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Surface acoustic waves in one-dimensional piezoelectric phononic crystals with symmetric unit cell
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The paper studies the existence of surface acoustic waves in half-infinite one-dimensional piezoelectric
phononic crystals consisting of perfectly bonded layers, which are arranged so that the unit cell is symmetric,
i.e., is invariant with respect to inversion about its midplane. An example is a bilayered structure with exterior
layer being half thinner than the interior layers of the same material. The layers may be generally anisotropic.
The maximum possible number of surface acoustoelectric waves referred to a fixed wave number and a given full
stop band is established for different types of electric boundary conditions at the mechanically free or clamped
surface. In particular, it is proved that the phononic crystal-vacuum interface can support two surface waves in
any full stop band. The same statement holds true in the case of a metallized surface of the crystal. This number
is greater than that in a purely elastic case. In the presence of crystallographic symmetry, which decouples the
sagittally and horizontally polarized surface waves, their separate admissible numbers are obtained. It is shown
that the propagation along the normal to the surface is a special case, where the maximum number of surface
waves is less than that along oblique directions.
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I. INTRODUCTION

Throughout recent years, there has been a steady inter-
est to the propagation of bulk and surface acoustic waves
in phononic crystals [1–3]. In particular, much attention
has been paid to the wave propagation in one-dimensional
(1D) phononic crystals, otherwise termed superlattices, which
represent periodic sequences of multilayers [4]. Reflection
of bulk waves was investigated in piezoelectric [5–7] and
solid-fluid superlattices [8–10], as well as in solid-solid and
solid-fluid Fibonacci structures [11–14]. Much effort has been
devoted to studying the surface acoustic waves (SAWs) in
1D elastic and piezoelectric phononic crystals. The largest
amount of theoretical data was obtained for shear horizon-
tally polarized SAWs [15–23]. Sagittally polarized two-partial
SAWs [24–29] and fully coupled three-partial SAWs [30–32]
were also investigated. Note parallel developments in model-
ing of SAWs in two-dimensional phononic crystals [33–45].

In practice, the SAWs in phononic crystals have to be
sought numerically; however, the efficiency of this search can
be enhanced due to the theoretical predictions. As is well
known, the SAWs in a periodic structure are generally re-
stricted to full stop bands (the spectral zones with no propagat-
ing modes). The question is whether and how many SAWs can
exist in a stop band. The problem of SAW existence in half-
infinite 1D phononic crystals of general anisotropy composed
of purely elastic and piezoelectric layers was considered in
Refs. [46,47], respectively. It is clear that explicit solutions for
the wave characteristics in terms of the material parameters
are certainly out of reach; however, developing the methods of
anisotropic piezoacoustics of homogeneous media established
in Refs. [48,49] has made possible to predict a maximum
possible number of SAWs per full stop band. This number
embraces the SAW occurrence in a given phononic crystal

with arbitrary asymmetric arrangement of layers within a unit
cell and in its “reversed” counterpart with an inverse ordering
of layers in the unit cell. On the methodological side, we note
that the theory of [48,49] exploits the properties of the eigen-
vectors of the so-called Stroh matrix, whereas Refs. [46,47]
use the properties of the eigenvectors of the transfer matrix
derived from the Stroh matrices of the constituent layers.

The present paper is concerned with the case where the 1D
phononic crystal has a symmetric unit cell such that is invari-
ant with respect to inversion about its midplane. The required
symmetry can be realized by a corresponding arrangement of
odd number of one distinct and others pairwise identical layers
in a period. For instance, this may be a half-infinite bilay-
ered phononic crystal in which the thickness of the exterior
layer is half of thickness of the interior layers of the same
material. It is significant that the unit-cell symmetry modifies
the algebraic properties of the transfer matrix and thereby
essentially affects the analysis of the SAW existence problem.
Thus this case has to be considered independently, i.e., the
sought predictions on SAW existence cannot be extracted as a
corollary the derivations of Ref. [47] developed for the case
of an asymmetric unit cell. Note that a number of SAWs
per a stop band established in the asymmetric case embraces
their occurrence in the given structure and in its “reversed”
modification [47]. Both arrangements are identical to each
other in the symmetric case, hence the maximum possible
number of SAWs must cannot be greater than a half of the
above aggregate number in the asymmetric case. Apparently,
this observation suggests that passing from nonsymmetric to
symmetric setting may lead to SAW degeneracies inside the
stop bands and maybe to their disappearance due to merging
with the band edges. However, the number of SAWs, one way
or another vanishing at such transition, may generally appear
different, and so there is no a priori evidence that a simple
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guess of the permissible number of SAWs in the symmetric
case, which is inferred directly from its evaluation [47] for
the asymmetric case, cannot overestimate the actual result.
Resolving this uncertainty on the grounds of rigorous analysis
is the main motivation for the present paper. In addition, we
also analyze the case of wave normal propagation across the
phononic crystal, which is a special situation not considered
so far.

The paper is organized as follows. Section II briefly in-
troduces the transfer matrix of a 1D half-infinite phononic
crystal. The existence of SAWs in stop bands under different
boundary conditions is analyzed in Sec. III. The influence
of crystallographic symmetry on the SAW occurrence and
the case of the normal propagation are also treated here. A
numerical example is considered in Sec. IV. The conclusions
are presented in Sec. V. Appendix A recaps the governing
system of equations of piezoacoustics. Appendices B and
C discuss the necessary properties of the transfer matrix,
the impedance and admittance of the half-infinite phononic
crystal as well as the properties of the other matrices involved
in considerations.

II. TRANSFER MATRIX AND ITS EIGENVECTORS

Consider a harmonic SAW propagating with frequency
ω and wave number k along the surface of a half-infinite
1D piezoelectric phononic crystal y � 0 built up of perfectly
bonded piezoelectric layers with interfaces parallel to the
surface y = 0 (see an example in Fig. 1). Let m be the unit
vector lying in parallel to the surface and n be the unit vector
orthogonal to the surface. The mechanical displacement u
coupled under the quasielectrostatic approximation with the
electric potential ϕ and the associated normal components of
the mechanical stress σ̂ and the electric displacement D may
be sought as (

u(r, t )
ϕ(r, t )

)
=

(
a(y)
φ(y)

)
ei(kx−ωt ), (1)

(
σ̂σσ (r, t )n
D(r, t ) · n

)
= −i

(
l(y)
d (y)

)
ei(kx−ωt ), (2)

FIG. 1. Half-infinite phononic crystal with symmetric unit cell
constructed of materials 1 (layers 1ext and 1) and 2 (layers 2). The
thickness of exterior layer 1ext is half the thickness of interior layers
1. Dotted lines p at the midline of layers 1 indicate the unit-cell edges.

where x = m · r and y = n · r. The vector of y-dependent
amplitudes of the wave field (1), (2), arranged as either
ξξξ�(y) = (a, φ, l, d )t or ξξξF (y) = (a, d, l, φ)t (where t means
for transposition), obeys a system of ordinary differential
equations [48,49], see Appendix. The two above definitions of
ξξξ� and ξξξF , referred to as � and F representations, are suitable
for treating different types of electrical boundary conditions
on the surface. The quantities attributed to either of these
representations are supplied below with the index P meaning
P = � or P = F .

