (cn,1, . . . , cn,4)T .
After solving the model with open boundary condition along
both x and y axes, one will find four corner states localized
at the corners of the rectangle. Unlike the SSH model, where
the number of edge states depends on the parity of the total
number of sites, the 2D TQI model has the same number of
corner states regardless of the parity of N .

To study the dynamics induced by a change of the real-
space topology, we consider the following configurations: (1)
A rectangle with OBC in both x and y directions. (2) A
cylinder with periodic boundary condition (PBC) along one
direction (say, the x direction) and open boundary condition
along the other direction (say, the y direction). (3) A Mobius
strip with twisted boundary condition (TBC) along the x
direction and open boundary condition along the y direction.
The periodic (or twisted) boundary condition along the x axis
leads to ψN+1,i = ψ1,i (or ψN+1,i = ψ1,N−i+1). Since periodic
or twisted boundary condition works if N is even, in the
following we will focus on the configurations with even N .

The transformation from configuration (1) to configuration
(2) or (3) or vice versa can be achieved by tuning the hopping
coefficient wn associated with the link between site n and site
n + x̂. If we consider a linear transformation with a constant
ramping rate, the system will evolve from configuration (2)
to configuration (1) when the hopping coefficients transform
according to

wn =
{
w, nx �= N,

w(t ), nx = N.
(6)

Here w(t ) = w(1 − t/tq) for 0 � t � tq and w(t ) = 0 for t >

tq. In the following we will focus on linear transformations
between different configurations.
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B. Time evolution and initial condition of TQI

The quantum dynamics can be described by the Heisenberg
equation [30]. For an operator A, we have dA

dt = −i[A, H].
Here we set h̄ = 1. The time unit is t0 = h̄/w. We define the
following correlation functions as a set of 4 × 4 matrices:

G(n, m) = 〈S0|ψnψ
†
m|S0〉. (7)

Here |S0〉 is the initial quantum state. Once the time evolution
of the correlation functions are obtained, physical quantities
such as the density profile can be found. The detailed ex-
pressions of the time-evolution equations are summarized in
Appendix A 1.

The initial condition of the OBC, cylinder, or Mobius strip
corresponds to the half-filled ground state of the correspond-
ing initial Hamiltonian. The details of the initial conditions are
summarized in Appendix A 2.

C. Time evolution and initial condition of 2D Chern insulator

To contrast the influence of the quadruple corner state of
the TQI, we also consider the time evolution of a 2D two-band
CI model with the Hamiltonian

HCI = w sin kxσ1 + w sin kyσ2

+ (m + w cos kx + w cos ky)σ3. (8)

For 0 < m < 2, the lower band of the model has Chern num-
ber C1 = 1. In real space, the Hamiltonian can be rewritten as

HCI =
∑

n

[
mψ†

nσ3ψn + wn

2
ψ†

n (σ3 − iσ1)ψn+x̂

+ w

2
ψ†

n (σ3 − iσ2)ψn+ŷ + wn

2
ψ

†
n+x̂(σ3 + iσ1)ψn

+ w

2
ψ

†
n+ŷ(σ3 + iσ2)ψn

]
. (9)

Here ψn = (c1,n, c2,n )T , and one needs to impose proper
boundary condition.

Similar to the analysis of the TQI, we define the correlation
functions as a set of 2 × 2 matrices:

G(n, m) = 〈S0|ψnψ
†
m|S0〉. (10)

Here |S0〉 is the initial quantum state. The time-evolution
equations of the correlation functions are summarized in
Appendix A 3. Physical quantities such as the density profiles
can be obtained once the time-evolved correlation functions
are found. The initial condition corresponds to the half-filled
ground state of the initial Hamiltonian in the OBC, cylinder,
or Mobius-strip configuration. The details of constructing the
initial conditions are also summarized in Appendix A 3.

III. NUMERICAL RESULTS

A. Dynamics of 2D TQI

1. From cylinder or Mobius strip to OBC

In Fig. 1, we present the time evolution of the density
deviation from the average density of the TQI model for the
two cases where the configuration evolves from a cylinder or
Mobius strip to OBC. We choose the energy unit so that w = 1
and present the results with m = 0.5 and δ = 0.2. We have
verified that the conclusions remain qualitatively the same for
different values of δ > 0. The initial state is obtained with
PBC or TBC along the x axis. The hopping coefficients at
the emerging boundary along the x direction take the form
wn(t ) = w(1 − t/tq) for 0 � t � tq and wn = 0 for t > tq. We
show the results with ramping time tq/t0 = 10 first and will
analyze the effect of tuning tq shortly.

