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We study the out-of-equilibrium dynamics of p-wave superconducting quantum wires with long-range
interactions when the chemical potential is linearly ramped across the topological phase transition. We show
that the heat produced after the quench scales with the quench rate δ according to the scaling law δθ where
the exponent θ depends on the power-law exponent of the long-range interactions. The presence of the
long-range pairing term increases the exponent θ and thus improves the adiabatic preparation of topological
states. Moreover, we identify the parameter regimes where the heat scaling can be cast in terms of the universal
equilibrium critical exponents and can thus be understood within the Kibble-Zurek framework. When the
electron hopping decays more slowly in space than pairing, it dominates the equilibrium scaling. Surprisingly,
in this regime the dynamical critical behavior arises only from pairing and thus exhibits a dynamical universality
unrelated to equilibrium scaling. The discrepancy from the expected Kibble-Zurek scenario can be traced back
to the presence of multiple universal terms in the equilibrium scaling functions of long-range interacting systems
close to a second order critical point.

DOI: 10.1103/PhysRevB.100.184306

I. INTRODUCTION

One of the major challenges of contemporary physics is
the identification of quantum phases of matter, which can
serve as platforms for quantum computers. In this perspective,
topological superconductors [1,2] are promising constituents
for quantum devices [3–6] thanks to the presence of gapless
Majorana modes, the so-called Majorana zero modes (MZM),
which are localized at the chain edges and topologically
protected. Since the first theoretical evidence of MZMs in
superconducting wires [7], several experimental platforms
have revealed consistent signatures of Majorana physics both
in one-dimensional [8–11] and two-dimensional [12–15] ge-
ometries. More recently, models of p-wave superconducting
wires with long-range (LR) deformations have shown more
robust topological properties [16,17], while strong enough
LR pairing effects alter the nature of the topological phase
[18–22] and the spreading of correlations [23–25]. Experi-
mental realizations of LR topological superconductors em-
ploy one-dimensional arrays of magnetic impurities on top
of a conventional superconducting substrate [26–28], leading
to the realization of an effective Kitaev Hamiltonian with
both LR pairing and LR hopping [29–32]. In this context,
understanding slow variations (quenches) of control fields
in quantum systems is fundamental to adiabatic protocols
[33], since Majorana excitations cannot be realized by sudden
manipulations of the system [34]. These investigations con-
stitute a fundamental contribution towards the understanding
of dynamical scaling for quenches across topological phase
transitions [35].

In this work we characterize the out-of-equilibrium dy-
namics of a p-wave superconducting quantum wire with
long-range interactions, whose chemical potential is linearly
ramped across the equilibrium critical point. We determine

the density of defects produced after the ramp and show that
it scales as a power of the quench rate. We then connect the
power-law exponent with the equilibrium critical properties
and topological features and determine the phase diagram
for the dynamics as a function of the decay exponent of the
hopping and pairing terms.

II. MODEL AND EQUILIBRIUM PHASES

We consider spinless electrons hopping across the N sites
of a linear chain in the presence of p-wave pairing. The
Hamiltonian reads

Ĥ =−
∑

i

[∑
r>0

( jr ĉ†
i ĉi+r + �r ĉ†

i ĉ†
i+r + H.c.) + μĉ†

i ĉi

]
+C,

(1)

where operators c†
i create a fermion at site i and fulfill the

anticommutation relations {ci, c†
j } = δi j . Here μ denotes the

chemical potential, C = Nμ/2 is an energy offset, jr and
�r are the hopping and pairing amplitudes, respectively, and
depend on the intersite distance r according to the power laws
(reported here for open boundary conditions):

jαr = J

Nα

1

rα
, �β

r = d

Nβ

1

rβ
, (2)

with the hopping exponent α > 1, the pairing exponent β >

1, the coefficients J, d > 0, and Nγ = 2
∑

r=1 r−γ the Kac
scaling, which guarantees extensivity of the energy [36].
For sufficiently fast decaying interaction and hopping terms
the system possesses two different phases separated by the
quantum critical point μc = 2J [7]. In the thermodynamic
limit the two topological phases can be distinguished by the
bulk topological invariant w: For |μ| > μc the ground state
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FIG. 1. (a) The energy spectrum of a one-dimensional topologi-
cal superconductor for chemical potential |μ| < μc with bulk topo-
logical invariant w = 1. The blue solid line represents the degenerate
ground state, which hosts MZMs. (b) For |μ| > μc there is a single
ground state with w = 0.

is nondegenerate and w = 0; in the nontrivial phase |μ| < μc

the bulk topological invariant w = 1, and the ground state is
doubly degenerate and can host MZMs, see Fig. 1. At finite
size N the spectrum is always gapped and for open boundary
conditions the MZMs remain localized at the edges of the
chain. The presence of the LR pairing and hopping terms in
Eq. (1) does not alter this phase diagram nor the values of
the bulk topological invariant as long as α, β > 1 [17,18,22].
Nonetheless, LR connectivity modifies the universal critical
behavior of the model by changing the critical exponents.
The resulting phases are displayed in Fig. 2. Note that the
equilibrium phase diagram of the long-range Kitaev chain
radically differs from the one of the long-range quantum Ising
model [37,38].

