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Time crystals break the discrete time translational invariance of an external periodic drive by oscillating at an
integer multiple of the driving period. In addition to this fundamental property, other aspects are often considered
to be essential characteristics of a time crystal, such as the presence of disorder or interactions, robustness
against small variations of system parameters, and the free choice of the initial quantum state. We study a
finite-length polarized XX spin chain engineered to display a spectrum of equidistant energy levels without drive
and show that it keeps a spectrum of equidistant Floquet quasienergies when subjected to a large variety of
periodic driving schemes. Arbitrary multiples of the driving period can then be reached by adjusting parameters
of the drive, for arbitrary initial states. This behavior is understood by mapping the XX spin chain with N + 1
sites to a single large spin with S = N/2 invoking the closure of the group SU(2). Our simple model is neither
intrinsically disordered nor is it an interacting many-body system (after suitable mapping), and it does not have
a thermodynamic limit in the conventional sense. It does, however, show controllable discrete time translational
symmetry breaking for arbitrary initial states and a degree of robustness against perturbations, thereby carrying
some characteristic traits of a discrete time crystal.
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I. INTRODUCTION

Over the past decades, out of equilibrium systems have
drawn increasing attention. Especially, low dimensional quan-
tum systems with an external periodic drive have been inves-
tigated under different aspects. The results obtained exhibit
phenomena that are intensively discussed in the condensed
matter community. In particular, the concepts of discrete time
crystals or Floquet time crystals and the associated broken
time translation symmetry in periodically driven systems have
been studied in both theory and experiment.

The initial suggestion [1] of a time-crystalline ground state
was quickly proved wrong [2–4]. In an equilibrium system de-
scribed by a time-independent Hamiltonian, time-translation
symmetry breaking (TTSB) cannot show up in any observable
since the expectation value of any Heisenberg operator O(t ) =
eiHt O e−iHt (we set h̄ = 1 throughout) is time independent.
Consequently, TTSB can only be detected in the behavior of
correlation functions. Given some local quantity C(x, t ) it was
suggested [5] that the infinite-volume limit

lim
V →∞

〈C(x, t )C(0, 0)〉 = f (x, t ) (1)

should show nontrivial periodically oscillating long-range
order for the system to be called a time crystal. After the
existence of time crystals of this kind was ruled out [5] by
Watanabe and Oshikawa for equilibrium systems the idea was
picked up by others [6–12] and generalized to periodically
driven systems. The external drive imposes a discrete time

*robin.schaefer@tu-dortmund.de, schaefer@pks.mpg.de
†goetz.uhrig@tu-dortmund.de
‡joachim.stolze@tu-dortmund.de

translation symmetry which may be broken by the system
showing periodicity at a nontrivial integer multiple of the
driving period. This phenomenon has come to be known as
Floquet time crystal [11,13] or discrete time crystal [9,12,14–
16] (DTC). Experimental evidence [12,17] for that kind of
TTSB has been reported for suitably prepared initial states.

The concept of Floquet time crystals has developed only
recently and is still intensely debated; there are several di-
verging definitions [9,11,13,18] of the phenomenon. Most of
these refer to a finite domain in both space and time; hence
we refer to these systems as DTCs on a finite level. All def-
initions require the original TTSB, but additional conditions
vary. A discrete time crystal on a finite level is a robust and
periodically driven quantum mechanical system that exhibits
TTSB for some (specific) initial states |�0〉:

|�0〉 = eiϕU (nT )|�0〉, for some integer n � 2, (2)

where U (t ) = U (t + T ) is the periodic time evolution opera-
tor and ϕ is a global phase. The desired robustness here refers
to variations in (i) the initial state or (ii) the parameters in
the Hamiltonian of the system. Definitions of DTC beyond
the finite level may either include the thermodynamic limit
V → ∞ or demand the stability of the system for t → ∞, or
both.

Interestingly, the concept of discrete time-translation sym-
metry in driven quantum systems was studied long before
the advent of time crystals. For example, Dunlap and Kenkre
[19] discovered dynamic localization in a periodically driven
one-dimensional tight-binding system in 1986. The irregular
dynamics of the system turns periodic when suitably driven;
hence the stroboscopic dynamics is frozen and a localized
state stays localized under stroboscopic observation.
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In classical nonlinear dynamics the breaking of an ex-
ternally imposed discrete time-translation symmetry is well
known, manifesting itself in phenomena like parametric res-
onance or the occurrence of subharmonics in simple driven
nonlinear systems [20]. DTCs may be viewed as the quantum
generalizations of these phenomena.

It has frequently been argued that disorder or interaction
(or both) are necessary ingredients for DTCs. However, recent
studies [13,14,16] have shown that disorder is not necessary.
Here we are going to present a simple system lacking both
disorder and interaction which nevertheless displays DTC-like
breaking of time-translation symmetry. The model system is
a spin chain with engineered nearest-neighbor couplings [21]
subject to a periodic drive. The coupling constants are fixed in
such a way as to make the dynamics of the spin chain periodic
without external drive. The drive then introduces an additional
time scale and the interplay between the two time scales may
lead to the breaking of the time-translation symmetry defined
by the drive.

A Jordan-Wigner transformation [22] maps spin excita-
tions in the system to noninteracting fermions. We use ana-
lytical and numerical techniques to show that the system can
behave periodically at any arbitrary nontrivial multiple of the
driving period. Since periodicity is established on the level
of the time evolution operator, the condition (2) is fulfilled
for arbitrary initial states |�0〉 once two global parameters
of the Hamiltonian are properly adjusted. In the limit of an
infinitely long quantum spin chain the analysis of the quantum
dynamics carries over to a driven classical system without
any changes and the breaking of time-translation symmetry
seamlessly connects to classical subharmonic behavior.

The structure of this paper is as follows. Section II dis-
cusses the formal details of TTSB in a periodically driven sys-
tem, focusing on systems with a simple equidistant spectrum
of Floquet quasienergies. Depending on commensurability or
resonance conditions between the quasienergy level spacing
and the driving frequency, time-translation symmetry can
be conserved as well as broken in the manner of a DTC.
Subsequently, Sec. III treats the special case of a periodically
time-dependent Hamiltonian consisting of mutually commut-
ing Fourier components. Section IV is the central part of
this paper, containing results on a driven finite spin-1/2 XX
chain with engineered nearest-neighbor couplings and a site-
dependent z magnetic field which varies linearly along the
chain. That spin chain is equivalent to noninteracting fermions
with nearest-neighbor hopping and a linearly varying local
potential.

The detailed results on the dynamics of that system in the
absence of driving are used to study the behavior under a
binary drive, where the slope of the magnetic field (or local
potential) is periodically switched between two values. We
show that TTSB for arbitrary initial states can be achieved
at arbitrary multiples of the driving period by adjusting the
parameters of the drive. The binary drive is not the only way to
achieve TTSB; a harmonic (sinusoidal) drive is one of many
other possibilities. In that case, however, numerical Floquet
techniques must be used to obtain results similar to those ob-
tained for the binary drive. Numerical observations show that
the time-translation symmetry-broken state is robust against
local perturbations of the system parameters, at least for not

too long times. This robustness consists in the preservation of
the peak in the Fourier transform of dynamic correlations at
the subharmonic frequency, see below, although its spectral
weight is reduced gradually upon increasing disorder. Addi-
tionally, we discuss to which extent an ideal time-crystalline
system can display heating. Section V contains concluding
remarks and points out possible applications in quantum
information processing.

II. TIME TRANSLATION SYMMETRY BREAKING

As outlined in the preceding section, the fundamental
feature of a discrete time crystal is commensurate TTSB.
Here, we discuss under which conditions periodic behavior
can be established in periodically driven systems, using the
framework of Floquet theory [23–27].