In our simulations, a square lattice labeled by nx, ny =
1, . . . , N with N = 10 is used. The size is large enough that
in the static configuration with OBC, the quadrupole corner

FIG. 1. Snapshots of the density deviation from the average density, �ρ(n), of the 2D TQI model at t/t0 = 1, 5, 7, 10 (from the left to
the right). The evolution from a cylinder (or a Mobius strip) to OBC is shown in the upper (or lower) row. Here tq/t0 = 10, w = 1, m = 0.5,
δ = 0.2, and N = 10. The initial ground state is half filled.
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states decay to negligible values away from the corners. The
density at each site is the sum of the densities of the fermions
from the four sublattices. Explicitly,

ρ(n) =
4∑

i=1

〈c†
i,nci,n〉 =

4∑
i=1

[1 − Gii(n, n)]. (11)

The initial state is the half-filled ground state of fermions. To
better present the results, we subtract the average density from
the results and show �ρ(n) ≡ ρ(n) − 2 in the figures.

The top row of Fig. 1 shows the time evolution of density
deviation as the configuration changes from a cylinder to
OBC. The quadrupole moment can be inferred from the two
peaks and two dips at the four corners. As the links connecting
nx = 1 and nx = 10 decay, the quadrupole moment starts to
grow. However, the growth stops after the transformation
is completed, and the system reaches a steady state. The
emergence of a steady state is interesting because we do not
introduce any explicit dissipation mechanism. Steady states of
systems without dissipation have also been found in the dy-
namics of 1D topological systems after a change in boundary
condition [30].

The time evolution of the TQI model from a Mobius strip
to OBC along the x direction is studied in a similar way. We
use the same parameters as the case from a cylinder to OBC
and show the time evolution of the density deviation in the
bottom row of Fig. 1. The results are qualitatively similar to
the case from a cylinder to OBC shown in the top row. Again,
the system enters a steady state after the transformation is
completed in the absence of any dissipation.

While the dynamics of the cases from a cylinder to OBC
and from a Mobius strip to OBC are similar, they both
show interesting quantum memory effect. To characterize the
behavior, we note that the final OBC configurations of the two
cases are the same and there are four in-gap corner states.
Due to the term δ�0 of Eq. (1), two of them are below the
zero energy and the other two are above. For the static TQI
with OBC at half-filling, the two lower-energy corner states
are filled while the two higher-energy corner states are empty.

We found that the four corner states exhibit the same
dynamics in the sense that (1) the dynamics of the two lower-
energy corner states are identical up to numerical precision
and (2) if the occupation of the low-energy corner state is
α(t ), that of the higher-energy corner state is 1 − α(t ). Thus,
we pick one low-energy corner state and define its operator by
ηc = φ∗

i,cci, which then gives the density

〈η†
cηc〉 = 1 − 〈ηcη

†
c〉 = 1 −

∑
i, j

φ∗
i,c〈cic

†
j 〉φ j,c. (12)

In Fig. 2, we show the time evolution of the occupation of
the selected corner state. The black solid, red solid, and black
dashed lines correspond to tq/t0 = 5, 10, and 15, respectively.
The left (right) panel corresponds to the case from a cylinder
to OBC (from a Mobius strip to OBC).

As one can see, the occupation of the corner state reaches
a constant after the links at the x-direction boundary are com-
pletely turned off, signaling the emergence of a steady state
even in the absence of dissipation. Importantly, the steady-
state values depend on the ramping rate of the boundary links.
As the ramping rate increases (corresponding to decreasing
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FIG. 2. Time evolution of the corner-state occupation of the TQI
model from a cylinder to OBC (a) and from a Mobius strip to
OBC (b). The black solid lines, red solid lines, and black dashed
line correspond to tq/t0 = 5, 10, and 15, respectively. The different
steady-state values reflect memory effect of the ramping rate. Here
w = 1, m = 0.5, δ = 0.2, and N = 10. The initial ground state is half
filled.

tq), the steady-state occupation of the corner state decreases
accordingly. Similar quantum memory effects of topological
edge modes in several 1D topological systems have been
found in Ref. [30]. The quantum memory effects come from
the localized nature of the corner states, which trap particles
once their wavefunctions overlap with the corner states. Since
the excitation of particles depends on the ramping rate of
the transformation, the occupation of the corner state thus
depends on the ramping rate. In the adiabatic limit (tq → ∞),
the two lower-energy corner states would be fully occupied
for a half-filled system. For transformations with finite tq, the
excitation of quantum particles to other mobile quantum states
reduces the occupation of the corner states, so they are not
fully occupied in the steady state.

