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Domain boundaries and other twin boundaries in crystalline materials are receiving increasing interest. They
can carry unique functional properties, which in many cases are absent in the surrounding bulk material. One such
property of domain boundaries can be their electric polarity. Phenomenological insight in the polarity of domain
boundaries was so far based either on the knowledge of the order parameter and the form of Landau-Ginzburg
free energy functional, or on the knowledge of the symmetry of the domain boundaries. In the present work we
show on the concrete examples of potassium thiocyanate (KSCN) and lacunar spinel crystals that the concept
of the primary order parameter can help to find the layer group describing the maximal possible symmetry of
a given domain boundary. A combination of layer group and order parameter symmetries is then employed to
clarify the nature of the polarity of domain boundaries.
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I. INTRODUCTION

Domains in ferroelectric and ferromagnetic crystals are
well known for their applications in microelectronic devices
[1–3]. Domains are three-dimensional objects (with 3D trans-
lational symmetry), which usually appear due to breaking of
crystal symmetry at a structural phase transition. The exper-
imental investigation and theoretical description of domains
and their properties has a long and fruitful tradition [4]. On
the other hand, domain boundaries or boundaries in general
have been recognized as useful objects much later. Planar
domain walls are objects with 2D-translational periodicity,
which separate adjacent domain states, homogeneous in 3D.
Thanks to the enormous progress in the development of high
resolution techniques, local structures of domain boundaries
are nowadays explored in great detail [5,6]. In addition, local
properties of domain boundaries are also measured. This has
led to fascinating discoveries, e.g., of superconducting twin
boundaries in WO3 [7], conducting domain walls in insulating
BaTiO3 [8], or polarity of domain boundaries of nonpolar
perovskites CaTiO3 [9–11], SrTiO3 [12], LaAlO3 [13], and
PbZrO3 [14].

In this paper, a twin boundary is considered to be the
interface between two equivalent structural variants of a
chemically homogeneous crystalline material, such that these
variants can be superposed by a combination of euclidean
translations and proper or improper rotations. We use a
domain wall or boundary as a special case of the twin
boundary, separating the structural variants (transformation
twins) related by some symmetry operations of a parent high-
symmetry phase. For our purposes the interface is mostly
understood as a flat object with a negligible curvature, and
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although there is no sense to define a complete, total thickness
of the domain boundary, we can have in mind a layer of
the structure with a measurably different structure than the
adjacent bulk domains, typically of the order of the domain
wall thickness estimated from Landau-Ginzburg models.

Various theoretical approaches for the description of do-
main boundaries exist. They are based on pure geometrical
arguments using layer groups [15–24], Landau-Ginzburg free
energy expansions [25–29], microscopic theory [30–34], etc.
Usually these methods are applied independently of each
other. In Landau-Ginzburg theory [35] the concept of an order
parameter was exploited most successfully in hundreds of
cases to describe bulk properties of crystals near structural
phase transitions. It turned out to be also very useful for
the description of domain wall properties. In Landau theory
the domain states (DS) are represented by points in order
parameter space, whereas the domain wall is described by a
continuous trajectory in the the order parameter space, con-
necting the values of the corresponding DSs. One of the most
successful methods for the description of polarization profiles
in domain walls uses a modification of the Landau-Ginzburg
free energy expansion by adding gradient coupling terms, e.g.
flexo-electric couplings [36–38] between the strain gradient
and the polarization as well as biquadratic terms between OP
and polarization.

In virtue of the Curie principle, the presence or absence of
polarity within a domain boundary straightforwardly follows
from the domain boundary symmetry. Therefore, the central
problem consists in determination of the domain boundary
symmetry. Obviously, the pure symmetry arguments can only
determine the maximal possible symmetry of the domain
boundary, which is compatible with a given pair of domain
states, given crystallographic orientation of the boundary,
and possibly also with its exact location in the lattice. An
ensemble of symmetry operations satisfying simultaneously
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all these conditions forms the key object of the theory, a layer
group Ti j . This symmetry group Ti j can be determined by a
detailed inspection of the correspondence between symmetry
operations of the parent and child space groups of the crys-
tal structures using a well established systematical abstract
group-theoretical approach [15–24].