To start, we consider a time-independent system, described
by a Hamiltonian H with eigenstates |ϕα〉 and eigenvalues Eα .
The time evolution operator is given by

U (t ) =
∑

α

e−itEα |ϕα〉〈ϕα|. (3)

The system then shows periodic behavior with period TS (apart
from a global phase ϕ), if for all α

TSEα = 2πmα − ϕ, (4)

with integers mα .
For a periodically driven system, H (t + T ) = H (t ), Flo-

quet theory [23–27] shows that a general solution of the
Schrödinger equation is a superposition of time-dependent
states

|�α (t )〉 = ρt/T
α |�α (t )〉 = e−iεαt |�α (t )〉. (5)

Here, the Floquet multipliers ρα are uniquely determined,
while the quasienergies εα are only defined modulo ω =
2π/T and thus can be restricted by −ω/2 � εα < ω/2. The
Floquet multipliers form the spectrum of the time evolution
operator over one period, U (T ). Their absolute values equal
unity since the time evolution is unitary. The Floquet modes
|�α (t )〉 = |�α (t + T )〉 are periodic with period T and form a
complete orthogonal set for all t . From (5) we may construct
the evolution operator:

U (t ) =
∑

α

e−iεαt |�α (t )〉〈�α (0)|, (6)

with obvious similarities to the time independent case (3).
Periodic behavior ensues if the exponentials share a common
period TS commensurate to the period T of the drive and,
hence, of the Floquet modes. That is the case if for all α

TSεα = 2πmα − ϕ (7)

with integers mα and one global phase ϕ, and if there is a
positive integer n such that

TS = nT . (8)

Thus only one additional condition (8) is necessary to achieve
periodic behavior in periodically driven systems as compared
to the time independent case (4). The condition (7) implies
that every Floquet multiplier ρα equals an nth root of eiϕ .
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FIG. 1. Floquet multipliers (left) and quasienergies (right) for
an integer spectrum εα = ε0α mod ω of 25 quasienergies. (α =
−24, −22, . . . , 24, ε0 = 0.13, ω = 1.) The incommensurate struc-
ture of the Floquet multipliers prevents periodic behavior at any
reasonable multiple of the driving period.

This leads to ρTS/T
α = ρn

α = eiϕ and, by (6), to periodicity with
period TS = nT .

Given a driving frequency ω and a finite set of quasiener-
gies εα it is always possible to approximately fulfill conditions
(7),(8) for some time TS to some degree of accuracy. Unfortu-
nately, however, TS will grow exponentially with the number
of conditions, or quasienergies. Symmetries in the structure
of the quasienergies would help to drastically reduce the
number of independent conditions (7),(8) and to find serious
candidates for Floquet time crystals.

One suitable scenario consists in having an integer spec-
trum of quasienergies, meaning that all quasienergies εα are
integer multiples of some characteristic value ε0: εα = ε0α

with α ∈ Z. In this case, the many conditions (7),(8) collapse
to just two with ϕ = 0, namely

TSε0 = 2πm0, (9a)

TS = nT (9b)

for integer m0 and n. The two conditions (9) ensure periodicity
even if some quasienergies εα lie outside the first “Bril-
louin zone” in time [−ω/2, ω/2) and thus must be shifted
by a multiple of ω; in that case (9b) makes sure that (7)
holds.

It should be noted that an integer spectrum alone, with
some arbitrary value of ε0, does not ensure periodicity for
any reasonable time TS , as illustrated in Fig. 1. There, neither
the quasienergies (reduced to the first Brillouin zone) nor the
Floquet multipliers display the necessary regular structures.

Periodic behavior ensues, however, if ε0 is chosen such as
to satisfy certain commensurability or resonance conditions;
two cases can be distinguished here. In case I the spectrum of
quasienergies collapses, since

ε0 = 0. (10)

In that case all Floquet multipliers ρα = 1 and the system
displays the periodicity of the Floquet modes |�α (t )〉; hence

FIG. 2. Same as Fig. 1, for α = −24, −22, . . . , 24, ε0 = 1/6,
ω = 1. Both Floquet multipliers and reduced quasienergies show
commensurate structures leading to a time-translation symmetry
breaking period TS = 3T .

TS = T and time-translation symmetry is conserved. In pe-
riodically driven lattice systems whose undriven dynamics
displays Bloch oscillations this situation has been discussed
under the label of Bloch band collapse [28]; dynamic lo-
calization [19,29,30] also involves a band collapse. The key
feature is the synchronization between the drive and the Bloch
oscillations such that within every period of the drive the
system performs an integer number of Bloch oscillations.

More interesting behavior is displayed by the resonance
case II, where

|ε0| = m/n ω/2 (11)

and 1 � m < n and m is not a divisor of n. This case leads
to periodic behavior with period TS = nT , provided the set of
integers α defining the spectrum of quasienergies εα = αε0

contains either only even or only odd numbers; otherwise,
the time evolution leads to interference between terms with
phases zero and π , respectively, at t = TS . If the quasienergy
spectrum contains both even and odd integers α, constructive
interference occurs at multiples of 2TS . Case II is of interest
since it breaks time-translation symmetry at period TS = nT .
We illustrate this case for n = 3 in Fig. 2. All Floquet mul-
tipliers are third roots of unity and the reduced quasienergies
assume only three different values. This scenario was already
observed in a driven interacting one-dimensional system [30],
where dynamic localization leads to an integer spectrum,
allowing for both periodic and quasiperiodic behavior.

III. COMMUTING FOURIER HAMILTONIANS

Under mild conditions, a T -periodic Hamiltonian may be
written as a Fourier series

H (t ) =
∑
n∈Z

e−inωt Hn. (12)

The situation is especially simple if all Fourier coefficients
commute

[Hn, Hm] = 0. (13)
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The Hamiltonian then commutes with itself for different times

[H (t ), H (t ′)] = 0. (14)

It is then possible to induce TTSB if H contains a station-
ary part and impossible if not, as we will show presently.
Subsequently we will discuss a simple harmonic drive as an
important special case.

The spectrum of the time evolution operator over one
period T determines the Floquet multipliers and hence the
quasienergies. Due to commutativity (14) the evolution op-
erator is simply

U (T ) = exp

(
−i

∫ T

0

∑
n∈Z

e−inωτ Hn dτ

)

= exp (−iT H0). (15)

Its Floquet multipliers are given by e−iT E0
α , where E0

α are the
eigenenergies of the stationary Hamiltonian H0. Hence the
quasienergies are given by E0

α , backfolded into [−ω/2, ω/2).
If the eigenenergies of H0 form an integer spectrum and
fulfill the resonance condition (11) the system breaks time-
translation symmetry with period TS = nT , as discussed in the
previous section.

If, on the other hand, H (t ) does not contain a stationary
part, that is, H0 = 0, the quasienergy spectrum collapses to
zero and time-translation symmetry is conserved.

A stationary Hamiltonian driven by a purely sinusoidal
perturbation is a commonly encountered situation in physics

H (t ) = H0 + 2 cos(ωt )V. (16)

If [H0,V ] = 0, Eq. (16) is one of the simplest commuting
Fourier Hamiltonians.

The example offers an opportunity to illustrate how the
Floquet formalism works in a transparent situation. We refer
to some basic notions of the Floquet formalism; more details
can be found in the literature [24,31]. Since the Floquet modes
|�α (t )〉 are T periodic they can be expanded in a Fourier
series of Hilbert space vectors, which in turn can be expanded
in a suitable basis. Choosing the eigenvectors of H0 as that
basis and assuming (for the ease of discussion) that H0 acts
on a D-dimensional Hilbert space, we obviously have to de-
termine a D-dimensional vector for each Fourier component.
The T -periodic drive, when expanded in a Fourier series itself,
connects different Fourier components of the Floquet modes.
Thus the Floquet modes are eigenvectors of an infinite matrix
consisting of D × D blocks, the Floquet matrix. The diagonal
blocks of the Floquet matrix are given by H0 + mω1 (where
1 denotes the D × D unit matrix and −∞ < m < ∞ refers
to the Fourier modes), while the off-diagonal blocks contain
the Fourier components of the drive V . The eigenvalues of the
Floquet matrix are the quasienergies.