The quadrupole moment Qxy of the TQI with PBC comes
from its band structure [8]. Here we define a physical
quadrupole moment as

qxy = 1

N2

∑
n

�ρ(n)nxny, (13)

which has been normalized by the system size. Figure 3 shows
the time evolution of qxy as the system transforms from a
cylinder or Mobius strip to OBC. The black solid, red solid,
and black dashed lines correspond to tq/t0 = 5, 10, and 15,
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FIG. 3. Time evolution of the physical quadrupole moment qxy of
the TQI model defined in Eq. (13). (a) and (b) show the cases from a
cylinder to OBC and from a Mobius strip to OBC, respectively. The
black solid lines, red solid lines, and black dashed lines correspond to
tq/t0 = 5, 10, and 15, respectively. Here w = 1, m = 0.5, δ = 0.2,
and N = 10. The initial ground state is half filled.

184307-4



DYNAMICS OF TWO-DIMENSIONAL TOPOLOGICAL … PHYSICAL REVIEW B 100, 184307 (2019)

FIG. 4. Snapshots at t/t0 = 1, 12, 15, 20 (from left to right) of the density deviation from the average density of the TQI model for the
evolution from OBC to a cylinder (top row) and from OBC to a Mobius strip (bottom row). Here tq/t0 = 10, w = 1, m = 0.5, δ = 0.2, and
N = 10. The initial state is the ground state of the initial Hamiltonian with half-filling.

respectively. For the case from a cylinder to OBC, qxy reaches
a steady-state value with relatively small fluctuations after tq.
The steady-state value depends on the ramping rate, so the
physical quadrupole moment also exhibits quantum memory
effect similar to that of the occupation of the corner state. For
the case from a Mobius strip to OBC, however, qxy exhibits
more significant fluctuations around the steady-state value
after tq. Although the steady-state values in this case also
exhibit quantum memory effect, the fluctuations may make its
observation more challenging. We remark that the quadrupole
moment (13) receives contributions from all the states, not just
from the corner state. The oscillatory contributions from the
bulk states in (13) are responsible for the fluctuations shown
in Fig. 3.

2. From OBC to cylinder or Mobius strip

Next, we consider the transformations from OBC to
a cylinder or Mobius strip by tuning the time-dependent
hopping coefficients at the x-direction boundary. Explicitly,
wn(t ) = wt/tq for 0 � t � tq and wn = w for t > tq. The
parameters are chosen to be the same as the previous cases
from a cylinder or Mobius strip to OBC. Figure 4 shows the
time evolution of the density deviation of the TQI model at
time t/t0 = 1, 12, 15, 20 (from the left to the right). The top
(bottom) row shows the results from OBC to a cylinder (Mo-
bius strip). Importantly, the real-space topology differentiates
the dynamics in the two cases: For the case from OBC to a
cylinder, oscillatory density ripples are observable along the x
direction at the two edges of the cylinder. In contrast, for the
case from OBC to a Mobius strip, oscillatory density ripples
are observable along the y direction, traversing the bulk of the
Mobius strip.

The density ripples along the different directions can be
understood as follows: The initial state has a quadrupole

moment shown by the two peaks and two dips at the corners.
When the system evolves from OBC to a cylinder, the two
density peaks encounter the two density dips along the x
direction. Since we do not include any dissipation mechanism,
the peaks and dips cannot annihilate each other completely,
so they cause density ripples along the two edges in the x
direction. In contrast, when the system evolves from OBC
to a Mobius strip, the two peaks meet each other while
the two dips also meet each other and they form a dipole
across the y axis. The merged peak and dip then interact with
each other, and they cause density ripples along the y axis
instead.