The 8 × 8 transfer matrix relating the values of the am-
plitude vector ξξξP at the opposite edges of unit cell of a
phononic crystal is a product of the transfer matrices M̂P,i =
exp(ihiN̂P,i ) through each individual ith layer, where hi is its
thickness and N̂P,i is the matrix of coefficients of Eq. (A6). Let
the period of the phononic crystal be symmetric with respect
to its middle plane (e.g., Fig. 1), which means that the unit
cell consists of 2n + 1 layers, the ith and the (2n + 2 − i)th
layer, i = 1, . . . , n, being of the same material and of the same
thickness, so that M̂P,i ≡ M̂P,2n+1−i. As a result, the transfer
matrix M̂(S)

P of a symmetric unit cell (the symbol S refers to
symmetry) takes the form

M̂(S)
P = M̂P,1M̂P,2 · · · M̂P,n+1 · · · M̂P,2M̂P,1. (3)

Our subsequent considerations are based on the properties
of the solutions of the eigenvalue problem

M̂(S)
P ζζζ P,α = γαζζζ P,α, α = 1, . . . , 8, (4)

which are discussed in Appendix B. For the future use, denote
the eigenvector components as follows:

ζζζ�,α =
(

U�,α

V�,α

)
, U�,α =

(
Aα

�α

)
, V�,α =

(
Lα

Dα

)
,

(5)

ζζζ F,α =
(

UF,α

VF,α

)
, UF,α =

(
Aα

Dα

)
, VF,α =

(
Lα

�α

)
.

Since the transfer matrix acts both on the eigenvectors ζζζ P,α

and on the wave-amplitude vector ξξξP(y), the components
Aα , �α , Lα , and Dα of ζζζ P,α are related, respectively, to the
mechanical displacement, electric potential, normal traction,
and normal component of electric displacement, the two latter
ones multiplied by i.

It should be noted that the eigenvalues of the transfer
matrix through an asymmetric unit cell also occur in pairs
(B3) or (B4) and this underlies the general partitioning of the
plane (ω, k) in pass bands and stop bands, see, e.g., Ref. [47].
On the other hand, the transfer-matrix properties (B1), (B2)
and the resulting relations (B6), (B7)1, and (B9)1 on the
eigenvectors ζζζ P,α are not valid in the case of asymmetric unit
cell and hold true specifically in the case of symmetric unit
cell. It is this dissimilarity which underlies the difference in
the analysis and in the results for SAWs in these two cases.

III. EXISTENCE OF SAWS

Aiming at the SAWs, we will focus our attention to the
so-called full stop bands which are the spectral zones where
all eight eigenvalues of M̂(S)

P appears in pairs (B4), namely,
γα = 1/γ ∗

α+4, |γα| �= 1, α = 1, . . . , 4. Choosing |γα| < 1,
α = 1, 2, 3, 4, the wave-field amplitude ξξξP(y) of the sought
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SAW taken at the surface y = 0 of a half-space y � 0 may be
represented as a linear combination

ξξξP|y=0 =
4∑

α=1

bαζζζ P,α ≡
(

UP

VP

)
, (6)

where the coefficients bα are found from the mechanical
and electrical boundary conditions at y = 0. Each eigenvector
ζζζ P,α of this superposition gives rise to a partial mode which
decays with depth due to a factor mγα acquired after passing
m periods.

A. Mechanically free electrically closed
and electrically open surface

Consider in parallel two types of boundary conditions at
the surface y = 0 of a given semi-infinite phononic crystal.
The first is the condition of a mechanically free electrically
closed surface, which implies the vanishing of the normal
traction and electrical potential. According to Eq. (6), this
condition can be formulated as

VF =
4∑

α=1

bαVF,α = 0. (7)

The second is the condition of a mechanically free electrically
open surface, which implies zero normal traction and zero
normal component of electric displacement, that is, in view
of Eq. (6),

V� =
4∑

α=1

bαV�,α = 0. (8)

Physically, the former condition is realized on the surface
coated with a thin metallic film. The latter condition is a
somewhat model case which is, however, of clear interest for
several reasons. First of all, it will be seen in Sec. III B that
the information on the existence of SAWs on the electrically
open surface, as well as on the electrically closed surface, is
essentially involved in the existence considerations of SAWs
on the crystal-vacuum interface. Second, this condition can
be viewed as the limiting case of the boundary condition
on a crystal-vacuum interface when the relative dielectric
permittivity of the crystal is far greater than unity. Third, all
considerations to be developed for the case of a piezoelectric
phononic crystal with an electrically open surface remain
valid in the case of a piezomagnetic phononic crystal with
a thin superconductive coating merely via interpreting D · n
as the normal component of magnetic induction, because the
piezomagnetic effect is described by a thirdorder tensor with
the same symmetry in indices as the piezoelectric tensor [50].

The immediate form of the dispersion equations corre-
sponding to the boundary conditions (7) or (8) is det V̂P = 0,
but it is not suited for analyzing the SAW existence, in partic-
ular, since the matrices V̂P are not Hermitian. An equivalent
form det ẐP = 0, where ZP, P = F,�, are the Hermitian
impedances of the half-infinite phononic crystal (B10)–(B12),
is expedient for numerical computations but it is not suited for
analyzing the SAW existence either, in particular because of
the presence of poles disrupting monotonicity (B14), see the
discussion in Sec. III D.

The admissible number of SAWs can be established via
introducing the real symmetric matrices

B̂P = iV̂PV̂t
P (9)

equal to the product of matrices V̂P (B8) and analyzing the
dispersion equation on the electrically closed or open surface
written in the form

det B̂F = 0 or det B̂� = 0, (10)

respectively, since det B̂P = (det V̂P )
2
. The required proper-

ties of B̂P are considered in Appendix C.
Properties (C10) and (C11) reveal that each of Eqs. (10)

cannot have more than two roots in a full stop band. Hence,

for a fixed k at most two SAWs per full stop band can exist on
the mechanically free electrically closed surface.

(The reference to a fixed wave number k and to the me-
chanically free conditions is skipped in the formulation of
subsequent statements.)

From property (C10) it follows that the maximum number
of SAWs permitted by the above statement may come about
provided that all four eigenvalues of the matrices B̂F are
positive near the lower edge ωl of the full stop band ωl <

ω < ωu. This may be the case in any full stop band; moreover,
according to (C5), this is always so in the lowest stop band
0 < ω < ωu.

The matrix B̂�, may also have all four eigenvalues positive
at the lower edges of full stop bands, but with exception of
the lowest one. According to Eq. (C6), B̂� has three positive
and one negative eigenvalue at ω = 0. Therefore, in view of
properties (C7), (C8), and (C10),

only one SAWs in the lowest full stop band can exist on the
electrically open surface;

at most two SAWs per upper full stop band can exist on the
electrically open surface.

Here an “upper” stop band ωl < ω < ωu implies the one with
ωl �= 0.

In addition, properties (C12) and (C13) of the eigenvalues
of the matrices B̂P allows us to conclude that

if two SAWs in a full stop band exist at ωF1 � ωF2 on the
electrically closed surface, then only one SAW exists on the
electrically open surface and its frequency ω� is such that
ωF1 � ω� � ωF2

and

if two SAWs in a full stop band exist at ω�1 � ω�2 on the
electrically open surface, then only one SAW exists on the
electrically open surface and its frequency ωF is such that
ω�1 � ωF � ω�2.

An existence criterion can be derived only for SAWs
in the lowest stop band on the electrically closed surface.
Bearing in mind (C5) and the discussion at the end of
Appendix C, we conclude that

at least one SAW in the lowest stop band must exist on the
electrically closed surface unless the limiting wave at ω = ωu

satisfies the boundary condition at this surface.
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Since the limiting wave usually does not satisfy the bound-
ary condition, one SAW usually does exist on the electrically
closed surface in the lowest stop band. A similar criterion
cannot be extended to SAWs in the lowest stop band on the
electrically open surface or to SAWs in the upper stop bands
on any of two types of surface, because none of these cases
guarantees positiveness of all four eigenvalues of B̂P at the
stop band lower edge.