For the situation considered here, the Floquet matrix is
block-tridiagonal, where H0 determines the diagonal blocks,
and V is contained in the off-diagonal blocks. Since [H0,V ] =
0, mutual eigenstates are available:

H0|α〉 = EH0
α |α〉, V |α〉 = EV

α |α〉. (17)

As mentioned before, the Floquet multipliers are determined

by the eigenvalues of H0, ρα = e−iE
H0
α T . The tridiagonal struc-

ture of the Floquet matrix maps to a three-term recursion
relation fulfilled by Bessel functions. Hence the linearly in-
dependent solutions (5) in this case are

ρt/T
α |�α (t )〉 = e−iE

H0
α t

∑
n∈Z

einωt Jn(xα )|α〉 (18a)

= e−i(E
H0
α t−xα sin ωt )|α〉. (18b)

Here, the Jn are Bessel functions of the first kind, xα :=
2EV

α /ω, and |α〉 is an eigenstate from (17). The time-
dependent states (18a) are mutually orthogonal and normal-
ized whenever the |α〉 are. The result (18b) can actually be
obtained more easily by a direct solution of the Schrödinger
equation thanks to (17). However, this example clearly shows
the power of the Floquet approach to periodically driven
systems.

IV. DRIVEN SPIN CHAIN

In most physically relevant driven systems the Hamiltoni-
ans at different times do not commute with each other. Hence
the Floquet multipliers (5) of a periodically driven system will
depend on the drive, in contrast to the situation of Sec. III.
We will focus on systems which are engineered to generate a
simple structure of the energy and quasienergy spectra such
that time-translation symmetry breaking becomes possible.
We will first discuss a binary drive, that is, the Hamiltonian
H (t ) will be piecewise constant, alternating between two
values. Later that binary drive will be replaced by a sinusoidal
one, that is, the system will be harmonically driven. In both
cases we will observe time-translation symmetry breaking
with a period TS = nT , which can be adjusted by changing the
parameters of the system. Before driving the system, however,
we discuss its properties without drive.

A. Dynamics of the undriven system

We are considering a spin-1/2 XX chain [32,33] of N +
1 sites i = 0, . . . , N . A Jordan-Wigner transformation [22]
maps the system to noninteracting spinless lattice fermions,
such that a spin-up state corresponds to a fermion, while
a spin-down state is equivalent to an empty site. The total
number of up spins—or fermions—is conserved, and we
will exclusively consider the single-particle sector, which is
spanned by the states

|i〉 := c†
i |0 . . . 0〉 = |0 . . . 0 1︸︷︷︸

site i

0 . . . 0〉 (19)

containing a single fermion, or spin-up excitation, at site
i = 0, . . . , N . (c†

i and ci are local Fermi creation and anni-
hilation operators, respectively.) The Hamiltonian in the gen-
eral (driven) case contains a time-dependent nearest-neighbor
hopping and a local potential

H (t ) := λ

N−1∑
i=0

Ji(t )(c†
i ci+1 + c†

i+1ci ) + h
N∑

i=0

hi(t )c†
i ci. (20)

Presently we will assume Ji(t ) and hi(t ) to be constant in time,
while in the driven case they may become periodic with period
T = 2π/ω. The parameters λ and h serve to adjust the overall
energy scales of the spectrum, while the Ji and hi fix the
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detailed structure. The Hamiltonian (20) generalizes a model
originally introduced [21] to achieve perfect state transfer, that
is, for some time τ a state at a “sender” site s is transferred to
a “receiver” site r: e−iHτ |s〉 = |r〉. Given additional symmetry
properties, perfect state transfer implies periodic behavior.

We will consider the configuration defined by

Ji : =
√

(i + 1)(N − i), (21a)

hi : = N − 2i. (21b)

Without the local fields hi the system is spatially symmetric,
allowing for perfect state transfer [21] between the ends of the
chain. The nonzero fields hi (21b) break the spatial symmetry.
This system has been studied under various aspects [34–37].

The Hamiltonian (20) with time independent parameters
(21) can be diagonalized analytically [37]. The eigenvec-
tors are related to the orthogonal and normalized (discrete)
Krawtchouk polynomials [38] κ

p
n (x) for 0 < p < 1 defined in

Appendix A. The parameter p depends on the scaling factors
for the nearest-neighbor hopping and the field in (20)

p± = 1

2

⎛
⎝1 ±

√
h2

h2 + λ2

⎞
⎠. (22)

Here, p+ corresponds to h < 0, that is, the local fields along
the chain increase from i = 0 to N ; vice versa, p− is appropri-
ate if h > 0. The crucial property of the system causing peri-
odic dynamics is the equidistant spectrum of eigenenergies Ex

(x = 0, . . . , N)

Ex = μ0(N − 2x), with μ0 :=
√

λ2 + h2. (23)

The set of integers defining the spectrum will be denoted

A := {−N,−(N − 2), . . . , N − 2, N} (24)

for further reference. Note that the set of local field coeffi-
cients hi (21b) coincides with A. The set A contains either
only even or only odd integers, depending on N . The spectrum
(23) implies that the dynamics of the system is periodic (apart
from a global phase) with period

Tnd := π

μ0
= π√

λ2 + h2
, (25)

where the index “nd” is short for “no drive.” The eigenvectors
of the Hamiltonian are given by

|ϕx〉 = (
κ

p
0 (x), κ p

1 (x), . . . , κ p
N (x)

)T
(26)

for x = 0, . . . , N due to the three-term recurrence relation
(A5b) in n fulfilled by the Krawtchouk polynomials κ

p
n (x).

Further properties of the κ
p
n (x) can be used to construct the

transmission amplitudes for an excitation traveling from site s
(sender) to site r (receiver):

f p
rs(t ) = 〈r|e−iHt |s〉 = 〈r|

N∑
x=0

e−itEx |ϕx〉〈ϕx||s〉 (27a)

= e−itμ0N

√(
N

r

)(
N

s

)
[
√

p(1 − p)]r+s

× [1 − ]r+s[1 − p + p]N−r−s

× 2F1

[
(−r,−s)

(−N )
; − 

p(1 − p)(1 − )2

]
, (27b)

where  := eit2μ0 and 2F1 is the classical hypergeometric
series [39]. Summation formulas for hypergeometric func-
tions [39] can be used to derive [36,37] the result (27), as
explained in Appendix A. Note that the somewhat awkward-
looking formula (27) contains the complete information on the
dynamics for arbitrary times and arbitrary initial states.

There is, however, a different and physically more appeal-
ing way to derive the transmission amplitudes (27). It was
noted early on [21,35] that the N + 1 states |i〉 (19) may be
identified with the Sz eigenstates |m〉 of a spin-N/2 system

Sz|m〉 = m|m〉 with m = i − N

2
. (28)

Using the relations

S± = Sx ± iSy (29)

and

S±|m〉 =
√

S(S + 1) − m(m ± 1)|m ± 1〉 (30)

for a spin-S system, the Hamiltonian with parameters (21)
maps to

H = 2λSx − 2hSz, (31)

since the hopping amplitudes Ji correspond to the matrix
elements of Sx between eigenstates |m〉 of Sz. Clearly then
the dynamics induced solely by the Ji is equivalent to that
of a spin-N/2 system in a magnetic field along the x axis. If
this large spin is initially prepared in a state with Sz = −S =
−N/2 it precesses around the x axis to Sz = +S and then back
to the initial state, provided the field h = 0 in (20) or (31).
This situation corresponds to the perfect transfer of a single-
particle excitation from one end of the (N + 1)-site chain to
the other end and back again. For h 	= 0 in (20) the hi (21b)
define a magnetic field in z direction in the large spin picture
(31). The large spin then precesses around an axis tilted away
from the x direction. Consequently the initial state Sz = −S
can never reach its antipode Sz = +S and hence there is no
more perfect state transfer, but still periodic behavior. Within
the large spin analogy the transmission amplitudes (27) can
be rederived [37] using the properties of the group SU (2)
represented by the spin operators. Note that the coincidence
between the set A (24) and the set of coefficients hi (21b)
is natural in the large spin picture, since all spin operators
possess equidistant spectra of eigenvalues.