One explanation for the absence of density ripples in Fig. 1
when the system evolves from a cylinder or Mobius strip to
OBC is that the corner states emerge in the final configuration
and being zero-energy localized states, the corner states col-
lect its occupation while the bulk states sum up to the average
density. In contrast, when the system evolves from OBC to a
cylinder or Mobius strip, the corner states merge into the bulk
states and acquire dispersion in their energy. The dynamic
phase e−iEnt , where En is the eigenenergy, leads to oscillatory
behavior of the final configuration. Since the eigenenergy
depends on the system parameters (w, δ) as well as the
system size, the wavelength and period of the density ripples
vary when the parameter or size changes. Nevertheless, the
propagation direction of the density ripples is determined by
the real-space topology, which is robust against changes of the
parameter or size.

In Refs. [22,23], the static properties of some 2D topo-
logical models are studied with periodic or twisted boundary
condition. It was found that some models on a Mobius strip
may form states traversing the bulk because of the way the
two sides of a rectangle are merged. Here we found the
dynamics of the 2D TQI with a quadrupole moment can have
density ripples traversing the bulk if the final configuration is a
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FIG. 5. Snapshots of the density deviation from the average density of the 2D two-band Chern insulator model at t/t0 = 1, 8, 16, 20 (from
the left to the right). The case evolving from a cylinder (or a Mobius strip) to OBC is shown in the top row (or bottom row). Here tq/t0 = 10,
w = 1, m = 0.5, and N = 10. The initial ground state is half filled with the edge states occupied.

Mobius strip. Therefore, one can tell if the system transforms
into a cylinder or a Mobius strip by monitoring the patterns of
the density ripples.

B. Dynamics of 2D Chern insulator

1. From cylinder or Mobius strip to OBC

To contrast the features shown in the dynamics of the
TQI, we also study time evolution of the 2D two-band CI
model described by Eq. (9). In the top row of Fig. 5, we
show the density deviation from the average density of the CI
evolving from a cylinder to OBC at time t/t0 = 1, 8, 16, 20.
Here we assume w = 1, m = 0.5, and tq = 10. Similar to the
TQI case, the system size is N = 10 to allow periodic or
twisted boundary condition and ensure the edge modes decay
to negligible values away from the open boundary in the static
case with OBC. The initial state is the half-filled ground state
with the edge states occupied.

For the case from a cylinder to OBC shown in the top row
of Fig. 5, positive density deviation can be observed at the
two edges at ny = 1 and ny = N before tq is reached. This
is because the cylinder has open boundary condition along
the y axis, so there are two chiral edge states localized at
the two ends of the cylinder. One can see there is density
accumulation at the four corners in the final configuration
with OBC. However, the density deviation at the corners of
the 2D two-band CI model is always positive. Therefore, no
quadrupole moment emerges in the CI model, in contrast
to the TQI model supporting a quadrupole moment. After
the configuration transforms completely to OBC, the two
edge states also occupy the sites around nx = 1 and nx = 10
due to the open boundary along the x direction. Moreover,
there are density ripples along both edges in the x and y
directions.

The bottom row of Fig. 5 shows the density deviation
of the CI model evolving from a Mobius strip to OBC. We
choose the same parameters and time slices as those shown in
the top row. As shown in Ref. [22], when the 2D two-band
CI model is placed on a Mobius strip, the edge states do
not cancel completely along a line crossing the bulk. Similar
bulk-crossing behavior is observable in our initial condition
as there are two positive density peaks located at nx = 1
and nx = N , instead of a pair of edge modes along the x
direction in the cylindrical configuration. Despite the promi-
nent difference in the initial conditions, the evolution of the
density deviation of the case from a Mobius strip to OBC is
qualitatively similar to the case from a cylinder to OBC, as the
long-time profiles of both cases show four peaks at the corners
with density ripples oscillating along both edges.

Similar to the dynamics of the TQI model, we also found
memory effects of the ramping rate in the occupation of the
topological edge states in the 2D CI model. There are two
in-gap chiral edge states and their behavior is similar. Thus,
we pick one of them and show the time dependence of the
occupation of the selected edge state with different ramping
time tq in Fig. 6. In the absence of dissipation, the occupa-
tion of the edge state exhibits steady-state behavior after the
transformation of the real-space configuration is completed,
despite that the whole system does not exhibit steady-state
behavior due to the density ripples at the edges. By comparing
the steady-state values of the edge-state occupation, one can
see that the steady-state value increases with tq in the case
from a cylinder to OBC, as shown in Fig. 6(a). In contrast, the
dependence of the steady-state value on tq is nonmonotonic
in the case from a Mobius strip to OBC. For instance, the
steady-state value of tq/t0 = 5 lies above that of tq/t0 = 10,
as shown in Fig. 6(b), but they are both below the steady-state
value of tq/t0 = 15.