B. Phononic crystal-vacuum interface

The phononic crystal-vacuum interface y = 0, otherwise
termed the mechanically and electrically free surface, requires
the traction to vanish and the electric potential together with
the normal component of electric displacement to be contin-
uous with those in the vacuum (y < 0), where the wave field
(1) is accompanied by a wave of electric potential ϕ(v)(r, t ) =
�(v)eky+i(kx−ωt ) (k > 0). Thus the corresponding boundary
condition can be written in terms of (6) and (5) as

4∑
α=1

bαLα = 0,

4∑
α=1

bα�α = �(v),

4∑
α=1

bαDα = −ikε0�
(v),

(11)
where ε0 is the dielectric permittivity of vacuum. Using
the admittance definition (B11)2 and the mechanical bound-
ary condition (11)1 yields the equality D = iYF,44�, where
� = ∑4

α=1 bα�α , D = ∑4
α=1 bαD

α
and YF,44 is the 44th el-

ement of matrix ŶF defined by (B10)2. Hence, in view of the
electrical boundary conditions (11)2,3, the SAW dispersion
equation can be written in the form

YF,44 = −kε0. (12)

The roots of Eq. (12) in a full stop band ωl < ω < ωu may
be analyzed graphically, taking advantage of the properties of
YF,44 as a function of ω at a fixed k. In particular, according
to Eqs. (B14) and (B15), ∂YF,44/∂ω is positive and YF,44 >

0 at ω = 0. Furthermore, since formally setting ε0 = 0 or
ε0 = ∞ reduces Eq. (11) to the boundary conditions on the
mechanically free electrically open or electrically closed sur-
face, respectively, the same replacement made in (12) shows
that YF,44 vanishes at the frequencies ω�i of SAWs on the
electrically open surface and has poles at the frequencies ωFi

of SAWs on the electrically closed surface. Note that YF,44

is normally finite at the edge frequencies ωl , ωu, at which it
diverges only in the exceptional case when the limiting wave
happens to satisfy the boundary condition of the mechanically
free electrically closed surface.

Possible types of behavior of the function YF,44(ω) are
depicted in Figs. 2 and 3. On examining these figures with
Eq. (12) borne in mind, the overall conclusion is that

at most two SAWs per full stopband can exist on the electri-
cally free surface.

On top of this statement, Figs. 2 and 3 link the number
of SAWs on the mechanically and electrically free surface to
that on the electrically closed and open surface. In particular,
Fig. 2 provides the following conclusions regarding SAWs
in the lowest stop band. At least one SAW exists on the
electrically free surface if two SAWs exist on the electrically
closed surface [Figs. 2(a) and 2(b)]. At most one SAW exists

FIG. 2. Possible options for the shape of the function YF,44(ω) in
the lowest stop band 0 < ω < ωu.

on the electrically free surface if only one SAWs exists on the
electrically closed surface [Figs. 2(c) and 2(d)]. At least one
SAW must exist on the electrically free surface if the SAW
exists on the electrically open surface [Fig. 2(c)]. Note that
these three statements apply as well to such upper stop bands
ωl < ω < ωu, where YF,44 at ωl �= 0 is greater than −kε0.

Additional possibilities are allowed in those upper stop
bands where YF,44(ωl ) < −kε0. In this case, two SAWs
may exist on the electrically free surface even if only one
SAW exists on the electrically closed surface [Fig. 3(a)].
One SAW may exist on the electrically free surface even
if no SAW exists on both electrically closed and open sur-
faces [Figs. 3(b) and 3(c)]. At least one SAW must exist
on the electrically free surface if two SAWs exist on the
electrically open surface [Fig. 3(d)]. The latter statement takes

FIG. 3. Possible options for the shape of the function YF,44(ω)
when YF,44(ωl ) < −kε0.
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into account property (C5) and it holds regardless of the
inequality between YF,44(ωl ) and −kε0; however, the sign of
this inequality decides the existence of the second SAW on
the electrically open surface, see Fig. 3(d).

Note that the boundary condition (11) substituted into the
impedance definition (B10)1 leads to the dispersion equation
in the form det ẐF + 1

kε0
det Ẑ3×3

F = 0 where Ẑ3×3
F is the 3 × 3

upper diagonal block of ẐF (B10)1. This is equivalent to
(12) in view of the identity YF,44 = det Ẑ3×3

F / det ẐF , unless a
coincidentally simultaneous vanishing of det ẐF and det Ẑ3×3

F
at some common frequency and wave number (ω0, k0). Such
solution to (11) fails to be detected by Eq. (12). The condition
det Ẑ3×3

F = 0 is equivalent to det Ẑ� = 0, since both imply
existence of the vector (UP, VP )t with L = 0, D = 0. Thus
(ω0, k0) is an exceptionally possible common root of the dis-
persion equations det ẐF = 0 and det Ẑ� = 0 corresponding
to the electrically closed and electrically open boundary con-
ditions, respectively (see Sec. III A). This solution describes
one of the two following options. First, if ẐF and Ẑ� have
the null vectors UF = (A,D)t and U� = (Ã,�)

t
fulfilling

ẐPUP = 0 with different mechanical displacements A and
Ã, then two independent SAWs with VF = 0 and V� = 0,

respectively, occur at (ω0, k0). Their linear combination can
always be arranged so that it satisfies the boundary condition
(11). Second, if ẐF and Ẑ� happen to have the null vectors
with the same mechanical displacements, then UF = (A,0)t

and U� = (A,0)t and a single SAW occurs at (ω0, k0) which
produces neither electric potential nor electric displacement
on the surface (� = 0 and D = 0 at y = 0) and hence does
not excite an electric wave in the vacuum, thus satisfying (11)
with �(v) = 0 and D(v) = 0.

It is seen that if the above specific solution (ω0, k0) oc-
curs, it eliminates one zero and one pole of the function
YF,44(ω) out of their total number admissible per a full stop
band. In other words, by (B14) det ẐF = F (ω)(ω − ω0) and
det Ẑ3×3

F = f (ω)(ω − ω0) for a fixed k = k0, and, in view
of the interrelation between the existence of SAWs on the
electrically closed and open surfaces (Sec. III A), either none
of the functions F (ω) and f (ω) vanishes in the given stop
band or only one of them vanishes once. As a result, the
function YF,44(ω) = f (ω)/F (ω) either keeps permanent sign
or else it has either one pole or one zero within the stop band.
It is graphically evident that under these conditions (12) can
have at most one root on top of the assumed solution (ω0, k0).
Thus the general statement regarding the maximum number
of SAWs on the electrically free surface remains valid in this
special case.

C. Phononic crystals with crystallographic symmetry

Assume that all layers constituting a given phononic crystal
have symmetry planes parallel to a common plane orthogonal
to their interfaces. Let the sagittal plane spanned by the
vectors m and n coincide with this plane. Then system (A6)
splits into six and two decoupled equations describing six
piezoactive sagittally polarized modes (S modes) and two
nonpiezoactive horizontally polarized modes (SH modes).
Correspondingly, the transfer matrix splits into the 6 × 6 and
2 × 2 diagonal blocks. The S-SAW involves three partial

modes and the occurrence of SAWs on a mechanically free
surface is determined by the 3 × 3 submatrices B̂3×3

P obtained
from the 4 × 4 matrices B̂P by deleting third row and third
column. A diagonal submatrix retains the sign-definiteness
features of the main matrix; hence, by (C4)–(C6), the eigen-
values of B̂3×3

P are decreasing functions of ω and there are
three positive eigenvalues of B̂3×3

F and two positive ones of
B̂3×3

� at ω = 0. As a result, the principal conclusions obtained
for the general case modify with regarding S-SAWs as fol-
lows:

only one S-SAW per a full stop band can exist on the electri-
cally closed or open surface;

only one S-SAW in the lowest stop band and at most two S-
SAW per an upper full stop band can exist on the electrically
free surface.