To summarize this subsection, the amplitudes (27) define
the matrix representation of the time evolution operator of
the undriven system and thus determine the dynamics com-
pletely. For h = 0, perfect state transfer occurs at time Tnd/2.
With broken spatial symmetry, h 	= 0, perfect state transfer
is not possible any longer while periodic behavior persists.
Similar time-independent systems, with integer spectra and
consequently, periodic behavior, have been studied [34,40–
47] in various contexts during recent years.
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B. Binary driving

We now subject the spin chain to a periodic drive via the
local fields, that is,

H (t ) := λ

N−1∑
i=0

Ji(c
†
i ci+1 + cic

†
i+1) + f (t )h

N∑
i=0

hic
†
i ci, (32)

with f (t ) = f (t + T ). Specifically we apply a binary drive

f (t ) =
{+1, for 0 � t < T/2,

−1, for T/2 � t < T .
(33)

Note that the time average f (t ) = 0 is such that the spatial
symmetry of the system is restored on average. As with other
piecewise time-independent models [30] the time evolution of
the binarily driven system is most easily discussed without
using the Floquet matrix formalism. Since the Hamiltonian is
piecewise constant in time, the time evolution operator can
be assembled as a product, using the results of Sec. IV A.
During the interval [0, T/2) the local fields decrease from site
i = 0 to N ; hence the transmission amplitudes (27) depend on
the parameter p− from (22). During the second half [T/2, T )
of the period, p+ is the relevant parameter in (27). Denoting
by U±(T/2) the time evolution operators over the two half-
periods, the evolution operator over the full period [0, T ) can
be written as

U (T ) = U+(T/2)U−(T/2). (34)

Since the matrix elements

〈r|U±(T/2)|s〉 = f p±
rs (T/2) (35)

are known from (27) we can use product formulas for hyper-
geometric functions to determine the elements of U (T )

urs(T ) = 〈r|U (T )|s〉 =
N∑

k=0

f p+
rk (T/2) f p−

ks (T/2) (36a)

= e−iμ0NT

√(
N

r

)(
N

s

)[
2
√

p+ p−(1 − )

 + 2p+ p−(1 − )2

]r+s

× [1 − p− + p−]r[1 − p+ + p+]s

× [ + 2p+ p−(1 − )2]N
2F1

[
(−r,−s)

(−N )
; η

]
,

(36b)

with  : = exp (iT μ0) (36c)

and η : = −1

4

2

 + p+ p−(1 − )2

1

p+ p−(1 − )2 . (36d)

See Appendix B for details. The Floquet multipliers ρα (5) are
the eigenvalues of U (T ). Unfortunately, we could not derive
an analytic expression for ρα from (36). Numerical diago-
nalization of the matrix defined by (36), however, revealed
integer spectra of quasienergies in all cases considered, and
for all system sizes N studied. This holds true even if the two
operators U± are applied for different lengths of time, that is, if
(34) is replaced by U (T ) = U+(βT )U−[(1 − β )T ], 0 < β <

1. In all cases, the quasienergies can be written in the form

εα = ε0α for α ∈ A, (37)

where A is the set (24) of integers (either all even or all
odd), and, importantly, the characteristic scale ε0 does not
depend on the system size N ; this will be explained below.
The quasienergy scale only depends on the driving frequency
ω and the scales h of the local fields, and λ of the nearest-
neighbor couplings, respectively, which determine the Hamil-
tonian. By means of these parameters ε0 can be tuned to
fulfill the resonance condition II, Eq. (11). Consequently,
time-translation symmetry is broken and the system behaves
periodically with the adjustable period nT .

The observed structure of the numerical results is analyt-
ically explained within the large spin analogy defined by the
Hamiltonian (31). The single-period time evolution U (T ) is
a SU (2) operation, even if the parameters λ and h in (31)
are time dependent, due to the closure of the group SU (2).
Hence this holds true for the simple time dependence given
by (33) as well as for arbitrarily complex ways of driving
the system periodically. For any given driving protocol the
eigenvalues of U (T ) are given by e−iT εα with quasienergies εα

from (37), while the number of quasienergies is determined
by the dimension of the representation of SU (2), in other
words, by the spin quantum number S = N/2 in (31) or the
chain length N + 1. Consequently we can use the simplest
two-dimensional representation of SU (2) to determine the
“quasienergy quantum” ε0. The driven XX chain then has only
two sites and U (T ) is a 2 × 2 matrix with eigenvalues e±iT ε0

and trace 2 cos(T ε0). The two factors U± in (34) are easily
calculated and from the trace of U (T ) we obtain

ε0 = 1

T
arccos

(
h2 + λ2 cos(μ0T )

h2 + λ2

)
. (38)

The group-theoretical treatment of the driven quantum-
mechanical system employing the large-spin picture provides
an interesting connection to classical dynamics. The equations
of motion

i
d

dt
〈Sα (t )〉 = 〈[Sα (t ), H]〉, α = x, y, z (39)

for the spin expectation values with H given by (31) lead to
the differential equation

d2

dt2

⎛
⎜⎝〈Sx(t )〉
〈Sy(t )〉
〈Sz(t )〉

⎞
⎟⎠ = −4

⎛
⎜⎝h2 0 λh

0 h2 + λ2 0

λh 0 λ2

⎞
⎟⎠

⎛
⎜⎝〈Sx(t )〉
〈Sy(t )〉
〈Sz(t )〉

⎞
⎟⎠ (40)

describing precession of the spin expectation value with an-
gular velocity

2
√

h2 + λ2 = 2μ0 (41)

about the axis


e = 1√
h2 + λ2

⎛
⎝−λ

0
h

⎞
⎠. (42)

Solving the differential equation (40) the time evolution of the
“classical” spin vector 〈
S(t )〉 assumes the form

〈
S(t )〉 = M(t, h, λ)〈
S(0)〉 (43)
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FIG. 3. Absolute value |ε0| < ω/2 of the characteristic quasienergy scale (38), reduced to the first Brillouin zone in time, for binary driving
with driving frequency ω = 1. The parameter λ denotes the strength of the nearest-neighbor couplings and h is the amplitude of time-dependent
external field in the Hamiltonian (20) with coefficients (21).

with a 3 × 3 rotation matrix M(t, h, λ). The time evolution
under the binary driving protocol is then described by

〈
S(t )〉 = M

(
T

2
,−h, λ

)
M

(
T

2
, h, λ

)
〈
S(0)〉. (44)

The product of the two M matrices is again a rotation matrix
and the rotation angle ϕ can be determined from

Tr

[
M

(
T

2
,−h, λ

)
M

(
T

2
, h, λ

)]
= 1 + 2 cos ϕ, (45)

which leads to

cos

(
ϕ

2

)
= h2 + λ2 cos(μ0T )

h2 + λ2
. (46)

On the one hand, time-translation symmetry in this classical
picture is broken resulting in a period nT if

〈
S(nT )〉 = 〈
S(0)〉 (47)

or

nϕ = 2πm (48)

for some integer m. On the other hand, the condition for
broken time-translation symmetry in the quantum picture is

U (nT ) = ±1, (49)

or

nε0T = mπ, (50)

since the sign eimπ of the quantum state at time nT is irrele-
vant. In view of (38) and (46) these conditions are equivalent.

We thus see that the time-translation symmetry breaking
dynamics of the driven quantum system (32) is in a sense

equivalent to the subharmonic behavior of a classical top
which is parametrically driven by periodically switching its
axis of precession.

By choosing the appropriate value of ε0, the Floquet mul-
tipliers, the eigenvalues of the time evolution operator U (T )
over one period, can be adjusted to coincide with nth roots of
unity and thus induce a period of TS = nT in the dynamics of
the original quantum system.

Figure 3 shows the absolute value of ε0 (38) as a function
of h and λ, for ω = 1. Note that ω = 1 merely fixes the units in
which energies, ε0, λ, and h are measured, and thus changing
the driving frequency ω would merely result in a rescaling of
all axes in Fig. 3.