184307-6



DYNAMICS OF TWO-DIMENSIONAL TOPOLOGICAL … PHYSICAL REVIEW B 100, 184307 (2019)

0 5 10 15 20
0.50

0.55

0.60

0.65

0.70

0.75

t t0

O
cc
up
at
io
n
of
ed
ge
st
at
e

a

0 5 10 15 20
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94

t t0

O
cc
up
at
io
n
of
ed
ge
st
at
e

b

FIG. 6. Time evolution of the occupation of the topological edge
state of the 2D two-band CI model from a cylinder to OBC (a) and
from a Mobius strip to OBC (b) with selected ramping times tq/t0 =
5 (black lines), tq/t0 = 10 (red lines), and tq/t0 = 15 (black dashed
lines). Here w = 1, m = 0.5, and N = 10. The initial ground state is
half filled with the edge states occupied.

Importantly, both types of transformations shown in
Fig. 6 demonstrate that the steady-state occupation explicitly
depends on the ramping rate. This is because the edge states
in the final OBC configuration are localized states at the
boundary, so their population depends on how many parti-
cles overlap with the localized states during the evolution,
but this in turn depends on how fast the energy levels are
changed by the real-space transformation. Since the localized
states are the eigenstates of the final Hamiltonian but not
the intermediate Hamiltonians during the transformation, their
population changes with time. In the 2D CI shown in Fig. 6,
the population can even exhibit a dip during the real-space
transformation. One possible explanation for the dips in Fig. 6
is that there are zero-energy eigenstates of the CI as the
boundary links change, as shown in Fig. 8 in the Appendix.
Those zero-energy states do not accumulate dynamic phase
and compete with the final localized states to retain excita-
tions. There is no zero-energy state in the TQI, so there is no

such competition. Nevertheless, we focus on the steady-state
behavior after the transformation is complete.

2. From OBC to cylinder or Mobius strip

Next, we consider the transformation of the real-space con-
figuration from OBC to a cylinder or Mobius strip. Explicitly,
wn(t ) = wt/tq for 0 � t � tq and wn = w for t > tq at the
x-direction boundary. Here we assume w = 1, m = 0.5, and
tq = 10t0. The system size is N = 10 and the initial state
is the half-filled ground state with the edge state occupied.
The top row of Fig. 7 shows the density deviation from the
average density of the 2D two-band CI model at time t/t0 =
1, 8, 16, 20 as the system transforms from OBC to a cylinder.
The initial state has four density peaks at the corners with
decaying density along the four edges due to the two pairs of
chiral edge states residing at the open boundaries along the x
and y directions. As the configuration transforms to a cylinder
with periodic boundary condition along the x direction, there
are density ripples oscillating along the x direction at the two
edges of the cylinder. The oscillations do not subside because
there is no dissipation in the system.

The bottom row of Fig. 7 shows the density deviation from
the average density of the 2D two-band CI model from OBC
to a Mobius strip with the same parameters. In this case, there
are density ripples both along the edge of the Mobius strip
(the x direction in Fig. 7) and along a line perpendicular to
the edge (the y direction), with the oscillations along the y
direction having a larger amplitude. The contrast between the
two cases of the CI model is thus similar to the corresponding
cases of the TQI model, but the distinction of the directions of
the density ripples is more prominent in the TQI case.

We emphasize that the possibility of using the directions
of the density ripples to differentiate the underlying con-
figurations is not available in 1D systems because the den-
sity ripples spread out to the whole systems, as shown in

FIG. 7. Snapshots at t/t0 = 1, 8, 16, 20 (from left to right) of the density deviation from the average density of the 2D two-band CI model.
The top and bottom rows show the cases evolving from OBC to a cylinder and from OBC to a Mobius strip, respectively. We assume that
tq/t0 = 10, w = 1, m = 0.5, and N = 10. The initial state is the half-filled ground state of the initial Hamiltonian with the edge states occupied.
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Ref. [30]. Thus, more interesting physics can be explored in
higher-dimensional topological systems with real-space topo-
logical configurations as illustrated here.