III. SLOW RAMP DYNAMICS

In the following we analyze the dynamics during slow
variations of the chemical potential across the critical value
according to

μ(t ) = μc − tδ, (3)

where time varies in the interval [−μc/δ, μc/δ], i.e., from the
topologically trivial phase μ = 2μc deep into the nontrivial
phase at μ = 0. We note that the time-dependent dynamics
have been solved for an Ising model in transverse field [39],
which can be mapped to the Kitaev model for α, β → ∞
[40]. Below we derive an exact solution which is valid for
general α, β > 1 and in the thermodynamic limit. This solu-
tion allows us to determine the thermodynamic functions after
the ramp. For this purpose we rewrite the Hamiltonian (1)
using momentum-space operators ĉk = eiπ/4 ∑

r∈Z creikr/
√

N
with k ∈ [−π, π ). Using the spinor representation ψ̂k =
(ĉk, ĉ†

−k )T , the Hamiltonian is the sum of 2 × 2 block matrices
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FIG. 2. Phase diagram of the p-wave superconducting Hamilto-
nian (1) as a function of the exponents of the power-law decay of
hopping α and pairing β. The labels indicate (i) short-range (SR)
universality, (ii) hopping dominated long-range universality (LRα)
for α < β, and (iii) pairing dominated long-range universality (LRβ )
for β < α. The scaling of defect generation is described by the
exponent θ , see Eq. (11). In the green region β < min(α, 2), dom-
inant pairing determines both equilibrium exponents and standard
Kibble-Zurek dynamical scaling. In the red region α < min(β, 2),
instead, dominant hopping determines equilibrium exponents but
dynamics is governed by LR pairing, giving rise to the universal
β-dynamical scaling (β-dyn. universality) θ = 1/2 for β > 2, which
is not described by Kibble-Zurek mechanism.

Hk ≡ hk (t ) · σ̂,

Ĥ (t ) =
∑

k

ψ̂
†
k Ĥk (t )ψ̂k, (4)

where σ̂ is the vector of the Pauli matrices σ̂ j=1,2,3 and
hk (t ) = (�β (k), 0, εα (k, t )) is the pseudospin vector. Its
elements depend on εα (k, t ) = μ(t )/2 − jα (k) and on the
momentum-space hopping and pairing coefficients:

jα (k) = J Re[Liα (eik )]/ζ (α), (5)

�β (k) = d Im[Liβ (eik )]/ζ (β ), (6)

where Liα (z) denotes the polylogarithm and ζ (α) is
the Riemann zeta function [41]. The Hamiltonian is
diagonalized in terms of the fermionic quasiparticle
operators γ̂k (t ) = uk (t )ĉk + v∗

−k (t )ĉ†
−k to obtain Ĥ =∑

k ωk (t )[γ̂ †
k (t )γ̂k (t ) − 1

2 ] with the quasiparticle spectrum
ωk (t ) = 2

√
εα (k, t )2 + �β (k)2. The pseudospin vector

hk (t ) identifies a direction in the two-dimensional plane
of the Hamiltonian space. At a given instant of time,
integrating the angle θk = atan(h1

k/h3
k ) = atan[�β (k)/εα (k)]

over the Brillouin zone yields the bulk topological invariant
w = ∮

dθk/(2π ) of the corresponding equilibrium phase.
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FIG. 3. The excitation probability pk of the Bogolyubov modes after a ramp of the chemical potential, see Eq. (3), obtained by the numerical
solution of Eq. (7) for intermediate and small ramp velocities δ = 0.5, 0.05 in (a) and (b), respectively. For each curve the value of α =
(1.25, 1.5, 1.75, ∞) is indicated by round, diamond, square, and triangular symbols, see the legend of (b), while the value of β is given by the
color red, blue, green, and gray for, respectively, β = (1.25, 1.5, 1.75, ∞). Away from the adiabatic limit (a), the numerical results (symbols)
do not collapse on the theoretical expectations given by Eq. (8) (dashed lines). Even so, the predicted trend for kth is clearly visible with
the lower β values becoming increasingly athermal. For the very slow quench of (b) the theoretical prediction in Eq. (8) is almost perfectly
obeyed, with no correction arising even at small αs. (c) Exemplifies the α < β case, where β-dynamical scaling exists, for several δ values
with α = 1.25 and β = ∞. The excitation probability pk is reported as a function of the universal variable η ∼ k/δ2, obtained by equilibrium
scaling, and no collapse is found. Conversely, the curves collapse perfectly on each other, when plotted as a function of the universal variable
k/

√
δ, obtained with the proper dynamical scaling zd = ν−1

d = 1. These results prove the existence of a universal dynamical scaling different
from the standard Kibble-Zurek scaling.