The shape shown in Fig. 3 can be understood from some
simple observations. As λ → 0 the two-site system degener-
ates to a pair of isolated spins and no dynamics is possible;
hence ε0 → 0. At h = 0, there is no more drive and we
are back to the stationary system from Sec. IV A with two
(quasi)energy eigenvalues ±λ. Growing λ then, together with
the backfolding to |ε0| < ω/2, leads to the regular zigzag
shape along the edge h = 0. The tubular shapes in Fig. 3 are
separated by circles in the (λ, h) plane along which ε0 = 0.
These circles are defined by

μ0 =
√

λ2 + h2 = m0ω, (51)

with integer m0, from which cos(μ0T ) = 1 and hence ε0 = 0
in (38). This is the resonance condition I (10) which implies
ρ± = 1, leading to periodic behavior with TS = T ; thus time-
translation symmetry is conserved. The physical interpretation
of this resonance is straightforward. Note that during each
half-period the binarily driven system behaves as discussed in
Sec. IV A, showing periodic behavior at period Tnd = π/μ0
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(25). The condition (51) then translates to m0Tnd = T/2 and
hence the states of the system at the beginning and at the end
of each half-period are identical. As an example, a single-spin
excitation launched at site 0 will be exactly restored after each
half-period. This is equivalent to the situation encountered in
dynamical localization [29,30], where during each half-period
of the drive the system performs an integer number of Bloch
oscillations and consequently the single-period propagator
equals unity.

The quasienergy degeneracy, ε0 = 0, along circles (51)
in the (λ, h) plane was in fact already observed earlier in a
two-level system subject to the binary drive (33). Numerical
observation [48] was followed by analytical derivation [49],
along with a graphical interpretation in terms of trajectories
on the Bloch sphere generated by the equation of motion (39)
and leading to the same conclusions as drawn in the previous
paragraph.

It is also interesting to note that the binary drive (33)
implies a generalized parity symmetry [48]. Quasienergies
of Floquet modes which are even and odd under that sym-
metry are allowed to coincide, which is forbidden by the
von Neumann–Wigner theorem [50] in the absence of that
symmetry. In fact, replacing the two half-periods T

2 in (33)
by unequal times t± = T

2 (1 ± α), the result (38) for ε0 may
be generalized, resulting in a nonzero ε0 unless the times t±
are commensurate, that is, α = p

q with integer p and q. In that
case ε0 = 0 on circles of radius qω, 2qω, etc.

It should be noted that the information contained in Fig. 3
is redundant, due to the periodicity of the undriven system,
with period Tnd (25). If that period is shorter than T/2, the
time interval during which the external drive stays constant,
the system completes more than one period and some states
are visited more than once. Hence it suffices to study systems
with Tnd � T/2, which translates to

λ2 + h2 � ω2. (52)

For all other parameter combinations the system merely un-
dergoes a number of extra oscillations within each half-period
of the drive. The simplest case of this situation, when (51)
holds and ε0 = 0, was discussed above. Interestingly, nontriv-
ial values of ε0 can be determined analytically, if

(2m0 + 1)
Tnd

2
= T

2
(53a)

⇔ μ0 =
√

λ2 + h2 =
(

m0 + 1

2

)
ω, (53b)

that is, on the ridges between the valleys (51) in Fig. 3.
Condition (53a) means that, for this combination of λ and h,
a single-spin excitation started at site 0 reaches the turning
point of its periodic motion precisely after a half-period of the
drive. From (53b) cos(μ0T ) = −1 and since λ and h can be
expressed in polar coordinates

(
λ

h

)
= μ0

(
cos(ϕ)
sin(ϕ)

)
, for ϕ ∈ (0, π/2), (54)

Eq. (38) simplifies to

T ε0 = arccos

(
h2 − λ2

h2 + λ2

)
(55a)

= arccos[sin(ϕ)2 − cos(ϕ)2] = π − 2ϕ. (55b)

Since ϕ varies between 0 and π/2, ε0 can take any value
between 0 and ω/2; consequently, the resonance condition
(11) can be fulfilled for arbitrary n and then time-translation
symmetry is commensurately broken with the period nT .
Given a desired period nT we can use the following simple
explicit prescription to break time-translation symmetry with
that period: (i) pick μ0 according to (53b) with some suitable
integer m0, (ii) pick

ϕ = π

2

(
1 − m

n

)
, (56)

where m is some integer less than n and not a divisor of n, and
finally (iii) adjust λ and h according to (54).

The results described above were based on the integer
structure (37) of the quasienergy spectrum which holds for
all system sizes due to the SU (2) symmetry of the driven
N + 1-site chain which is equivalent to a spin N/2 driven by
a time-dependent field.

We now focus on some results which can be obtained
from the explicit matrix form (36) of the propagator U (T ).
In order to detect T -periodic behavior we study the return
probability |u00(T )| of a localized excitation initially prepared
at site 0 using the transmission amplitudes urs(T ) (36). Perfect
periodic return, |u00(T )| = 1, is obtained if and only if

|[ + 2p+ p−(1 − )2]| =
∣∣∣∣
[

1 − λ2

λ2 + h2
[1 − cos (μ0T )]

]∣∣∣∣
(57a)

= 1. (57b)

Apart from the trivial case λ = 0 (isolated spins) this
is possible if and only if cos (μ0T ) = 1, that is, if μ0T =
2πμ0/ω is a multiple of 2π . This confirms the condition (51)
independently derived from the quasienergy spectrum which
in this case collapses to ε0 = 0. Numerical analysis of the
return probability |uss(T )| for some arbitrarily chosen sender
positions s in chains of varying length led to the same result.
Hence the system moves in synchronization with the drive and
time-translation symmetry is not broken here.

Next, we investigate the possibility of breaking time-
translation symmetry by a 2T periodicity. The matrix ele-
ments of the time evolution operator U (2T ) can be obtained
from those of U (T ) in (36)

urs(2T ) = 〈r|U (2T )|s〉 (58a)

=
N∑

k=0

urk (T ) uks(T ) (58b)

= e−iμ0N2T

√(
N

r

)(
N

s

)

×
[

4
√

p+ p−(1 − )[+2p+ p−(1−)2]

2+8p+ p−(1 − )2+8p2+ p2−(1 − )4

]r+s
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× [2 + 8p+ p−(1 − )2 + 8p2
+ p2

−(1 − )4]N

× [1 − p− + p−]r[1 − p+ + p+]s

× 2F1

[
(−r,−s)

(−N )
; ϒ

]
, (58c)

with

ϒ : = − 1

16

4

[ + 2p+ p−(1 − )2]2

× 1

p+ p−(1 − )2 + p2+ p2−(1 − )4
. (59)

Details of the calculation can be found in Appendix B. Using
sum and product formulas for hypergeometric functions, sim-
ilar formulas for higher multiples of T can be derived in in-
creasingly tedious ways. The periodicity condition for period
2T can be obtained in a way analogous to (57). |u00(2T )| = 1
is equivalent to the condition

|2 + 8p+ p−(1 − )2 + 8p2
+ p2

−(1 − )4|2 = 1, (60)

which is in turn equivalent to

|−2c2[1 − cos (μ0T )]2 + 4c[1 − cos (μ0T )] − 1|
=: | fc[1 − cos (μ0T )]| (61a)

= 1 (61b)

with c := λ2/(h2 + λ2) ∈ (0, 1). (61c)

The function fc(y) is quadratic in the variable y :=
[1 − cos (μ0T )] taking values in the interval 0 � y � 2. The
value fc(y) = 1, which satisfies (61), is reached as a maximum
of fc(y) at y = 1/c, for c > 1/2, that is, h < λ. In this case (61)
is fulfilled by

cos(μ0T ) = 1 − 1

c
= −h2

λ2
, (62)

implying

μ0T = π ± δ, 0 � δ � π

2
. (63)

The condition (62) is incompatible with the condition (57) for
T -periodic behavior; hence the observed period 2T is not a
trivial consequence of T -periodic dynamics.

Another possibility to fulfill (61) is

fc(y) = −1. (64)

Obviously, that is true for y = 0, but in that case (57) holds
and the true period of the dynamics is T , not 2T . The only
other possibility to fulfill (64) occurs at y = 2, with c = 1, but
that implies h = 0 so that there is no drive at all.