Now let the layers share an even-fold symmetry axis lying
in the interfacial plane and let the sagittal plane be orthogonal
to this axis. In this case, there are two decoupled sets of
four nonpiezoactive S-modes and four piezoactive SH-modes.
The latter are described by the lowest 2 × 2 diagonal blocks
B̂2×2

P of B̂P . Note that one of the eigenvalue of B̂�, which
is negative at ω = 0 by Eq. (C6) is the one associated with
piezoactive modes, i.e., with B̂2×2

� in the present case. Besides,
statement (C7) adapted for the present case implies that the
blocks B̂2×2

� and B̂2×2
F cannot have all four eigenvalues of the

same sign. Hence, first, there are two positive eigenvalues of
B̂2×2

F and one positive eigenvalue of B̂2×2
� at ω = 0. Second,

given ω = ωl �= 0, if two eigenvalues of B̂2×2
� are positive,

then the two eigenvalues of B̂2×2
F cannot be both positive and

vice versa. Therefore

no SH-SAW exists in the lowest stop band and only one
SH-SAW can exist per full stop band on the electrically open
surface;

only one SH-SAW per upper full stop band can exist on the
electrically closed or electrically free surface;

if SH-SAW exists on the electrically closed surface, then no
SH-SAW in the same stop band exists on the electrically open
surface, and vice versa.

It should be added that decoupling of S and SH modes
implies an independent definition of the respective spectral
bands, so that a full stop band of S modes can overlap a pass
band of SH-modes and, vice versa, a stop band of SH modes
can overlap a pass band of S-modes. In the case of stop/pass
band overlap, an arbitrary perturbation breaking the sagittal-
plane symmetry transforms S-SAW or SH-SAW into a leaky
wave. By contrast, a SAW existing in a pass band and being
subjected to a certain particular perturbation may remain
nonleaky despite polarization mixing, see Refs. [32,51]. In
the case of overlapping stop bands, the numbers of S- and
SH-SAWs can predetermine in a certain way the properties
of SAWs of general polarization arising under perturbation
of crystallographic symmetry. Consider an example of a
full stop band of piezoactive S-SAWs ωS

l < ω < ωS
u , which

overlaps with a full stop band of SH-SAWs ωSH
l < ω < ωSH

u .
Recall that SH modes are nonpiezoactive once S-SAWs are
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piezoactive. According to Ref. [46], no nonpiezoactive SH-
SAWs can exist on the mechanically free surface of the
phononic crystal with symmetric unit cell, whereas the lim-
iting bulk SH mode either at ωSH

l or at ωSH
u is exceptional, that

is, it satisfies the traction-free boundary condition. Assume
that the latter exceptional SH wave is at ωSH

u and that ωSH
u <

ωS
u . In addition, let two S-SAWs exist on the electrically free

surface in the common frequency interval max(ωSH
l , ωS

l ) <

ω < ωSH
u , as it is permitted provided that the stop band is

not the lowest one. Under a weak perturbation breaking
the symmetric orientation of the sagittal plane (such as its
deviation or a change of material constants), the two S-SAWs
merely acquire an out-of-plane polarization component while
remaining near-surface localized. It can be thought that such
perturbation, at least some special one, can lead to the local-
ization of the formerly bulk exceptional SH mode. However,
the appearance of a third SAW is excluded, and so we arrive
at a somewhat counterintuitive conclusion that a weak per-
turbation in the above case cannot transform the exceptional
SH mode to a SAW. On the other hand, if the overlapping stop
bands are the lowest ones and one S-SAWs comes about in the
common interval 0 < ω < ωSH

u , then a perturbation breaking
the symmetric configuration may transform the exceptional
SH mode at ωSH

u to the SAW with quasi-SH polarization, since
the latter event does not contradict the statement concerning
the number of SAWs in the lowest stop bands.

D. Mechanically clamped surface

The condition of vanishing mechanical displacement a = 0
at the surface y = 0 (a clamped surface) is of relatively minor
importance as only a limiting model for a contact with an
idealized absolutely rigid exterior body. At the same time,
the existence or nonexistence of SAWs on a “fictitiously”
clamped surface decides about the presence or absence of the
poles of the determinants of the impedances ẐP. This fact
is important for the analysis of the SAW propagation, e.g.,
on a loaded surface of a phononic crystal or on an interface
between two phononic crystals.

The boundary conditions on the mechanically clamped
electrically closed or electrically open surface is UP =∑4

α=1 bαUP,α = 0. By the similar reasons as outlined above
Eq. (10), the SAW existence in this case is expedient to
analyze in terms of the matrices

Q̂P = iÛPÛt
P, (13)

where the matrices ÛP are introduced in Eq. (B8). The corre-
sponding form of the dispersion equation is

det Q̂F = 0 or det Q̂� = 0 (14)

on the mechanically clamped electrically closed or electrically
open surface, respectively. In view of the properties (C14) of
Q̂P, we conclude that

no SAW exists in the lowest full stop band on the mechanically
clamped surface;

at most two SAWs per upper full stop band exist on the
clamped electrically closed or open surface.

Thus the determinants of ẐP have no poles in the lowest stop
band and at most two poles each in the upper stop bands.

E. SAWs at k = 0

Propagation of acoustoelectric waves with a small tangen-
tial wave number k, i.e., along the directions which are close
to the normal n to the layer interfaces, generally cannot be
described with the aid of the quasielectrostatic approximation
which ceases to be applicable once k becomes small enough
to be commensurate with ω/c, where c is the electromagnetic
wave velocity. For such k, the two modes of the quasielec-
trostatic potential coupled with mechanical displacement via
the piezoelectric effect transform into a pair of electromag-
netic waves. Two more electromagnetic waves arise from two
modes of the quasistatic magnetic potential, which are ignored
under the quasielectrostatic approximation due to their de-
coupling from the acoustoelectric fields (unless the material
possesses piezomagnetic and/or magnetoelectric properties).
This opens up a particular mechanism of phonon-polariton
coupling [52–55]. Altogether, it follows that a correct tracing
of the limiting transition k → 0 requires a full treatment of the
electromechanical waves such that implies a replacement of
the present 8 × 8 formalism with the 10 × 10 one incorporat-
ing six acoustic partial modes coupled with four electromag-
netic modes [56–58]. We shall not, however, pursue here this
formalism and consider a zero value k = 0 as a secluded point
of the dispersion dependence. In this context, the electromag-
netic waves propagating along the same direction n with far
higher speed then the acoustoelectric ones may be disregarded
and the quasielectrostatic approximation can be used.

From the explicit form (A7) of N̂�, it follows that at
k = 0 this matrix has a doubly degenerate zero eigenvalue
and becomes nonsemisimple (nondiagonalizable, see, e.g.,
Ref. [59]), that is, instead of two linearly independent eigen-
vectors, N̂� has one eigenvector ξξξ�,d and one so-called gen-
eralized eigenvector ξξξ�,g which fulfill the relations N̂�ξξξ�,d =
0 and N̂�ξξξ�,g = −ξξξ�,d . The nonzero components of these
vectors are �d in ξξξ�,d and V�,g ≡ (Lg,Dg)t = (nn)(0,�d )t

in ξξξ�,g. The corresponding partial solutions to Eq. (A6) in a
homogeneous layer, numbered by α = 7 and 8, are ξξξ�,7(y) =
ξξξ�,d and ξξξ�,8(y) = ξξξ�,g − iyξξξ�,d .