A. Analytical results

The dynamics of the Kitaev chain can be exactly de-
scribed by the Heisenberg equations of motion for the orig-
inal creation and annihilation operators idĉk/dt = [ĉk, Ĥ ].
These equations can be cast into a matrix evolution for the
Bogolyubov coefficients,

i
d

dt

(
uk

vk

)
=

(
εα (k, t ) �β (k)
−�β (k) εα (k, t )

)(
uk

vk

)
, (7)

which can be mapped into the Landau-Zener form [42–44].
The excitation probability pk (t ) can be computed exactly,
according to the definition pk (t ) = 〈γ †

−kγ
†
k 〉 [45,46], see also

Appendix D. For a slow quench to the final time τ f = μc/δ,
the excitation probability is well approximated by the Landau-
Zener formula

pk � exp

(
−π�β (k)2

δ

)
, (8)

which becomes exact for k � π
2 in the slow ramp limit

δ → 0. From Eq. (8) we find population inversion pk � 1/2
when |k| < kth. The threshold value kth is determined ana-
lytically from a low-momentum expansion and reads kth =
[δ log(2)/(πc)]θ with

c =
{( cos(βπ/2)�(1−β )

ζ (β )

)2
for 1 < β < 2,(

ζ (β−1)
ζ (β )

)2
for β > 2.

(9)

It is remarkable that kth → ∞ for β → 1+, corresponding
to negative temperatures. In the small δ limit, this effect is
only visible very close to the singular limit β � 1, while
for intermediate β’s the tendency is reversed, see Fig. 3.

The existence of the threshold values kth in the Kitaev chain
has been connected with the appearance of dynamical phase
transition both in the case of short- and long-range interactions
[44,47,48]. These results have been numerically verified tak-
ing the full k dependence of �β (k) into account. We note that
stable athermal distributions are generally expected in systems
with diverging long-range interactions [49], and the case we
analyze here seems to be no exception.

Using Eq. (8) we can derive several thermodynamic prop-
erties for asymptotically slow drive δ → 0. We discuss here
the excitation density [43,50–52]

nexc = 1

N

∑
k

〈γ †
k γk〉 = 1

N

∑
k

pk, (10)

which we compute in the thermodynamic limit, thus replacing
the sum by an integral over the interval k ∈ [−π, π ). In the
δ → 0 limit the exponent of pk in Eq. (8) diverges and the
total contribution to the integral only comes from the saddle
point. Expanding around the vanishing effective frequency, we
find the scaling law

lim
δ→0

nexc ∼ δθ with θ =
{

(2β − 2)−1 for β � 2,

1/2 for β > 2.
(11)

At the border β = 2 we find nex ∝ √
δ/ log δ. These scalings

are valid irrespectively of the value of α, since the defect
density solely depends on β. For relevant long-range pairing
β � 2 the scaling exponent θ increases with respect to the
short-range case, see Eq. (11), lowering the nonadiabatic cor-
rections to the ground state fidelity. Therefore, LR interactions
substantially ease the preparation of topological quantum
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states and may play a relevant role in the construction of
quantum computing devices.

The dynamical phase diagram of the model is depicted in
Fig. 2. Remarkably, the dynamical phases for α > 2 corre-
spond to the regions of the equilibrium phase diagram, but
in the hopping dominated regime α < 2 a different universal
dynamical scaling arises. Such universal dynamical scaling
with β cannot be related to the equilibrium critical exponents,
which involve α, as generally happens in Fermi systems
[43,52,53] and its appearance can be traced back to the
violation of the equilibrium scaling hypotheses due to the LR
nature of the interactions. However, it is worth noting that for
β � 1 + 1/4 the nonanalytic corrections become subleading
with respect to the adiabatic corrections δ2 arising due to finite
ramp effects, see Appendix D.