In this subsection we have studied the breaking of time-
translation symmetry in the binarily driven system described
by the Hamiltonian (32) from two perspectives. We derived a
closed-form expression for the matrix elements of the prop-
agator U (T ), Eq. (36), which contains the complete informa-
tion about the dynamics of arbitrary initial states. For arbitrary
N , reducing this wealth of information to the eigenvalues
of U (T ), or the equivalent quasienergy spectrum, is only
possible numerically. Luckily the SU (2) structure implied by

the large spin form (31) of the Hamiltonian allows for the
determination of the quasienergy spectrum in the N = 1 case.
It turns out that judiciously picking the parameters λ and h
from a moderate region (52) of the (λ, ω) plane suffices to
adjust the quasienergies such that the driven system breaks
time-translation symmetry by being periodic with an arbitrary
multiple, nT , of the driving period. As an example, time-
translation symmetry breaking was independently analyzed
by constructing the full matrix representation of U (2T ) (59)
and deriving conditions under which U (2T ) [but not U (T )]
equals unity.

We add some brief comments on perfect state transfer, the
task for which the undriven (h = 0) system was originally
[21] designed, as mentioned in Sec. IV A. We found that
driven systems satisfying the resonance condition (11) exhibit
perfect state transfer at time nT/2, reflecting the periodicity
nT combined with spatial symmetry. For the case n = 2 this
numerical observation can again be confirmed by analyzing
the propagator U (T ). Setting m0 = 0 in (53) leads to T μ0 =
π for the driving period. If we set ϕ = π/4 in (55), equivalent
to c = 1/2 in (61) we obtain ε0 = 1/2 ω/2, that is, n = 2 in (11).
We then see that |u0N (T )| = 1 is equivalent to

|[2√
p+ p−(1 − )]N [1 − p− + p−]N | = 1, (65)

which leads to

|[4√
p+ p−][1 − 2p−]| =

∣∣∣∣
[

4√
8

][
1√
2

]∣∣∣∣ = 1. (66)

We thus have periodicity 2T and perfect state transfer between
sites 0 and N at time T . Keeping in mind that arbitrary
periods nT can be reached by adjusting λ and h, it is clear
that perfect state transfer can be slowed down arbitrarily by
suitably driving the system. However, it cannot be accelerated
by the binary drive, as a closer look at the time and frequency
relations reveals.

C. Harmonic drive

The results obtained in Sec. IV B are not specific to the
binary type of drive. As long as the choice (21) of nearest-
neighbor couplings and local fields is not changed, the Hamil-
tonian is still equivalent to the large spin model (31) with
time-dependent λ and h, implying that the time evolution
operator U (T ) is an element of the group SU (2). Different
driving protocols then always yield the same structure (24)
of equidistant quasienergies and time-translation symmetry
breaking can be reached by adjusting the parameters of the
drive.

As an example, we investigated the harmonic drive defined
by

f (t ) = 2 cos(ωt ) (67)

in the Hamiltonian (32). Using the Floquet matrix formalism
introduced in Sec. III the quasienergy spectrum was deter-
mined, with the fundamental quasienergy unit ε0 depending
on λ and h in a qualitatively similar way as displayed in
Fig. 3 for binary driving. For the harmonic drive, however,
the shapes of the ridges and valleys in the (λ, h) plane
are approximately elliptic [48], as opposed to circular as in
Fig. 3. Due to these structural similarities, the phenomena
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(a) Binary drive; n = 2 and m = 1. (b) Binary drive; n = 2 and m = 3.

(c) Binary drive; n = 3 and m = 1. (d) Harmonic drive; n = 3 and m = 1.

FIG. 4. Stability of the time-translation symmetry breaking against spatial randomness in the system. Shown is the absolute value of
the return amplitude f0,0 = 〈0|U (mTS )|0〉 in the system with multiplicative Gaussian disorder (68) in the Hamiltonian, as a function of the
standard deviations σh and σλ. Time-translation symmetry is broken with TS = 2T in panels (a) and (b), and with TS = 3T in panels (c) and (d),
respectively. Panel (d) shows results for harmonic driving; all other results are for binary driving. In all cases, N = 29 and ω = 1; all data were
averaged over 640 measurements. A Gaussian smoothing was applied to the fluctuating raw data in order to avoid wildly fluctuating contour
lines. Parameters used were λ = 0.3, h = 0.273316 in panels (a) and (b), λ = 0.2, h = 0.304237 in panel (c), and λ = 1.2, h = 1.279452 in
panel (d).

from Sec. IV B reappear: periodicity with the period T of
the drive and with arbitrary multiples nT of it. [See Fig. 4(d)
for a case with n = 3.]However, one difference to the binarily
driven case arises. For the harmonic drive, periodically driven
perfect state transfer is possible as it is for the binary drive,
but only if m and n are both odd in the resonance condition
(11), which can be achieved by adjusting λ and h. In fact,
similar results are obtained for fairly general combinations
of the parameters λ and h. It is even possible to exchange
the roles of the driven and constant parts of the Hamilto-
nian (32), that is, harmonically driving the nearest-neighbor
interactions Ji(t ) while keeping the local potentials hi(t ) con-
stant. Employing the large spin picture (31) that change is

nothing but a switching of roles between the spin operators Sx

and Sz.

D. Robustness and heating

We have seen that discrete time-translation symmetry can
be broken in the driven spin chain studied here. To achieve
that, the parameters λ and h of the Hamiltonian must be
adjusted. In order to learn about the stability of the periodic
phase we studied the system with additional spatial disorder.
Admittedly there are also many other kinds of perturbation
to which the system might be subjected. Our specific choice
of perturbation is motivated by the role of the spin chain in
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the field of quantum information transfer, where robustness
against manufacturing errors is an issue of interest [46].

We have considered systems in which the coefficients (21)
are perturbed by disorder

Ji −→ Ji(1 + xi ) (68)

(and similar for hi), where the xi are independent identically
distributed random variables drawn from a Gaussian distribu-
tion with mean zero and standard deviation σ . In Fig. 4 we
show results for independently varying standard deviations of
the Ji and hi, denoted by σλ and σh, respectively. Shown is the
averaged absolute value of the return amplitude fs,s(mTS ) :=
〈s|U (mTS )|s〉 as a function of σh and σλ. As usual, TS = nT
denotes the period of the system as a multiple of the driving
period and the return amplitude is determined after m periods.

As an example we explain the choice of parameters in
Figs. 4(a) and 4(b):

λ = 0.3, h = 0.273316, (69)

leads to μ0 = √
λ2 + h2 = 0.405834. The driving period T =

2π (ω = 1) then leads to

h2 + λ2 cos μ0T = 0 (70)

from which by (38)

ε0 = 1

2π
arccos(0) = 1

4
. (71)

Hence the resonance condition (11) is fulfilled with m = 1 and
n = 2 such that we have time-translation symmetry breaking
with period

TS = 2T = 4π. (72)

[Note that this choice of ε0 seems to violate conditions (9), but
those conditions are merely sufficient and not necessary.]

Figures 4(a) and 4(b) refer to the same binarily driven
system with TS = 2T , after one period and three periods,
respectively. There is a region of high fidelity fs,s around
the unperturbed case. However, that region shrinks as time
grows. Figures 4(c) and 4(d) compare different systems with
TS = 3T , after one period. One system is driven binarily and
the other one harmonically. The behavior of fs,s is roughly
similar in both cases.

The results displayed in Fig. 4 show that the time-
translation symmetry breaking in our system is robust against
disorder for short times. We have also performed numerical
analyses of robustness on longer time scales, and for different
system sizes N . In this context it must be noted that, strictly
speaking, our system does not have a thermodynamic limit in
the conventional sense, since the Hamiltonian parameters (21)
depend on N . Hence the criterion (1) involving long-range
order in the thermodynamic limit can only be applied to the
present model for finite, but large system size; we analyzed
systems with N � 110. The local quantity C(x, t ) from (1) is
the probability amplitude C(n, t ) = f0n(t ) for a localized spin
excitation to reach site n of the chain at time t after starting
from site 0 at time 0. Since we want to demonstrate time-
crystalline behavior at long distance in space we consider the
quantity

〈 f0N (t ) f00(0)〉 = 〈 f0N (t )〉. (73)

[Note that f00(0) = 1.] This quantity was calculated for sys-
tems with Hamiltonian parameters (69) subjected to multi-
plicative disorder (68), and also to additive disorder, defined
by

Ji −→ Ji + xi (74)

(and similar for hi), with Gaussian xi, as before. We have
also simulated xi from a uniform distribution of finite width,
but the results are similar to those for Gaussian xi and are
not shown here. Note that due to the N dependence of the
unperturbed Hamiltonian parameters Ji and hi the two types
of disorder are expected to affect the system in different ways
as the system size changes. This is indeed so, as the numerical
results discussed below show.