Since the eighth line of N̂� at k = 0 is identically zero, the
other six partial solutions ξξξ�,α (y), α = 1, . . . , 6, of (A6) asso-
ciated with nonvanishing eigenvalues of N̂� have zero eighth
component which is the normal component of electric dis-
placement Dα · n. This is consistent with the fact that these six
partial solutions describe bulk waves propagating along n and
hence the components of their electric displacement along n
must be equal to zero. It thus follows that the solution ξξξ�,8(y)
with a constant electric-displacement component Dg should be
discarded. The six partial modes ξξξα (y) = (aα, φα, lα, 0)t , α =
1, . . . , 6, are just enough to satisfy the mechanical boundary
condition at the surface and the continuity conditions at the
layer interfaces. The continuity of electric potential at the
layer interfaces and at the crystal surface can always be
ensured by way of adding an appropriate piecewise constant
value of ξξξ�,7(y), which at the same time does not affect the
mechanical boundary conditions.

On this basis, we conclude that the normal propagation of
acoustoelectric waves in a phononic crystal can be described
by the 6 × 6 transfer matrix obtained from the 8 × 8 matrix
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M̂(S)
� with k = 0 by deleting the fourth and eighth lines and

columns. The resulting matrix satisfies the same symmetry
properties (B1) and (B2) with the appropriately redefined
6 × 6 matrix T̂. Correspondingly, the eigenvectors (Aα, Lα )t ,
α = 1, . . . , 6, of this transfer matrix allow one to construct
the 3 × 3 impedance and admittance matrices, which are
Hermitian and possess the same sign-definiteness properties
(B14) and (B15) in the full stop bands. In consequence, an
admissible number of normally propagating SAWs does not
depend on the type of electrical boundary conditions at the
surface and is determined by the same propositions as formu-
lated in Ref. [46] for purely elastic 1D phononic crystals. In
particular,

at k = 0, only one SAW per full stop band can exist on the
mechanically free surface of a piezoelectric phononic crystal
with symmetric unit cell.

The above reasonings also apply to the phononic crystal
with asymmetric unit cell, so, in accordance with Ref. [46],

at k = 0, at most three SAWs per full stop band can exist
on the mechanically free surface of a piezoelectric phononic
crystal with asymmetric unit cell.

If either the normal to the layer interfaces or the normal
to the sagittal plane is orthogonal to a common axis of
crystallographic symmetry of layers, then one pair of partial
acoustic modes ξξξP,α (y) and ξξξP,α+3(y) which are polarized
along this axis uncouples from four others. One of these two
modes, e.g., α, is a candidate for a one-partial SAW in a stop
band. It occurs that such a one-partial SAW cannot occur if
the unit cell is symmetric. Indeed, had the mode α satisfied the
traction-free boundary condition, it would be that the part VP,α

of the eigenvector ζζζ P,α of M̂(S) vanishes but this is impossible
in stop bands due to orthogonality condition (B7). However,
if the unit cell is asymmetric, then one-partial SAW can exist,
since the properties of the transfer matrix of asymmetric unit
cell allow an eigenvector ζζζ P,α to have either UP,α = 0 or
VP,α = 0 in stop bands.

IV. NUMERICAL EXAMPLE

Our foregoing analysis has established on general grounds
that at most two SAWs may exist in a given full stop band.
This section demonstrates that the maximum possible number
can actually be attained in a phononic crystal.

We shall compute SAW dispersion curves in the bilay-
ered phononic crystal composed of alternating layers of ce-
ramics PZT6B and of single-crystal BaTiO3. The material
constants of PZT6B (symmetry 6mm) are cE

11 = 168, cE
12 =

84.7, cE
13 = 84.2, cE

33 = 163, cE
44 = 35.5, cE

66 = 41.65 (all in
GPa units); e31 = −0.9, e33 = 7.1, e15 = 4.6 (all in C/m2

units); εS
11/ε0 = 407, εS

33/ε0 = 386, ρ = 7550 kg/m3 [60].
The material constants of BaTiO3 (symmetry 4mm) are cE

11 =
275, cE

12 = 179, cE
13 = 152, cE

33 = 165, cE
44 = 54.3, cE

66 = 113
(all in GPa units); e31 = −2.65, e33 = 3.64, e15 = 21.3 (all in
C/m2 units); εS

11/ε0 = 1744, εS
33/ε0 = 97, ρ = 6020 kg/m3

[60]. The layers are oriented so that their crystallographic axes
X, Y, Z , where Z is parallel to the principal symmetry axis,
are mutually aligned and the layer interface is the plane of
symmetry [010]. Hence the propagation along the X axis en-

FIG. 4. Frequency vs wave number dispersion curves of the
S-SAW and SH-SAW in the lowest stop band of PZT6B/BaTiO3

phononic crystal with the electrically closed surface. The propaga-
tion direction is parallel to the X axis. White and grey areas are stop
and pass bands, respectively. Curve 1: S-SAW, curve 2: SH-SAW.
The velocity v0 = 3000 m/s, H is the period, kB = 2π/H is the
Brillouin wave number.

sures decoupling of nonpiezoactive S modes and piezoactive
SH modes. Unless otherwise specified (see Figs. 7 and 8), the
exterior layer is made of PZT6B and its thickness is h while
the thicknesses of the interior PZT6B and of the BaTiO3 layers
are 2h and h, respectively, so that the unit cell with a period
H = 3h counted from the surface is symmetric.

Figure 4 shows that the lowest stop band contains two
frequency vs wave number dispersion curves of SAWs prop-
agating on the electrically closed surface in the direction of
the X axis. One of the curves describes the nonpiezoactive
S-SAW, the other the piezoactive SH-SAW. The latter exists
solely due to the piezoelectric effect, since SH-SAW cannot
occur in a purely elastic phononic crystals with symmetric
period [46]. For clarity, the phase velocities of these S-SAW
and SH-SAW are depicted in Fig. 5. Note that the are two
values of the wave number, k/kB ≈ 0.75 and ≈1.075, at which
the frequencies of the two SAWs become equal. This event
may be seen as an analog of the acoustic axes for bulk waves
in anisotropic solids.

According to the results of Sec. III A, only the nonpiezoac-
tive S-SAW but no piezoactive SH-SAWs can exist in the low-
est stop band of a phononic crystal with symmetric unit cell if
its mechanically free surface is electrically open. If the surface
is electrically free, i.e. bounded by vacuum, then the fre-
quency ωSH of piezoactive SH-SAW breaks off from the upper
edge ωu of the stop band (we note that in the phononic
crystal under consideration ωu confining the lowest stop-band
common for S and SH modes is the edge frequency for SH
modes). However, the appearing gap is extremely small due to
very high dielectric permittivities of PZT6B and BaTiO3. On
the other hand, the condition of electrically free boundary can
be generalized by assuming that a given medium is bounded
by a dielectric without a mechanical contact. Then the
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FIG. 5. Phase velocity vs wave number dispersion curves of the
S-SAW and SH-SAW recalculated from the data of Fig. 4. VS is S-
SAW velocity, VSH is SH-SAW velocity, Vu = ωu/k is the limiting
wave velocity associated with the upper edge of the lowest stop band.

dielectric permittivity of vacuum ε0 should be replaced with
the permittivity ε of the dielectric exterior. Within this model,
if the relative permittivity of the exterior is, for instance, taken
to be 100, then the SH-SAW frequency ωSH changes from
0.9987ωu to 0.9981ωu with k/kB changing from 0.5 to 1.5,
i.e., the gap becomes clearly seen.