IV. EXPERIMENTAL IMPLICATION

The original proposal of the TQI [8] envisioned its real-
ization in quantum simulators such as cold atoms in optical
potentials. Given the broad choices of quantum systems which
may realize various TIs and HOTIs [11–15,17], the dynamics
analyzed in this work may be studied in systems allowing
the formation of a cylinder or Mobius strip. For example,
topological systems in a Mobius configuration have been
demonstrated by using electronic circuits to simulate quantum
particles in lattice potentials [34]. One may study the dynam-
ics of topological systems by introducing time-dependent pa-
rameters in those simulators. Since the phenomena presented
here are observable within a few tens of t0, they are feasible
even for simulators which may not have a long hold time.

The study here did not include dissipation from system-
environment coupling and we assume the particle number is
conserved. It is possible to model the time evolution using the
quantum master equation [35,36] which includes the coupling
to the environment or particle exchange. There have been
proposals on topological properties of open quantum systems
described by the quantum master equation [37–39], but a
systematic study combining both topology of band structure
and topology in real space awaits future investigations.

V. CONCLUSION

We have shown the transformations of real-space topol-
ogy can lead to interesting boundary-induced dynamics of
topological quantum systems by using the 2D TQI and CI
models as examples. From a cylinder or Mobius strip to OBC,
the occupation of the quadrupole corner state of the TQI
and the edge state of the CI reaches steady states after the
transformation. The steady-state values depend on the ramp-
ing rate of the transformation and exhibit quantum memory
effect. In addition, the physical quadrupole moment of the
TQI exhibits similar quantum memory effect. On the other

hand, the systems develop density ripples instead of steady
states as they transform from OBC to a cylinder or Mobius
strip. While the density ripples are confined in the edges of
a cylinder, they traverse the bulk in the case of a Mobius
strip and reflect the real-space topology. Generalizations of the
boundary-induced dynamics to higher-dimensional systems
or interacting systems may reveal rich physics of topological
systems out of equilibrium.
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APPENDIX: DETAILS OF TIME EVOLUTION AND
INITIAL CONDITION

1. Details of time evolution of 2D TQI

The time-evolution equation of the fermion operator is

dψn

dt
= −i

{
[m(�2 + �4) + δ�0]ψn

+ wn

2
(�4 − i�3)ψn+x̂ + wn−x̂

2
(�4 + i�3)ψn−x̂

+ w

2
(�2 − i�1)ψn+ŷ + w

2
(�2 + i�1)ψn−ŷ

}
. (A1)

In components, the above equation can be written as

i
dcn,1

dt
= [wn−x̂cn−x̂,3 − wcn+ŷ,4 + m(cn,3 − cn,4) + δcn,1],

i
dcn,2

dt
= [wcn−ŷ,3 + wncn+x̂,4 + m(cn,3 + cn,4) + δcn,2],

i
dcn,3

dt
= [wncn+x̂,1 + wcn+ŷ,2 + m(cn,1 + cn,2) − δcn,3],

i
dcn,4

dt
= [wn−x̂cn−x̂,2 − wcn−ŷ,1 − m(cn,1 − cn,2) − δcn,4].

The time evolution of the correlation function (7) is given
by

d

dt
G(n, m) = −i

{
wn

2
(�4 − i�3)G(n + x̂, m) + wn−x̂

2
(�4 + i�3)G(n − x̂, m) + w

2
(�2 − i�1)G(n + ŷ, m)

+ w

2
(�2 + i�1)G(n − ŷ, m) + [m(�2 + �4) + δ�0]G(n, m)

}
+ i

{
wm

2
G(n, m + x̂)(�4 + i�3)

+ wm−x̂

2
G(n, m − x̂)(�4 − i�3) + w

2
G(n, m + ŷ)(�2 + i�1) + w

2
G(n, m − ŷ)(�2 − i�1)

+ G(n, m)[m(�2 + �4) + δ�0]

}
. (A2)

In the expression, matrix multiplications are implicitly assumed. In components, we have

d

dt
G11(n, m) = −i[wn−x̂G31(n − x̂, m) − wG41(n + ŷ, m) + mG31(n, m) − mG41(n, m) + δG11(n, m)]

+ i[wm−x̂G13(n, m − x̂) − wG14(n, m + ŷ) + mG13(n, m) − mG14(n, m) + δG11(n, m)],

d

dt
G21(n, m) = −i[wG31(n − ŷ, m) + wnG41(n + x̂, m) + mG31(n, m) + mG41(n, m) + δG21(n, m)]