B. Numerical results

In order to verify our analytical prediction, we numeri-
cally integrated Eq. (7). Initially at t = ti = −μc/δ the sys-
tem is at equilibrium with Bogolyubov coefficients ui

k, v
i
k =

cos θi (k)
2 , sin θi (k)

2 where tan θi(k) = �β (k)
εα (k) and μ(ti ) = 2μc =

4J . The Bogolyubov coefficients are then evolved numerically
according to Eq. (7) for a grid of k points in the interval
[−π, π ). Due to nonadiabatic effects arising during the criti-
cal stage of the dynamics t � 0, the resulting amplitudes at the
final time t f = μc/δ differ from the ones of the equilibrium
Hamiltonian with μ(t f ) = 0. In order to quantify these devia-
tions, we consider the excitation probability of each state k, af-
ter the slow ramp, with respect to its equilibrium ground state,

pk = 1 − ∣∣u f
k u∗

k (t f ) + v
f
k v∗

k (t f )
∣∣2

, (12)

where (u f
k , v

f
k ) are the equilibrium Bogolyubov amplitudes

at μ = 0, while [uk (t f ), vk (t f )] are the ones at the end of the
dynamical evolution.

The excitation probability at the end of the slow quench,
calculated according to Eq. (12), is shown in Fig. 3 as a
function of the momentum k for δ = 0.5, 0.05 in Figs. 3(a)
and 3(b), respectively. As the dynamical protocol crosses
the μc = 2J critical point, only low momentum modes k ≈
0 become soft during the dynamics. Indeed, Eq. (8) only
applies to excitation modes with k < π/2, as follows from the
Landau-Zener mapping, see Appendix D, while high energy
modes k > π/2 remain adiabatic and their excitation prob-
ability is not shown. Numerical points for the Bogolyubov
mode excitation probability for α = (∞, 1.75, 1.50, 1.25) are
shown by squares, crosses, circles, and triangles, respectively
[see legend of Fig. 3(b)], while the different values of β =
(∞, 1.75, 1.5, 1.25) are reported, respectively, from top to
bottom (gray, green, blue, and red). In Fig. 3(b) we observe
almost perfect agreement with the predictions of Eq. (8) in
the slow ramp case δ = 0.05. Indeed, corrections from finite
and slightly asymmetric endpoints ti and t f do not influence
the universal behavior obtained in the δ → 0 limit at small
momenta and can be safely discarded, see Appendix D.

C. Dynamical phases

The result of Eq. (11) contradicts the result found using
adiabatic perturbation theory, which produces the Kibble-

Zurek relation between the universal slow dynamics and
the equilibrium critical exponents θ = ν/(1 + zν) [43,52,53].
Here the critical exponents zν and z describe the scaling
of the spectrum at the critical point ωk=0 ∝ |μ − μc|zν and
ωk→0 ∝ kz. In particular, at lowest order in the adiabatic
expansion, the excitation probability pk = |αk|2 of the Bo-
golyubov quasiparticle states |k〉 = γ̂

†
k |0〉 are given by the

squared transition amplitudes induced by the perturbation
operator ∂̂μ = ∂Ĥ (μ)/∂μ over the Bogolyubov vacuum |0〉
integrated over the whole dynamical trajectory

αk ≈
∫

〈k|∂̂μ|0〉e i
δ

∫ μ (Ek (μ′ )−E0(μ′ ))dμ′
dμ, (13)

where Ek (μ) is the energy of the state |k〉. In the δ → 0 limit,
the saddle-point approximation holds and the integral only
receives contributions from the vanishing gap region of the
trajectory, i.e., the critical point. There, one can employ the
universal scaling relations [43,52,53]

Ek (μ) − E0(μ) = ωk ≈ � F (�/kz ), (14)

〈k|∂̂μ|0〉 ≈ �

|μ − μc|kz
G(�/kz ), (15)

where � is the minimal gap � ∝ |μ − μc|zν . Inserting
Eqs. (14) and (15) into Eq. (13) and making the integra-
tion dimensionless, one finds the universal scaling variables
η = kδ− ν

1+zν and ζ = k1/ν (μ − μc). Rephrasing the adiabatic
perturbation theory expression for the defect density nexc ≈∫

dk|αk|2/(2π ) in terms of the universal variables η and ζ

immediately leads to the Kibble-Zurek result θ = ν/(1 + zν),
see Eq. (13) and Refs. [43,52,53]. Since for the p-wave
superconducting Hamiltonian in Eq. (1) one has zν = 1 and
z = φ − 1, where φ = min(α, β ), we can conclude that the
scaling exponent θ in Eq. (11) is inconsistent with the Kibble-
Zurek scaling in the region α < β.