Consider the propagation direction which slightly deviates
from the X axis. Then the two SAW branches should still exist,
but now both SAWs are going to be piezoactive and of general
polarization. Figure 6 shows the velocity versus wave-number
dependence for the quasi-S-SAW and quasi-SH-SAW on the
electrically closed surface in the direction making 10o with the
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FIG. 6. Phase velocity vs wave number dispersion curves of the
quasi-S-SAW and SH-SAW in the direction making 10◦ with the X
axis. VqS is quasi-S-SAW velocity, VqSH is quasi-SH-SAW velocity,
Vu = ωu/k is the limiting wave velocity associated with the upper
edge of the lowest stop band.

X axis. Thus we observe an example of two piezoactive SAWs
which is their maximum number possible in a full stop band.
Comparing with Fig. 5, it is seen that the frequency (velocity)
degeneracy of the two SAWs has been lifted. The results for
the other types of electrical boundary conditions are also in
agreement with the general predictions of Sec. III regarding
the lowest stop band, namely, there is one quasi-S-SAW on
the electrically open surface and two SAWs on the electrically
free surface. It is noted that, due to a slight deviation from the
X axis, the quasi-S-SAW is only weakly piezoactive, so that
its velocity on the electrically open and free surface differs
very little from that on the electrically closed surface.

Consider another assemblage of the given layers, such that
also has a symmetric unit cell but the exterior layer is made of
BaTiO3 (with a thickness 0.5h, half of that of interior BaTiO3

layers). Denote this phononic crystal as BaTiO3/PZT6B, to
distinguish it from the PZT6B/BaTiO3 structure with PZT6B
exterior layer. Sticking to the lowest stop band and the X -
axis propagation direction along the electrically closed sur-
face, compare the SAW dispersion branches obtained for
BaTiO3/PZT6B (Fig. 7) with those obtained previously for
PZT6B/BaTiO3 (Fig. 5). Both S-SAW and SH-SAW are seen
to exist in either of these cases, but the shape of their branches
markedly differs. It is of interest to trace the transition from
one set of curves to the other as PZT6B/BaTiO3 structure
is being transformed to BaTiO3/PZT6B by way of changing
the thickness of the exterior layer. Note that the so modelled
intermediate configurations will have an asymmetric unit cell,
and hence the maximum possible number of SAWs per a stop
band in there may be less than in a structure with symmetric
unit cell (see Ref. [47]). The SAW dispersion branches in
PZT6B/BaTiO3 with the exterior PZT6B layer of thickness
0.9h are shown as curves 1 and 2 in Fig. 8. It is seen
that there appears an interval of k values, within which the
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FIG. 7. Phase velocity vs wave number dispersion curves of
the S-SAW and SH-SAW propagating along the X axis on the
electrically closed surface of half-infinite BaTiO3/PZT6B phononic
crystal with a symmetric unit cell. The exterior layer is BaTiO3

of thickness 0.5h. VS is S-SAW velocity, VSH is SH-SAW velocity,
Vu = ωu/k is the limiting wave velocity associated with the upper
edge of the lowest stop band.
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FIG. 8. Phase velocity vs wave number dispersion curves of the
S-SAW (curves 1 and 1′) and SH-SAW (curves 2 and 2′) in the
lowest stop band of the phononic crystal with an asymmetric unit
cell made of PZT6B and BaTiO3 layers. The surface is electrically
closed. Curves 1 and 2 correspond to PZT6B/BaTiO3 structure with
the exterior PZT6B layer of thickness 0.9h. Curves 1′ and 2′ corre-
spond to BaTiO3/PZT6B structure with the exterior BaTiO3 layer of
thickness 0.8h. Curve 3 is the limiting wave velocity associated with
the upper edge of the lowest stop band.

S-SAW ceases to exist and only the SH-SAW comes about.
Further decreasing the thickness of the exterior PZT6B layer
enlarges the interval of the S-SAW nonexistence via shifting
the right-hand part of the S-SAW dispersion branch (curve
1) to the right edge of the figure. In turn, the SH-SAW
dispersion branch (curve 2) locally approaches the curve of
limiting velocity (curve 3), touches it, and then, similarly to
the S-SAW branch, breaks up into two parts, thus giving rise
to the interval of k values where SH-SAW does not exist.
Continuing to reduce the PZT6B layer thickness removes
PZT6B from the exterior and it is now the BaTiO3 layer
which becomes an exterior one. Figure 8 also shows the SAW
branches in BaTiO3/PZT6B with the exterior BaTiO3 layer of
thickness 0.8h (curves 1′ and 2′). In this case, we observe an
interval k/kB > 1.1 where neither S-SAW nor SH-SAW exist
in the given lowest stop band. However, the SAWs re-appear
one by one when the thickness of the exterior BaTiO3 layer
approaches 0.5h. Eventually, once it reaches 0.5h and hence
the unit cell becomes symmetric, we arrive at the dispersion
curves shown in Fig. 7.

V. CONCLUDING REMARKS

A series of statements have been proved concerning the
admissible number of SAWs per full stop band at fixed wave
number k in piezoelectric arbitrarily anisotropic 1D phononic
crystals with symmetric unit cell. The latter implies that the
layer ordering within a period is invariant with respect to its
midplane. The number of SAWs depends on the electrical
boundary condition and on whether the stop band is the
lowest one or not. The main predictions obtained in the
paper are enclosed in Table I. Our derivation circumvents any
explicit analytic calculations of the SAW parameters, which
are hardly feasible in practice, but develops and employs

TABLE I. Maximum number of SAWs per full stop band at a
fixed k in the phononic crystal with symmetric unit cell under differ-
ent electrical conditions on the mechanically free surface. Surface:
e-closed: electrically closed, e-open: electrically open, and e-free:
boundary with vacuum. Other columns refer to SAWs in the case of
general anisotropy, to piezoactive sagittaly polarized S-SAWs, and to
piezoactive SH-SAWs. The notations (0, ωu) and (ωl , ωu) imply the
lowest and the upper stop bands, respectively.

SAWs S-SAWs SH-SAWs

Surface (0, ωu) (ωl , ωu) (0, ωu) (ωl , ωu) (0, ωu) (ωl , ωu)
e-closed 2 2 1 1 1 1
e-open 1 2 1 1 0 1
e-free 2 2 1 2 1 1

instead a certain general approach combining the Floquet-
Bloch formalism and the matrix methods stemming from the
theory of SAWs in homogeneous piezoelectric media.

It is instructive to compare the maximum number of SAWs
possible per full stop band for a piezoelectric 1D phononic
crystal with symmetric unit cell and a similar data for a purely
elastic phononic crystal and for a piezoelectric one with an
arbitrary (asymmetric) unit cell established in Refs. [46,47],
respectively. Generally, the piezoelectric coupling increases
this number relatively to the corresponding pure elastic case.
The exception is the sagittally polarized SAW: Despite the
piezoelectric effect, still only one SAW can exist in any stop
band for the electrically closed and open surfaces and in the
lowest stop band for the electrically free surface (see Table I),
which is the same as in the pure elastic case. On the other
hand, the number of SAWs per stop band in a piezoelectric
crystal with asymmetric unit cell can exceed their number in a
crystal with symmetric unit cell. For instance, the former can
support two sagittally polarized piezoactive SAWs in a stop
band while the latter cannot. On transforming an asymmetric
unit cell to symmetric, e.g., by changing the thickness of the
exterior layer, an extra SAW branch may vanish either via
coalescing with a stop band edge and then ceasing to exist
or via merging in one with another SAW branch.
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APPENDIX A