This formal procedure can be apparently circumvented
by a more simple approach, based on the symmetry of the
averaged order parameter only [39]. The order parameter is
represented in a d-dimensional vector space V = (η1, ..., ηd ),
depending on the dimension d of the irreducible active repre-
sentation ταβ (g)(α, β = 1, ..., d ). Two adjacent domains are
then represented by two vectors Vi = (η(i)

1 , .., η
(i)
d ) and V j =

(η( j)
1 , .., η

( j)
d ). The main conjecture is that the symmetry group

of a domain wall is at most the maximal isotropy subgroup
Ai j , which leaves Vi + V j intact. We state equivalently that
Ai j preserves the arithmetic average of the order parameters,
〈V〉 = (Vi + V j )/2. However, this Ai j symmetry group fre-
quently provides only a weak restriction on the properties of
a given boundary, because the construction of Ai j completely
ignores the symmetry-breaking impact of the crystallographic
orientation of the domain boundary, the information about
the exact location of the boundary in the lattice, and the
2D translational symmetry of the domain boundary as well.
Moreover, there is a possibility of confusion about the role
of Ai j and Ti j groups, which could lead to misinterpretations
of theoretical predictions. For example, nonpolar domain wall
symmetries have been indicated [39] for ferroelastic domain
walls of LaAlO3 and SrTiO3, in what appears to be a flagrant
contradiction with the recent experimental findings support-
ing their polarity [40,41], even though a long time ago the
rigorous theoretical arguments based on layer group methods
already disclosed that a lower, polar symmetry is unavoidable
there [17,42].

The aim of the present work is to revise the possibility to
assess the presence of polarity in domain boundaries from
the point of view of symmetry theory. For this purpose, we
show how the procedure of finding the Ti j layer group can
be facilitated by considerations about the OP symmetry. We
emphasize the fundamental differences among the symmetry
group of the domain boundary Ti j , the symmetry group Ai j

of the averaged order parameter, and the symmetry groups
of Fi j and Ji j of the ordered and unordered domain state
pairs, respectively. Moreover, we argue that the layer groups
Ti j allow us to verify easily the completeness of Ginzburg-
Landau models applied to determine domain wall profiles.
General results are illustrated by an explicit analysis for
several orientational and translational domain boundaries in
real materials.

The paper is organized as follows. In Sec. II we review the
main information concerning the phase transition and domain
states of KCSN. The symmetry of the intermediate states on
the domain wall paths in the OP space is briefly introduced
in Sec. III. In Sec. IV we show how the symmetry of or-
dered and unordered domain pairs, Fi j and Ji j , is efficiently
calculated in order parameter space. Section V describes how
the layer group method complemented with order-parameter
symmetry allows us to obtain the symmetry groups Ti j for
selected domain boundaries of KSCN and lacunar spinels. In

Sec. VI we use the resulting layer group symmetries of do-
main boundaries Ti j to determine symmetry aspects of domain
wall trajectories in OP spaces. Requirements for the adequate
quantitative Landau-Ginzburg calculations of domain wall
properties are discussed in Sec. VII. The last two sections
are devoted to the discussion of the polarity of the domain
boundaries and to the general conclusion, respectively.

II. PHASE TRANSITION IN KSCN
AND ITS DOMAIN STATES

KSCN crystals undergo a structural (order-disorder) phase
transition at Tc = 415 K. The high temperature phase has
a tetragonal body-centered structure with two formula units
in the primitive unit cell with space group [43] G0 =
I4/mcm (D18

4h), where the SCN− molecular ions are orien-
tationally (head-tail) disordered. The lattice constants of the
conventional unit cell at = (at , 0, 0), bt = (0, at , 0), ct =
(0, 0, ct ) are at = 6.740 Å, ct = 7.832 Å.

Below Tc the SCN− molecular ions order in an alternating
arrangement, resulting in the loss of the centering translation
( 1

2 , 1
2 , 1

2 ) which leads to the orthorhombic space group [44]
F = Pbcm (D11

2h) with four formula units in the unit cell. The
lattice constants of the orthorhombic unit cell a = (a, 0, 0),
b = (0, b, 0), c = (0, 0, c) are a = 6.691 Å, b = 6.676 Å, c =
7.606 Å. The arrangement of atoms in the orthorhombic phase
is shown in Fig. 1.

Due to the symmetry reduction at the phase transition, the
number [19] of domain states (DSs) n = 4. We denote them
as S1 = 11, S2 = 12, S3 = 21, S4 = 22, where the main index
numbers the two orientational DSs 11, 21 and the subindex
distinguishes the two different translational DSs 11, 12. The
four possible DSs are shown in Fig. 2. All operations that
transform S1 into S j ( j = 1, .., 4) are marked in Table I by
colors using the color code of Fig. 2.