We refer to this unexpected behavior as β-dynamical
scaling. We report its extent in Fig. 3(c) where we study
the example case of LR hopping α = 1.25 and short-range
pairing β = ∞, well inside the universal dynamical scaling
region, where Kibble-Zurek mechanism does not apply. The
excitation probability is reported as a function of the universal
scaling variable η = kδ− ν

1+zν for several δ values. Remarkably,
for this scaling the curves do not collapse, see Fig. 3(c).
Instead, universality is recovered when one considers the
proper dynamical exponent zd = ν−1

d = 1, for nearest neigh-
bor pairing which is the only responsible for the dynamics,
see the perfect collapse observed in the inset of Fig. 3(c).

IV. DISCUSSION

In conclusion, we have demonstrated that long-range cou-
pling terms lead to a novel scaling behavior of heat produced
by slow quenches in critical topological superconductors. For
dominant LR pairing α > β, the Dirac mode, generated by
the hybridization of the two MZMs in the thermodynamic
limit, dominates the low energy spectrum of the system at the
critical point and it is also responsible for the universal slow
dynamics [18,44]. Instead, for dominant hopping term α < β,
the critical Dirac mode is not relevant in the low energy
spectrum, since the pairing term is subleading. However, this
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subleading pairing term turns out to be dangerously irrele-
vant and signatures of the topological order appear in the
dynamics. It is worth noting that the discrepancy between
the traditional Kibble-Zurek scaling and the universal β-
dynamical scaling is not related to the inapplicability of the
adiabatic perturbation theory expression (13), as it may occur
in Bose systems due to diverging occupations [54–56]. Rather,
the universal β-dynamical scaling is the consequence of de-
viations from the equilibrium universal scaling hypotheses
occurring in LR systems, see Eq. (14). Therefore, the adiabatic
perturbation theory expression in Eq. (13) correctly predicts
the density of defects when the correct results for the spectrum
and the transition amplitudes are employed instead of the
possibly incorrect scaling forms (14). However the adiabatic
perturbation theory calculation loses validity for β � 1 + 1/4
which is exactly the threshold value below which the nonan-
alytic corrections to the defect density δθ become subleading
with respect to the adiabatic ones δ2 arising from finite ramp
effects.

The deviation of the scaling of the defect density from the
conventional Kibble-Zurek result is expected to lead to several
unexpected properties of the present and similar models. In
particular, due to the violation of the scaling hypotheses in
Eqs. (14) and (15) discussed above, the relation between the
defect size for slow ramps and the scaling of the correlation
length is spoiled. Therefore, the recent results for the Lieb-
Robinson bound for LR systems [23,57,58] shall also not
apply.

We expect our results to be generally valid for most of the
interacting p-wave Hamiltonians [59–61], which reduce to the
quadratic form of Eq. (1) in the Bogolyubov approximation,
also in dimensions d > 1. Our results evidence that relevant
LR couplings contribute to stabilize dynamically realized
topological states by reducing nonadiabatic corrections to the
ground state fidelity, since slow dynamical manipulation of
the Hamiltonian is necessary to realize MZMs [34]. Finally,
due to the possibility of experimentally measuring both the
equilibrium and the dynamical critical scaling, the universal
β-dynamical scaling can be used as a diagnostic for the
existence of long-range tails in the hopping matrix and of
topological excitations in superconducting systems.
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APPENDIX A: BOGOLYUBOV TRANSFORMATION

The Bogolyubov transformation which diagonalizes the
Kitaev Hamiltonian is described here in detail. Our starting
point is the real space Hamiltonian for N spinless fermions,
Eq. (1) of the main text, which reads

H = −
∑

i

N/2∑
r>0

( jrc†
i ci+r + �rc†

i c†
i+r + H.c.)

− μ
∑

i

(
c†

i ci − 1

2

)
, (A1)

where the c†
i s are Fermionic creation operators which ful-

fill the anticommutation relations {c j, c�} = δ j�. We consider
power-law couplings for the hopping and pairing terms:

jαr = J

Nα

1

r̄α
, (A2)

�β
r = d

Nβ

1

r̄β
, (A3)

where r̄ = min(r, N − r) and we have considered periodic
boundary conditions. The exponents of the power laws can
be different and take values α > 1 and β > 1, which warrant
a well defined ferromagnetic state energy. The normalization
coefficients Nγ (γ = α, β) guarantee that the energy is exten-
sive. They read

Nγ = 2
N/2∑
r=1

1

rγ
→ 2ζ (γ ), (A4)

where the expression on the right is exact in the thermody-
namic limit and ζ (γ ) is the Riemann ζ function [41].