Let an acoustoelectric wave propagate in a piezoelectric
nonconductive medium characterized by the density ρ, the
elastic stiffness tensor at constant electric field cE

i jkl , the
piezoelectric tensor ei jk , and the dielectric permittivity ten-
sor at constant strain εS

i j (i, j, k, l = 1, 2, 3). In the frame
of quasielectrostatic approximation, the mechanical displace-
ment u(r, t ) and the electrical potential ϕ(r, t ), and hence
also the mechanical stress tensor σ̂ (r, t ) and the electri-
cal displacement D(r, t ), can be determined by solving the
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equations [61]

∂σi j

∂x j
= −ρω2ui,

∂Di

∂xi
= 0, (A1)

with

σi j = cE
i jkl

∂uk

∂xl
+ eki j

∂ϕ

∂xk
, Di = ei jk

∂u j

∂xk
− εS

i j

∂ϕ

∂x j
. (A2)

Inserting (A2) into (A1) and assuming the space-time depen-
dence of the form (1) yields a system of four second-order
ordinary differential equations on the amplitudes a(y) and
φ(y),

(nn)
d2

dy2

(
a
φ

)
+ ik[(mn) + (nm)]

d

dy

(
a
φ

)

− [k2(mm) − ρω2Î′]
(

a
φ

)
= 0, (A3)

in which the symbols (ab) stand for 4 × 4 matrices
whose elements are contractions of the three-component
vectors a, b = n or m with the material tensors, namely,
(ab)IJ = akEkIJlbl , I, J = 1, . . . , 4, where EkIJl = cE

kIJl ,
I, J = 1, 2, 3, Ek4Jl = ekJl , J = 1, 2, 3, EkI4l = elIk ,
I = 1, 2, 3, Ek44l = −εS

kl ; the 4 × 4 matrix Î′ has three
unit elements I ′

ii = 1, i = 1, 2, 3, the other ones being zero,
and the phase factor exp [i(kx − ωt )] is omitted. Next,

plugging (1) in Eq. (A2) yields (
l
d

)
= −k(nm)

(
a
φ

)
+ i(nn)

d

dy

(
a
φ

)
, (A4)

where l(y) = iσ̂n and d (y) = iD · n. Combining Eqs. (A3) and (A4) and defining the vectors

ξξξ�(y) = (a, φ, l, d )t or ξξξF (y) = (a, d, l, φ)t , (A5)

where t means transposition, allows one to replace (A3) with the system of eight first-order differential equations

dξξξP

dy
= iN̂PξξξP, P = �, F, (A6)

where

N̂� = −
(

k(nn)−1(nm) (nn)−1

k2[(mn)(nn)−1(nm) − (mm)] + ρω2Î′ k(mn)(nn)−1

)
(A7)

and N̂F is obtained from the matrix N̂� by permuting fourth
and eighth rows and fourth and eighth columns [48,49]. Note
that the Stroh matrix (A7) is written in the form slightly
different from that in Refs. [48,49] and is similar to the
definition used in Ref. [62] in that it allows us to consider
the case k = 0. The presence of a factor i in the definition of
components l and d makes the matrices N̂P real. Each of them
fulfils the symmetry relation

N̂P = T̂N̂t
PT̂, (A8)

where

T̂ =
(

0̂ Î
Î 0̂

)
, (A9)

Î and 0̂ are the 4 × 4 unit and zero matrices, respectively.

APPENDIX B

In view of symmetry (A8) of N̂P,i and its real-valuedness,
the matrix M̂(S)

P defined by (3) satisfies the equalities

M̂(S)
P = T̂M̂(S)t

P T̂, (B1)

M̂(S)−1
P = M̂(S)∗

P , (B2)

where T̂ is matrix (A9) and ∗ means complex conjugation.
By virtue of Eq. (B2), it follows that M̂(S)∗

P ζP,α = γ −1
α ζP,α .

Thus if γα is an eigenvalue of M̂(S)
P , then 1/γ ∗

α is also an

eigenvalue and so the eigenvalues of M̂(S)
P appear pairwise (see

Refs. [59,63]), either as

|γα| = |γα+4| = 1, α = 1, . . . , 4, (B3)

or as

γα = 1

γ ∗
α+4

, |γα| �= 1, α = 1, . . . , 4. (B4)

Equation (B1) yields the orthonormalization relation of the
form

ζζζ t
P,αT̂ζζζ P,β = δαβ, α, β = 1, . . . , 8, (B5)

where δαβ is the Kronecker symbol. In turn, by (B2), if ζζζ P,α is
an eigenvector of M̂(S)

P with an eigenvalue γα, then ζζζ ∗
P,α is its

eigenvector with an eigenvalue 1/γ ∗
α , and so the eigenvectors

ζζζ P,α and ζζζ P,α+4, which correspond to a pair of eigenvalues γα

and γα+4 satisfying (B4), can be introduced in such a way that

ζζζ ∗
P,α = ζζζ P,α+4. (B6)

We are interested in the so-called full stop bands, that is, in
frequency intervals where, given the wave number k, all eigen-
values occur as pairs fulfilling Eq. (B4). In these intervals, a
conjunction of Eqs. (B5) and (B6) is equivalent to the relations

ζζζ t
P,αT̂ζζζ P,β = δαβ, ζζζ

†
P,αT̂ζζζ P,β = 0, α, β = 1, . . . , 4, (B7)

where the symbol † stands for the Hermitian conjugation.
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Furthermore, denote by ÛP and V̂P the 4 × 4 matrices
whose columns are the vectors UP,α and VP,α, α = 1, . . . , 4,

introduced by Eq. (5), i.e.,

ÛP = (UP,1 UP,2 UP,3 UP,4),

V̂P = (VP,1 VP,2 VP,3 VP,4). (B8)

In terms of matrices (B8), relations (B7) read

Ût
PV̂P + V̂t

PÛP = Î, Û†
PV̂P + V̂†

PÛP = 0̂. (B9)

Referring the matrices (B8) to a full stop band and taking
into the chosen numbering of modes, see the discussion
around Eq. (6), we introduce the impedance ẐP and the
admittance ŶP = Ẑ−1

P of the half-infinite phononic crystal so
that

V̂P = −iẐPÛP, ÛP = iŶPV̂P. (B10)

or, in an expanded form,

VP,α = −iẐPUP,α, UP,α = iŶPVP,α, α = 1, . . . , 4.

(B11)

Inserting (B10) in (B9)2 shows that the impedance and admit-
tance are Hermitian matrices,

ẐP = iV̂PÛ−1
P = −iÛ†−1

P V̂†
P = Ẑ†

P,
(B12)

ŶP = −iÛPV̂−1
P = iV̂†−1

P Û†
P = Ŷ†

P,

which is in agreement with the fact that the energy flux along
the y axis is zero.

Important properties of the impedances and admittances
follow from the link of their frequency derivative to the kinetic
energy and of their value at zero frequency to the internal
energy:

Ekin == −ω

8
U†

P

∂ẐP

∂ω
UP, W

∣∣
ω=0 = 1

4
U†

F ẐF UF , (B13)

where Ekin is the time-averaged and integrated over depth
kinetic energy per unit surface of an arbitrary evanescent
wave field generated by the initial data (6), and W |ω=0 is the
integrated over depth internal energy per unit surface of the
same wave field in the static limit (see Ref. [47] for more
details). Since Ekin > 0 and W |ω=0 > 0,

∂ẐP/∂ω are negative definite matrices,
(B14)

∂ŶP/∂ω are positive definite matrices,

and

ẐF and ŶF are positive definite matrices at ω = 0, (B15)

where (B15) takes into account that ω = 0 gives rise to a full
stop band once k �= 0. Note that Ẑ� is linked via a relation
of the type (B13)2 to the electric enthalpy which is not sign-
definite, hence neither are the static limits of the matrices Ẑ�

and Ŷ�.