+ i[wm−x̂G23(n, m − x̂) − wG24(n, m + ŷ) + mG23(n, m) − mG24(n, m) + δG21(n, m)],
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d

dt
G31(n, m) = −i[wnG11(n + x̂, m) + wG21(n + ŷ, m) + mG11(n, m) + mG21(n, m) − δG31(n, m)]

+ i[wm−x̂G33(n, m − x̂) − wG34(n, m + ŷ) + mG33(n, m) − mG34(n, m) + δG31(n, m)],

d

dt
G41(n, m) = −i[wG11(n − ŷ, m) + wn−x̂G21(n − x̂, m) − mG11(n, m) + mG21(n, m) − δG41(n, m)]

+ i[wm−x̂G43(n, m − x̂) − wG44(n, m + ŷ) + mG43(n, m) − mG44(n, m) + δG41(n, m)].

There are another 12 equations for Gab with a = 1, 2, 3, 4 and
b = 2, 3, 4.

2. Initial condition of 2D TQI

a. Cylinder and OBC configurations

For the Hamiltonian (5) with open boundary condition
along the y axis and periodic boundary condition along the
x axis, we use the initial condition of the half-filled ground
state of fermions. In the first quantized form, the Hamiltonian
can be written as
H1 = [m(�2 + �4) + δ�0] ⊗ I0 ⊗ I0

+ 1
2 (�4 − i�3) ⊗ T1 ⊗ I0 + 1

2 (�2 − i�1) ⊗ I0 ⊗ T2

+ 1
2 (�4 + i�3) ⊗ T T

1 ⊗ I0 + 1
2 (�2 + i�1) ⊗ I0 ⊗ T T

2 .

(A3)
Here we introduce N × N matrices I0 = δi j , T1 = δi,i+1 +
δN,1, and T2 = δi,i+1. T T

1 and T T
2 are the transpose of T1

and T2. Then, we numerically diagonalize H1 to find the
mth eigenvector φim corresponding to the eigenvalue Em.
Here i = 1, . . . , 4N2 labels the components. The labels of
fermion operators in Eqs. (A3) and (5) are related by
cN2(a−1)+N (nx−1)+ny

= ca,nx,ny . Here a = 1, 2, 3, 4 is the orbital
index of fermions. We introduce the quasiparticle operator
ηm = ∑

i φ
∗
imci, where ∗ denotes complex conjugate. The

Hamiltonian becomes
H1 =

∑
m

Emη†
mηm. (A4)

The initial state is |S0〉 = ∏
Em�0 η†

m|0〉. The initial correlation
functions can be obtained from

〈cic
†
j 〉 =

∑
Em>0

φimφ∗
jm. (A5)

For the case with OBC, the Hamiltonian is given by
Eq. (A3) except T1 = δi,i+1. The replacement reflects the
corresponding boundary condition. The initial condition is
then obtained by the same procedure as those for the cylin-
drical case.

b. Mobius-strip configuration

With twisted boundary condition along the x axis and
OBC along the y axis, the fermion operator satisfies ψN,ny =
ψ1,N−ny+1 and the system resembles a Mobius strip. In the first
quantized form, the Hamiltonian can be written as

H2 = [m(�2 + �4) + δ�0] ⊗ I0 ⊗ I0

+ 1
2 (�4 − i�3) ⊗ T2 ⊗ I0 + 1

2 (�2 − i�1) ⊗ I0 ⊗ T2

+ 1
2 (�4 + i�3) ⊗ T T

1 ⊗ I0 + 1
2 (�2 + i�1) ⊗ I0 ⊗ T T

2

+ 1
2 (�4 − i�3) ⊗ T3 ⊗ T4 + 1

2 (�4 + i�3) ⊗ T T
3 ⊗ T T

4 .