Hamiltonian (1) is quadratic and can be explicitly inte-
grated in momentum space via a Bogolyubov transformation
[18]. For this purpose we introduce the Fourier space transfor-
mations of operators c j ,

ck = 1√
N

e−i π
4

∑
j∈Z

c je
ik j, (A5)

where k ∈ [−π, π ) and it takes continuous values in the
thermodynamic limit. Using the Fourier representation (A5)
in the Kitaev Hamiltonian one finds

H =
∑

k

[(c†
kck − c−kc†

−k )εα (k) + (c†
kc†

−k + c−kck )�β (k)],

(A6)

where the coefficients are a function of k and read

εα (k) = −μ

2
− jα (k),

jα (k) =
∑
r>0

jαr cos(kr),

�β (k) =
∑
r>0

�β
r sin(kr).

It is convenient to employ a Bogolyubov transformation in
order to diagonalize the static Hamiltonian. We choose

ck = ukγk + v∗
−kγ

†
−k, (A7)

184306-5



DEFENU, MORIGI, DELL’ANNA, AND ENSS PHYSICAL REVIEW B 100, 184306 (2019)

where uk , vk are the Bogolyubov coefficients and γk satisfy the
fermionic anticommutation relations {γk, γ

′†
k } = δk,k′ . With

this transformation the Hamiltonian takes the diagonal form

H = 2
∑

k

ωk

(
γ

†
k γk − 1

2

)
, (A8)

where the eigenfrequencies read

ωk =
√

εα (k)2 + �β (k)2. (A9)

The diagonal form is found with the Bogolyubov coefficients

(uk, vk ) =
(

cos
θk

2
, sin

θk

2

)
, (A10)

such that

tan θk = �β (k)

εα (k)
. (A11)

This is the solution of the equilibrium model.

APPENDIX B: TAYLOR EXPANSION
OF THE POLYLOGARITHM

At lowest order in k (namely for |k| � π ), we expand the
k-dependent coefficients and obtain the expressions

jα (k)/J = 1 + sin(απ/2)
�(1 − α)

ζ (α)
kα−1 − ζ (α − 2)

2ζ (α)
k2

+ O(k3) if α < 3, (B1)

jα (k)/J = 1 + 2 log(k) − 3

4ζ (3)
k2 + O(k3) if α = 3, (B2)

jα (k)/J = 1 − ζ (α − 2)

2ζ (α)
k2 + O(kα−1) if α > 3, (B3)

and

�β (k)/d = cos(βπ/2)
�(1 − β )

ζ (β )
kβ−1 + ζ (β − 1)

ζ (β )
k

+ O(k3) if β < 2, (B4)

�β (k)/d = 6[1 − log(k)]

π2
k + O(k3) if β = 2, (B5)

�β (k)/d = ζ (β − 1)

ζ (β )
k + O(kβ−1) if β > 2. (B6)

These expressions are valid for all exponents α > 1, once the
analytic continuation of the Reimann ζ function is considered
for the cases α � 2 and β < 2. For β > 2 and α > 3 the
nonanalytic terms in Eqs. (B1) and (B4) become subleading
with respect to further analytic corrections and they can safely
be discarded. Now we have all the necessary information to
derive a full phase diagram for the extended Kitaev chain.

APPENDIX C: THE SCALING OF THE DEFECT DENSITY

According to the solution of the effective LZ problem the
excitation probability of each low momentum mode for an
infinitely slow ramp is

pk ≈ e− π

δ2 �β (k)2

(C1)

and the defect density can be computed integrating the excita-
tion probability along k:

nexc ≈
∫

e− π

δ2 �β (k)2

(C2)

in the infinitely slow ramp limit δ → 0 the above integral has
to be computed using the saddle point method. Indeed, the
integral remains not negligible only on an infinitesimal neigh-
borhood of the saddle point k = 0, where the pairing term
�β (k) vanishes. According to the low momentum expansions
reported in the above section for β > 2 one has

nexc ≈
∫

e
− π

δ

ζ (β−1)2

ζ (β )2
k2 ≈ ζ (β )

ζ (β − 1)

√
δ ∝

√
δ (C3)

as it shall be for a short-range system. In the long-range
regime β < 2 the saddle point approximation is less straight-
forward due to the divergence of the Hessian in the exponent.
Considering the low momentum expansion in this regime the
integration reads

nexc ≈
∫

e− π
δ

[cos( βπ

2 ) �(1−β )
ζ (β ) ]2k2(β−1)

. (C4)

It is convenient to define θ = 2(β − 1)−1 and c =
π [cos ( βπ

2 )�(1−β )
ζ (β ) ]