APPENDIX C

The matrices B̂P (9) are linked to the admittances (B12).
By manipulating Eq. (B9), we obtain that

Ût
PV̂P + V̂t

PÛP = V̂t
P

(
V̂t−1

P Ût
P + ÛPV̂−1

P

)
V̂P

= iV̂t
P(Ŷ∗

P + ŶP )V̂P = I, (C1)

where we have used the Hermiticity Ŷt
P = Ŷ∗

P of admittances.
Equality (C1) and definition (9) yield

B̂−1
P = 2Re(ŶP ). (C2)

Hence

Im(B̂P ) = 0 and B̂P = B̂t
P. (C3)

Correspondingly, from Eqs. (B14) and (B15),

∂B̂P

∂ω
are negative definite matrices

in the full stop bands, (C4)

B̂F is a positive definite matrix at ω = 0. (C5)

However,

B̂� has three positive and one negative

eigenvalue at ω = 0. (C6)

The latter property may be proved in two steps. First, writing
out the fourth lines in the relations UP,α = iŶPVP,α (B10)2

for �α and Dα at P = � and F , and then inserting one into
the other yields Y�,44 = −1/YF,44, where YP,44 is the 44th
element of ŶP. Hence, by Eq. (C2), (B̂−1

� )44 = −1/(B̂−1
F )44.

In consequence, given the frequency, the matrices B̂� and
B̂F cannot be either both positive-definite or both negative-
definite and therefore

B̂� and B̂F cannot have all eight eigenvalues

of the same sign. (C7)

Second, observing that B̂F and B̂� have the common upper
3 × 3 diagonal block, denoting the eigenvalues of this block
by τ1 � τ1 � τ3, and ordering the eigenvalues τP,i of B̂P in
such a way that τP,1 � τP,2 � τP,3 � τP,4, we take advantage
of the so-called separation theorem [64], which provides the
inequalities

τ�,1 � τ1 � τ�,2 � τ2 � τ�,3 � τ3 � τ�,4,

τF,1 � τ1 � τF,2 � τ2 � τF,3 � τ3 � τF,4. (C8)

By (C8), if all four τ�,α are of the same sign, then at least
three of τF,α are also of this sign; in fact, by (C5), there are
exactly three such τF,α’s. Similarly, if all τF,α are of the same
sign, then three τ�,α are of this sign as well. In particular, by
Eq. (C5), all τF,α are positive at ω = 0, hence statement(C6)
holds true.

Note that the matrices B̂P are finite inside the full stop
bands. This fact is not evident at the possible secluded values
of ω and k, at which a coincidental degeneracy of eigen-
values of the transfer matrix M̂(S)

P occurs, rendering M̂(S)
P

nonsemisimple (not diagonalizable) [59]. In this case, each
of the matrices B̂P seen as sums of dyadic products, which is
equivalent to the product of matrices in Eq. (9),

B̂P = i
4∑

α=1

VP,α ⊗ VP,α, (C9)

contains dyads which diverge on approaching those secluded
degeneracy points. However, by analogy with the case of a
nonpiezoelectric phononic crystal [46], it can be shown that
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the divergent terms entering individual dyads cancel each
other when the dyads are being summed.

In view of (C3) , the matrices B̂P have four real eigen-
values τP,α and four real eigenvectors eP,α obeying the re-
lation et

P,αeP,β = δαβ , α, β = 1, . . . , 4. Differentiating both

sides of the spectral decomposition B̂P = ∑4
α=1 τP,αeP,α ⊗

eP,α with respect to ω, then multiplying the result from the
left and right by the eigenvector eP,α, and invoking (C4) yields
et

P,α (∂B̂P/∂ω)eP,α = ∂τP,α/∂ω < 0 . Bearing in mind that the
matrices B̂P are finite within the full stop band, we conclude
that

the eigenvalues of B̂P monotonically decrease

with increasing frequency in the full stop bands.

(C10)

A SAW frequency ωP, at which the boundary conditions
(7) or (8) are fulfilled, is a simple zero of det V̂P, i.e. locally
det V̂P ∝ ω − ωP. This is because, by (B14), ωP is also a
zero of det ẐP, which must be its simple zero by virtue of
Eq. (B14). Hence, ωP is a double zero of det B̂P ∝ (ω − ωP )2,
which in view of Eq. (C7) can be the case only due to a pair
of eigenvalues of B̂P vanishing simultaneously. Thus

the eigenvalues of each of the matrices BF and B�

in the full stop bands vanish pairwise. (C11)

According to Sec. III A, at most two SAWs can occur
on a mechanically free electrically closed or open surface.
Assume that two SAWs on the electrically closed surface
do come about at some frequencies ωF1 � ωF2 lying in a
given full stop band ωl < ω < ωu. This means that all four
eigenvalues τF,α of B̂F are positive at ω < ωF1 and all four
of them are negative at ω > ωF2. Then, by virtue of the
property formulated below Eq. (C8), three eigenvalues τ�,α

of B̂� (α = 2, 3, 4) are positive at ωl < ω < ωF1 and three
eigenvalues τ�,α (α = 1, 2, 3) are negative at ωF2 < ω < ωu.
Thus

a pair τ�,2 and τ�,3 changes simultaneously sign

at some ω� such that ωF1 � ω� � ωF2. (C12)

Analogously it can be shown that if two SAWs on the elec-
trically open surface come about at some frequencies ω�1 �
ω�2 in a given full stop band, then

a pair of the eigenvalues of B̂F changes

simultaneously sign at some ωF

such that ω�1 � ωF � ω�2. (C13)

The analysis of the SAW existence on the mechanically
clamped surface is based on the properties of the matrices Q̂
defined by Eq. (13) (see Sec. III D). By analogy with the proof
of Eq. (C1), it can be shown that Q̂−1

P = −2Re(ẐP ). Hence in
view of (B14)2 and (B15),

∂Q̂P/∂ω are negative definite matrices

in the full stop bands;

Q̂F has four negative eigenvalues at ω = 0;

Q̂� has three negative and one positive
eigenvalue at ω = 0. (C14)

Like B̂P, the matrices Q̂P remain finite inside the full stop
bands. In addition the eigenvalues of Q̂P also vanish only pair-
wise. These properties lead us to the statements formulated in
Sec. III D.

At the stop band edges ωu and ωl �= 0, two eigenvalues
γα and γα+4 = 1/γ ∗

α of the transfer matrix M̂(S)
P degenerate

into one eigenvalue γd with |γd | = 1 and two corresponding
eigenvectors ζζζ P,α and ζζζ P,α+4 coalesce into one eigenvector
ζζζ P,d = (UP,d , VP,d )t , so that M̂(S)

P becomes nonsemisimple.
By analogy with the terminology of the SAW theory for
homogeneous half-spaces [48,49], the mode generated by the
eigenvector ζζζ P,d may be called limiting. As opposed to a
similar degeneracy strictly inside a stop band [see a discussion
around Eq. (C9)], the matrix B̂ represented as dyadic sum (C9)
generally contains only one dyad diverging at ω → ωl + 0 or
ω → ωu − 0 and therefore the divergent terms do not cancel
out, leading to the divergence of B̂P. More specifically, the
perturbation theory similar to that of the nonpiezoelectric
case [46] shows that at least one eigenvalue of B̂P tends to
minus infinity or plus infinity as ω → ωu − 0 or ω → ωl + 0,
respectively, unless the exceptional possibility that VP,d = 0,
i.e., that the limiting wave alone satisfies the corresponding
boundary condition. Thus we arrive at the SAW existence
criterion formulated at the end of Sec. III A.
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