In the absence of disorder the correlation function 〈 f0N (t )〉
is (of course) perfectly periodic and shows Gaussian-looking
peaks of unit height and width (in time) proportional to
N− 1

2 [51]. The Fourier series of 〈 f0N (t )〉 then has Fourier
coefficients which also scale as N−1/2 for sufficiently
large N .

In the presence of disorder, successive peaks of 〈 f0N (t )〉 get
lower and wider. For given strength σ of the disorder the de-
pendence on system size differs considerably between the two
types of disorder considered. For additive disorder the peaks
of the correlation function are the more stable the longer the
chains are, while for multiplicative disorder shorter chains
are more stable. Since the Ji and hi grow with N , a random
perturbation of constant absolute size becomes less and less
important as N grows, even though the total number of per-
turbed coupling constants grows. In contrast, multiplicative
disorder of a given strength is much more detrimental since
it generates a larger number of larger absolute deviations of
the Ji and hi from their ideal values as N grows. This effect is
clearly visible in Fig. 5; see below.

As 〈 f0N (t )〉 changes from perfectly periodic to slowly
decaying, its Fourier transform changes from equidistant
δ function peaks to equidistant finite peaks. The spectral
weight contained in the peak at the lowest nonzero frequency
has been considered a good indicator of time crystallinity
[7–9,12,15,17]. Figure 5 shows results for that spectral weight
in the presence of disorder, for two types and two strengths of
disorder, as a function of system size. In order to eliminate
the intrinsic (disorder-independent) size dependence, the peak
heights of the disordered systems are divided by the peak
heights of the ordered systems of equal size. The figure shows
that time-translation symmetry breaking is affected by static
disorder in the local parameters Ji and hi. It is, however, still
robust on the intermediate time scale studied here, the degree
of robustness depending on the type and strength of disorder.
Note that due to the particular scaling of the Hamiltonian
with N the system does not possess a thermodynamic limit
in the strict sense. However, since our model is equivalent to a
single-particle system, we can treat much larger system sizes
than other studies [7–9,12,15].

One general issue in driven systems is heating. We solved
the driven model under study exactly by determining its
quasienergies and computing spatiotemporal correlations.
Time-crystalline behavior occurs if and only if the quasiener-
gies are multiples of a fundamental energy; thus they form a
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FIG. 5. Spectral weight w( ω

2 ) of the fundamental time crystal
mode, for different kinds of disorder, as a function of system size.
The time correlation 〈 f0N (t )〉 was calculated for 4000 t values
between zero and 8TS , averaging over 500 disordered system config-
urations. The modulus squared of the (numerical) Fourier transform
of 〈 f0N (t )〉 defines the spectral weight. The height of the peak at
ω

2 (where ω is the driving frequency) of that quantity is divided
by the same quantity, calculated without disorder, to eliminate the
intrinsic (disorder-independent) size dependence. All data shown
are for Gaussian disorder. Types of disorder are multiplicative, for
σ = 0.01 (open red circles) and σ = 0.02 (open red squares), as well
as additive, for σ = 0.1 (filled blue circles) and σ = 0.2 (filled blue
squares).

discrete, equidistant spectrum without continua. No heating
occurs. This is perfectly consistent with the general under-
standing of energy flow known from Fermi’s golden rule: a
continued flow of energy into a system requires a continuum
of energies. If there are only discrete states energy flows back
and forth and no net heating takes place. Hence we understand
that the absence of heating is not a particularity of the model
studied, but a particularity of a system which shows time-
crystalline behavior for all initial states. Any modification
of the model which leads to quasienergy continua destroys
the time-crystalline behavior, but it may allow for heating.
Thus we stress that time-crystalline behavior and heating are
mutually exclusive.

V. CONCLUDING REMARKS

Time crystals and the associated broken time translation
symmetry have attracted a lot of interest during the past few
years, generating a new perspective towards driven systems.
To what extent interaction and/or disorder are necessary
ingredients for time-crystalline behavior has been subject of
a lively discussion. A number of model systems were studied
numerically and displayed discrete time-crystalline behavior,
mostly for specific initial states and for specific multiples
of the driving period. Here, we studied a spatially extended
driven single-particle system which shows breaking of dis-
crete time-translation symmetry for arbitrary initial states and

with arbitrary period controlled by adjusting two Hamiltonian
parameters.

The system is a spin-1/2 chain originally designed as a can-
didate for the realization of perfect quantum state transfer in
a one-dimensional system, also motivating investigations into
the influence of an external periodic drive. Without driving,
the system shows an equidistant spectrum of energy eigenval-
ues, implying periodic behavior in time and thus recurrence
of arbitrary initial states. We generalized this property of the
engineered spin chain to the driven version of the system.

Under the influence of external periodic driving, Floquet
theory can be applied, and the relevant quantities are no
longer the energies, but the quasienergies. Similar to the
time independent case, it turns out that the spectrum exhibits
an equidistant integer spectrum of quasienergies with some
smallest “quasienergy quantum” ε0 related to the parameters
of the system in a nontrivial way.

Based on this observation, some general conclusions about
the dynamics are drawn. One crucial feature of the inves-
tigated system is the time translation symmetry breaking
for all initial states which is not satisfied in many of the
previously suggested time-crystalline systems. Periodicity for
arbitrary multiples of the driving period can be achieved
in a tunable manner. This possibility is not only appealing
from a theoretical point of view, but also for possible exper-
imental applications. Adjusting a small number of parame-
ters (basically the driving strength) opens up the possibility
to break discrete time-translation symmetry in a controlled
way. We discussed this behavior for both a binary drive,
where a system parameter is periodically switched discon-
tinuously, and for a harmonic drive with sinusoidal change
of the same parameter. Numerical calculations show that the
time-translational symmetry breaking persists in the presence
of built-in static randomness in the system, for intermedi-
ate time scales and at distances up to about 100 lattice
spacings.

Considering time crystallization we reiterate that there is so
far no generally established definition for a time crystal. The
studied model fulfills a number of crucial criteria: breaking
of time translational invariance, occurrence of subharmonic
dynamics for all initial states for arbitrary system size, and a
certain robustness: the spectral weight of the subharmonics
is decreased only gradually by disorder. Certain other cri-
teria which are discussed to be important are not met: the
system does not have a thermodynamic limit, it is a single-
particle problem after suitable mapping, and time translational
symmetry breaking is not robust in the sense that the sub-
harmonics remain unchanged up to a certain threshold for
the variation of parameters. Whether the latter criteria can
be met by any physical system remains an open point to
date.

The effects reported here have potentially useful applica-
tions in quantum information processing. The nearest neigh-
bor coupling constants along the spin chain may be fixed
once and for all. Then, the periodicity of the system could be
modified by tuning strength and frequency of the periodically
varying external field. This can be used for transfer of a
quantum state at a prescribed time or for a dynamic memory
which allows for the readout of an initial state whenever it
refocuses.
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APPENDIX A: KRAWTCHOUK POLYNOMIALS

The Krawtchouk polynomials K p
n (x) are based on the hypergeometric series

rFs

[
(a1, . . . , ar )

(b1, . . . , bs)
; z

]
:=

∞∑
k=0

(a1)k (a2)k . . . (ar )k

(b1)k (b2)k . . . (bs)k

zk

k!
with (x)k :=

{
1 for k = 0,

x(x + 1) . . . (x + k − 1) for k � 1.
(A1)

(x)k is known as the Pochhammer symbol. For given N and 0 < p < 1 a set of discrete polynomials, labeled by n = 0, . . . , N
and depending on x = 0, . . . , N , can be defined [38]. The polynomials are orthogonal with respect to the weight function wp(x)
and the normalization constant d p

n :

K p
n (x) :=2F1

[
(−x,−n)

(−N )
;