2
, then we shall consider the transformation

k = (δ s/c)θ , (C5)

dk = δθ θ

cθ
sθ−1, (C6)

the integral then reduces to

nexc ≈
∫

e− c
δ

k1/θ = θδθ

cθ

∫
sθ−1e−sds = θ�(θ )

cθ
δθ ∝ δθ ,

(C7)

as argued in the main text.
At β = 2 the low energy behavior for �β (k) acquires

logarithmic corrections and it shall then be treated separately.
The low momentum limit in this case reads

�2(k) = − 6

π2
k log(k) + O(k2) (C8)

leading to the excitation probability

nexc ≈
∫

e− 36
δπ3 k2 log(k2 )

. (C9)

In this case one shall introduce a more complicated transfor-
mation

s = k log(k), (C10)

k = eW (s), (C11)

dk = ds

1 + log(k)
= ds

1 + W (s)
, (C12)

where W (s) is the Lambert function. The integral has now
been reduced to

nexc ≈
∫

e− 36
π3

s2

δ ds

1 + W (s)
. (C13)

184306-6



UNIVERSAL DYNAMICAL SCALING OF LONG-RANGE … PHYSICAL REVIEW B 100, 184306 (2019)

The integration boundary has to be treated with care since the
transformation is not univocal. However, one shall consider
that we are interested only in a small neighbourhood of k =
0, where the expansion in Eq. (C8) is valid. In this regime,
it is sufficient to consider the lower branch of the Lambert
function W−1(s), which is real in the interval s ∈ [0,−1/e],
leading to the momentum interval k ∈ [0, 1/e]. In the s → 0−
limit W−1(s) obeys the asymptotic expansion [62]

W−1(s) = log(−s) + O[log log(−s)]. (C14)

Therefore our integral can be finally approximated with

nexc ≈
∫ −1/e

0

e− 36
δπ3 s2

log(−s)
= −

∫ 1/e

0

e− 36
δπ3 s2

log(s)
, (C15)

the reduction of the integral boundaries to k ∈ [0, 1/e] is
valid for δ � 1

e2 and becomes exact in the δ → 0 limit. In
order to proceed further, it is convenient to introduce the limit
representation of the logarithm

log(s) = lim
h→0

sh − 1

h
, (C16)

which in turns leads to

1

log(s)
= lim

h→0

∞∑
n=1

h shn. (C17)

Once the latter expression is plugged into the integral one
obtains

nexc ≈ − lim
h→0

∞∑
n=1

h
∫ 1/e

0
shne− 36

δπ3 s2

≈ − lim
h→0

∞∑
n=1

∫ +∞

0
shne− 36

δπ3 s2

= −
√

π3δ

6
lim
h→0

h
∞∑

n=1

(√
δ

6

)h n
�

(
3+h n

2

)
1 + hn

, (C18)

where we once again deformed the integration range, since
s � √

δ contributions to the integral vanish exponentially
fast in the δ → 0 limit. The summation in Eq. (C18) has
to be considered in the h → 0 limit, where the power-law

contributions δhn/2 become all relevant, while the
�( 3+h n

2 )
1+hn terms

can be safely approximated as �( 3
2 ) = √

π/2 yielding

nexc ≈ −π2

12

√
δ lim

h→0
h

∞∑
n=1

(√
δ

6

)h n

= −π2

6

√
δ

log(δ/6)
∝ −

√
δ log(δ)−1. (C19)

As expected, the case β = 2 is exactly in between the pure
short-range case nexc ∝ √

δ and the weak long-range case
β = 2 − ε, where one has nexc ∝ δ

1+ε
2 for ε � 1, and there-

fore the excitation probability decays faster than in the pure
short-range case. The ε → 0, i.e., β → 2, limit is placed
exactly in between, with the density of excitation decaying
only logarithmically faster than in the short-range case. We
have numerically verified that the introduction of subleading
k2 terms in the expansion of �2(k) as well as the extension of

the integration range beyond the region of validity of the low
momentum expansion in Eq. (C8) do not modify the scaling
regime in the δ → 0 limit.

APPENDIX D: LANDAU-ZENER PROBLEM

As discussed in the main text, one can employ the sub-
stitution in Eq. (12) into the dynamical evolution Eq. (11) for
the Bogolyubov coefficients. The resulting dynamics takes the
celebrated Landau-Zener form

i∂τ

(
uk

vk

)
=

(−�kτ 1
1 �kτ

)(
uk

vk

)
. (D1)

The Landau-Zener (LZ) evolution, Eq. (D1), can be solved
exactly using several approaches [45,63,64]. However, this
exact solution is rather cumbersome, since it is obtained in
terms of Weber functions. Therefore, we will rather rely on an
approximate solution, which is capable to correctly reproduce
the defect scaling, only sacrificing the exactness of numerical
coefficients, unimportant to our scopes. The LZ Hamiltonian
can be conveniently written using Pauli’s matrices