(A6)

Here T3 = δN,1 and T4 = δi,N−i+1. We numerically diago-
nalize H2 to find the mth eigenvector φim corresponding
to the eigenvalue Em. The quasiparticle operator is defined
as ηm = ∑

i φ
∗
imci. The initial state is then given by |S0〉 =∏

Em�0 η†
m|0〉, and the initial correlation function can be ob-

tained from

〈cic
†
j 〉 =

∑
Em>0

φimφ∗
jm. (A7)

3. Details of time evolution and initial condition of 2D CI

The time-evolution equation for ψn is given by

dψn

dt
= −i

∑
n

[
mσ3ψn + wn

2
(σ3 − iσ1)ψn+x̂

+ w

2
(σ3 − iσ2)ψn+ŷ + wn−x̂

2
(σ3 + iσ1)ψn−x̂

+ w

2
(σ3 + iσ2)ψn−ŷ

]
. (A8)

The time-evolution equation of correlation function is

i
d

dt
G(n, m)

= [mσ3G(n, m) − G(n, m)mσ3]

+
[
wn

2
σ31G(n + x̂, m) + wn−x̂

2
σ

†
31G(n − x̂, m)

+ w

2
σ32G(n + ŷ, m) + w

2
σ

†
31G(n − ŷ, m)

]

−
[
wm

2
G(n, m + x̂)σ †

31 + wm−x̂

2
G(n, m − x̂)σ31

+ w

2
G(n, m + ŷ)σ †

32 + w

2
G(n, m − ŷ)σ32

]
. (A9)

Here we have defined σ31 = σ3 − iσ1 and σ32 = σ3 − iσ2.
The initial state can be obtained by the following Hamilto-

nian in the first quantized form:

HCI1 = mσ3 ⊗ I0 ⊗ I0 + 1
2 (σ3 − iσ1) ⊗ T1 ⊗ I0

+ 1
2 (σ3 − iσ2) ⊗ I0 ⊗ T2 + 1

2 (σ3 + iσ1) ⊗ T T
1 ⊗ I0

+ 1
2 (σ3 + iσ2) ⊗ I0 ⊗ T T

2 . (A10)

Here we introduce N × N matrices I0 = δi j , T1 = δi,i+1 +
δN,1, and T2 = δi,i+1. T T

1 and T T
2 are the transpose of T1

and T2. By imposing boundary condition corresponding to
the configurations (1), (2), or (3), we numerically diagonal-
ize HCI1 to find the mth eigenvector φCI

im corresponding to
the eigenvalue ECI

m . The quasiparticle operator is given by

184307-9



YAN HE AND CHIH-CHUN CHIEN PHYSICAL REVIEW B 100, 184307 (2019)

0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

w' w

E
w

a

0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

w' w
E
w

b

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.5

0.0

0.5

1.0

w' w

E
w

c

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.5

0.0

0.5

1.0

w' w

E
w

d

FIG. 8. Eigenenergy spectra of the 2D TQI [(a) and (b)] and CI
[(c) and (d)] as a function of w′/w on a 10 × 10 lattice. Here w′

is the hopping coefficient at the boundary in the x direction. The
systems are open in the y direction. When w′/w = 1, the systems
have a cylinder configuration for (a) and (c) and a Mobius-strip
configuration for (b) and (d). When w′/w = 0, the systems have open
boundary condition in both directions. Here w = 1 and m = 0.5 for
all panels and δ = 0.2 for (a) and (b).

ηCI
m = ∑

i(φ
CI
im )∗ci, and the initial state is |S0〉 =∏

ECI
m �0(ηCI

m )†|0〉. The initial correlation function can be
obtained from

〈cic
†
j 〉 =

∑
ECI

m >0

φCI
im

(
φCI

jm

)∗
. (A11)

4. Eigenenergy spectra of TQI and CI

The eigenenergy spectra of the 2D TQI and CI on a
10 × 10 square lattice with open boundary condition in the
y direction and a varying hopping coefficient w′ along a line
in the x direction are shown in Fig. 8. We considered both
periodic and twisted structures along the x direction, so the
systems become a cylinder (or a Mobius strip) when w′/w =
1 in panels (a) and (c) [or (b) and (d)] of Fig. 8. However,
w′/w = 0 leads to the same OBC configuration for all the
cases. In the thermodynamic limit, the spectra will become
the band structures of the corresponding systems.

The localized edge states are the in-gap states near E = 0.
Due to the open boundary condition along the y direction in
the 2D cases, the edge states are always present in the eigenen-
ergy spectra, but their energies depend on w′/w. This feature
is different from the 1D cases shown in Ref. [30], where
the edge states only become the genuine eigenstates in the
fully open-boundary case. We remark that Fig. 8 only depicts
the eigenenergies of the Hamiltonian with the corresponding
w′/w. The dynamics induced by a change of the bound-
ary condition generates particle excitations jumping among
the eigenstates, leading to the results shown in the main
text.
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