1

p

]
, for x = 0, . . . , N, (A2)

with wp(x) :=
(

N

x

)
px(1 − p)N−x, d p

n :=
(

N

n

)−1(1 − p

p

)n

⇒
N∑

x=0

wp(x)K p
n (x)K p

m(x) = d p
n δnm. (A3)

Note that F (−x,−n,−N, 1/p) = 0 for x, n > N ; therefore, each term of the series in (A1) is zero for x, n > N . We refer to the
orthogonal and normalized Krawtchouk polynomials

κ p
n (x) :=

√
wp(x)

d p
n (x)

K p
n (x). (A4)

The spin system suggested by Christandl et al. [21] and generalized as discussed in Sec IV A can be solved using the recurrence
relation of the Krawtchouk polynomials:

−xK p
n (x) = n(1 − p)K p

n−1(x) − [p(N − n) + n(1 − p)]K p
n (x) + (N − n)pK p

n+1(x) (A5a)

⇒ −xκ p
n (x) =

√
p(1 − p)Jn−1κ

p
n−1(x) − [p(N − n) + n(1 − p)]κ p

n (x) +
√

p(1 − p)Jnκ
p
n+1(x). (A5b)

p ∈ (0, 1) has to be adjusted according to (22) to diagonalize the Hamiltonian. Relations including hypergeometric series can be
found on pp. 82–85 of Erdélyi et al. [39]. For our further calculations we require the following identity:

N∑
n=0

(
N

n

)
sn

2F1

[
(−n,−b)

(−N )
; z

]
2F1

[
(−n,−β )

(−N )
; ζ

]

= (1 + s)N−b−β (1 + s − sz)b(1 + s − sζ )β 2F1

[
(−b,−β )

(−N )
;

−szζ

(1 + s − sz)(1 + s − sζ )

]
. (A6)

Inserting the appropriate p, the transmission amplitudes (27) can be derived for the undriven system (Sec IV A):

f p
rs(t ) = 〈r|e−iHt |s〉 = 〈r|

N∑
x=0

e−itEx |ϕx〉〈ϕx||s〉 =
N∑

x=0

κ p
r (x)†κ p

s (x)e−itEx = 1√
d p

r d p
l

N∑
x=0

wp(x)K p
r (x)K p

s (x)e−itEx

= e−itμ0N (1 − p)N√
d p

r d p
l

N∑
x=0

(
N

x

)[
p

1 − p


]x

2F1

[
(−x,−r)

(−N )
;

1

p

]
2F1

[
(−x,−s)

(−N )
;

1

p

]

(A6)= e−itμ0N (1 − p)N√
d p

r d p
l

[
1 − p + p

1 − p

]N−r−s[1 − p + p − 

1 − p

]r+s

2F1

[
(−r,−s)

(−N )
; − 

p(1 − p)(1 − )2

]

= e−itμ0N

√(
N

r

)(
N

s

)
[
√

p(1 − p)]r+s[1 − ]r+s[1 − p + p]N−r−s
2F1

[
(−r,−s)

(−N )
; − 

p(1 − p)(1 − )2

]
, (A7)

with μ0 = √
λ2 + h2 and  = eit2μ0 . These results were already obtained by Van der Jeugt et al. [36,37].
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APPENDIX B: BINARY DRIVE

Using the transmission coefficients (A7) derived in Appendix A, the evolution operator and its matrix elements can be
calculated using the product formula (A6) for a binary drive. The system is stationary within each half period T/2. First, p−
covers the case of linearly decreasing fields over [0, T/2) (see Sec. IV B). The coefficients determined by p+, linearly increasing
fields, are used within [T/2, T ).

The calculation of the coefficients is more complex than in the stationary case treated in Appendix A. The following variables
are introduced:

ζ := − 

p±(1 − p±)(1 − )2
= − 

p+ p−(1 − )2
, (B1)

θrs :=e−iμ0NT

√(
N

r

)(
N

s

)
[
√

p+ p−]r+s[1 − ]r+s[1 − p− + p−]N−s[1 − p+ + p+]N−r, (B2)

φrs :=e−iμ0N2T

√(
N

r

)(
N

s

)
[1 − p− + p−]r[1 − p+ + p+]s

[
2
√

p+ p−(1 − )

 + 2p+ p−(1 − )2

]r+s

[ + 2p+ p−(1 − )2]2N , (B3)

with  = eiT μ0 . Additionally, some relations involving p± are needed:

p± = 1

2
± 1

2

√
1 − λ2

λ2 + h2
⇒ p±(1 − p±) = p+ p− = 1

4

λ2

λ2 + h2
, p+ + p− = 1, (B4)

(1 − p− + p−)(1 − p+ + p+) =  + p+ p−(1 − )2. (B5)

The derivation of urs(T ), Eq. (36) then proceeds as follows:

urs(T ) = 〈r|U (T )|s〉 =
N∑

k=0

f p+
rk (T/2) f p−

ks (T/2)

(B5)= θrs

N∑
k=0

(
N

k

)[
p+ p−(1 − )2

 + p+ p−(1 − )2

]k

2F1

[
(−r,−k)

(−N )
; ζ

]
2F1

[
(−k,−s)

(−N )
; ζ

]
. (B6)

We apply the summation formula (A6). The following terms occur:

s := p+ p−(1 − )2

 + p+ p−(1 − )2 (B7)

⇒ 1 + s = + 2p+ p−(1 − )2

 + p+ p−(1 − )2 (B8)

⇒ 1 + s − sζ
(B1)=  + 2p+ p−(1 − )2

 + p+ p−(1 − )2 − p+ p−(1 − )2

 + p+ p−(1 − )2

(−1)

p+ p−(1 − )2
= 2 (B9)

⇒ −sζ 2

(1 + s − sζ )2
= − 1

4

p+ p−(1 − )2

 + p+ p−(1 − )2

2

(p+ p−)2(1 − )4 = −1

4

2

 + p+ p−(1 − )2

1

p+ p−(1 − )2︸ ︷︷ ︸
=:η

. (B10)

The determination of urs(T ) is possible using the previously derived relations:

urs(T ) =θrs

[
 + 2p+ p−(1 − )2

 + p+ p−(1 − )2

]N−r−s

[2]s+r
2F1

[
(−r,−s)

(−N ) ; η

]
. (B11)

Inserting θrs finally yields (36).
Next, we derive urs(2T ), Eq. (58), in a similar manner:

urs(2T )=
N∑

k=0

urk (T )uks(T )
(B3)= φrs

N∑
k=0

(
N

k

)[
4p+ p−(1 − )2 + 4p2

+ p2
−(1 − )4

2 + 4p+ p−(1 − )2 + 4p2+ p2−(1 − )4

]k

2F1

[
(−r,−k)

(−N )
; η

]
2F1

[
(−k,−s)

(−N )
; η

]
.

(B12)

Again, we apply the summation formula in (A6). The following terms occur:

s̃ := 4p+ p−(1 − )2 + 4p2
+ p2

−(1 − )4

[ + 2p+ p−(1 − )2]2
(B13)

⇒ 1 + s̃ = 2 + 8p+ p−(1 − )2 + 8p2
+ p2

−(1 − )4

[ + 2p+ p−(1 − )2]2
(B14)
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⇒ 1 + s̃ − s̃η = 1 + s̃ + 2[
 + 2p+ p−(1 − )2

]2 = 2 (B15)

⇒ −s̃η2

(1 + s̃ − s̃η)2
= − 1

16

4[
 + 2p+ p−(1 − )2

]2

1

p+ p−(1 − )2 + p2+ p2−(1 − )4︸ ︷︷ ︸
=:ϒ

. (B16)

The determination of urs(2T ) is then possible using the previously derived relations:

urs(2T ) = φrs

N∑
k=0

(
N

k

)
[s̃]k

2F1

[
(−r,−k)

(−N )
; η

]
2F1

[
(−k,−s)

(−N )
; η

]

= φrs

[
2 + 8p+ p−(1 − )2 + 8p2

+ p2
−(1 − )4[

 + 2p+ p−(1 − )2
]2

]N−r−s

[2]s+r
2F1

[
(−r,−s)

(−N )
; ϒ

]
. (B17)
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