HLZ = �τσz + σx, (D2)

where

σz =
(

1 0
0 −1

)
, σx =

(
0 1
1 0

)
. (D3)

This Hamiltonian is diagonalized analogously to the Bo-
golyubov transformation described in the first section, one has
to introduce the angle θ = arctan( 1

�τ
), useful to describe the

eigenstates

|+〉 =
(

cos θ
2

sin θ
2

)
, |−〉 =

(
cos θ

2

− sin θ
2

)
, (D4)

with the eigenenergies ω± = ±
√

(�τ )2 + 1.

The finite ramp case

At the initial stage of the dynamics the system is exactly
in the ground state |ψτ=0〉 ≡ |−〉, while at every finite time
the state is given by the superposition |ψt 〉 = α−(τ )|−〉 +
α+(τ )|+〉, with α+(τ )2 + α−(τ )2 = 1. According to adiabatic
perturbation theory [53], the excitation amplitude at first order
in � is given by the formula

α+(τ ) � −
∫ τ

τi

〈+|∂s|−〉ei[�+(s)−�−(s)], (D5)

where

�±(τ ) =
∫ τ

τi

ω±(s)ds. (D6)

The overlap element between the adiabatic states can be
computed exactly for the LZ model,

〈+|∂τ |−〉 = ∂τ θ

2
= −1

2

�

(�τ )2 + 1
, (D7)

yielding the transition amplitude

α(τ f ) � 1

2

∫ τ f

−∞

� dτ

(�τ )2 + 1
e

2i
�

∫ �τ

0

√
s2+1ds, (D8)
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where, without loss of generality, we imposed τi = −∞. One
can explicitly integrate the phase factor

g(x) = 2
∫ x

0

√
s2 + 1ds = τ

√
τ 2 + 1 + arcsinh(τ ). (D9)

It is convenient to rescale the integration variable in Eq. (D8)
according to x = �τ ,

α(τ f ) � 1

2

∫ �τ f

−∞

dx

x2 + 1
e

i
�

g(x). (D10)

We are interested in the τ f � 0 limit of the latter where we
shall then separate the integral into the two contributions

α(τ f ) � 1

2

∫ ∞

−∞

dx

x2 + 1
e

i
�

g(x) − 1

2

∫ ∞

�τ f

dx

x2 + 1
e

i
�

g(x). (D11)

The above expression proves that the finite ramp dynamics is
always equivalent to an infinite ramp from τi = −∞ to τ f =
+∞ plus a correction, which is equivalent to the excitation
amplitude of a finite ramp not crossing the critical point. The
phase factor g(x) has no stationary points on the real line,
but it possesses an inflection point at x = 0. Therefore, the
first contribution to Eq. (D11) needs to be treated separately.
This computation has been already carried on in details in
Ref. [53], yielding

α(∞) � π

3
e− π

2� , (D12)

where the numerical coefficient π/3 ≈ 1.05 is surprisingly
close to the exact value 1. The second contribution can be
transformed into

α∗(−τ f ) = 1

2

∫ −�τ f

−∞

dx

x2 + 1
e

i
�

g(x). (D13)

Since τ f is positive −τ f is negative and the formula describes
the excitation amplitude of a ramp ending below the critical
point. Therefore, the integration in Eq. (D13) does not contain
the higher order stationary point x = 0 and it can be safely
integrated using the standard procedure for fast oscillating
integrals [65]

α∗(−τ f ) = �

4

1√
1 + (�τ f )23 . (D14)

Coming back to the Kitaev chain problem one has � ≡
δ/�(k)2 and τ f = [ jα (k) − g f ]�β (k)/δ. The excitation prob-
ability for a single momentum state k is

pk = δ2

16

�β (k)4

{�β (k)2 + [ jα (k) − g f ]2}3
. (D15)

Therefore, the defect density for the p-wave superconducting
Hamiltonian in Eq. (1) after a quench starting at gi = +∞ and
ending at g f > 1 without crossing any critical points is given
by

nexc(t f ) =
∫

pkdk = δ2

16

∫
�β (k)4dk

{�β (k)2 + [ jα (k) − g f ]2}3
,

(D16)

where, as long as |g f | > 1, the integral remains always con-
vergent. In the δ → 0 limit such contribution decays quadrat-
ically with δ, in agreement with our expectations for adiabatic
dynamics. The latter result proves that finite ramp corrections
are always negligible with respect to the nonanalytic scaling
in the defect density generated by the low momenta during the
full ramp dynamics.
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