For further considerations, we shortly review some results
from the Landau theory of KSCN [45–47]. The phase transi-
tion of KSCN [46] from I4/mcm(D18

4h) to Pbcm(D11
2h) occurs

at the critical wave vector kc = (00 2π
c ). It describes a wave

which has its period equal to the c axes, but the centering
translation ( 1

2
1
2

1
2 ) of the tetragonal D18

4h phase is lost. The PT is
described by the two-dimensional irreducible representation
τ9 (Table I) [48] with the OP components (η1, η2). The
symmetry Pbcm(D11

2h) requires a minimum of the free energy
at (η, 0). In OP space the four (homogeneous) domain states
can then be located as points at (η, 0) ≡ S1 = 11, (−η, 0) ≡
S2 = 12, (0, η) ≡ S3 = 21, and (0,−η) ≡ S4 = 22 (Fig. 3).

III. DOMAIN WALL PATHS AND INTERMEDIATE
STATES IN OP SPACE

A smoothly varying structure of a domain wall bridging
Si and S j can be associated with a path in OP space which
connects Si and S j . To each position ξn (n is the normal
to the domain wall) in real space there corresponds a point
(η1(ξ ), η2(ξ )) on the path [16], which describes the local
structure of the domain wall. The rate of the structure change

along the path can be expressed as h(ξ ) =
√

( ∂η1

∂ξ
)
2 + ( ∂η2

∂ξ
)
2
.

Small values of h imply nearly homogeneous regions as is the
case for ξ → ±∞. Close to the domain wall center (ξ → 0) h
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FIG. 1. (Left) Three-dimensional arrangement of atoms in the orthorhombic Pbcm structure of KSCN. The vectors a, b, c of the primitive
unit cell are marked by red dashed arrows. Purple = K atoms, yellow = S, gray = N. C atoms are omitted for clarity in the figures. Graphics
made with VESTA. (Right) c projection of the structure including symmetry elements. K atoms at z = 1

4 c levels and S, N atoms at z = 0, 1
2 c

levels, respectively.

usually becomes very large. If h is small, the local symmetry
at position ξ in a domain wall can be described by a three-
dimensional space group E (η1(ξ ), η2(ξ )), which represents
the epikernels [49] of the representation inducing the phase
transition. However, at positions ξ with high h—i.e., close
to the domain wall center—the local symmetry should be
described by a layer group with 2D periodicity, which of

course is different from the three-dimensional space group
E (η1(ξ ), η2(ξ )). Not taking this into account can lead to
ambiguous results, as we will show in the following examples.

A. Ferroelastic domain boundary paths of KSCN

For a (110)- or (11̄0)-oriented domain wall (compatible)
between 11 and 21 or 12 and 21 (paths 3 or 4 in Fig. 3)

FIG. 2. Four domain states of the Pbcm structure of KSCN. The conventional unit cell with vectors at = (at , 0, 0), bt = (0, at , 0), and
ct = (0, 0, ct ) of the high temperature tetragonal structure I4/mcm is depicted in the center. The centering translation ( 1

2 , 1
2 , 1

2 ) is indicated by
a dashed yellow arrow. It is lost at the phase transition to the Pbcm phase (11), leading to a doubling of the unit cell below Tc.
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TABLE I. Two-dimensional active irreducible representation [48] τ9 of the tetragonal space group D18
4h with order parameter components

(η1, η2). The colors denote symmetry operations g ∈ D18
4h, which transform S1 into Sj , using the color code of Fig. 2. The translational part

consists of T = na + mb + lc, n, m, l ∈ Z, and eikcT = 1. The components of the polarization vector P = (Px, Py, Pz ) transform according to
the vector representation Vi j (h) (i, j = 1, 2, 3) of the corresponding point group elements h ∈ D4h.

(1/000) (4z/000) (2z/000) (43
z /000) (2x/00 1

2 ) (2x̄y)/00 1
2 ) (2y/00 1

2 ) (2xy/00 1
2 ) OP(

1 0
0 1

) (
0 −1
1 0

) (−1 0
0 −1

) (
0 1

−1 0

) (
1 0
0 −1

) (
0 −1

−1 0

) (−1 0
0 1

) (
0 1
1 0

) (
η1

η2

)
(

1 0 0
0 1 0
0 0 1

) (
0 −1 0
1 0 0
0 0 1

) (
−1 0 0
0 −1 0
0 0 1

) (
0 1 0

−1 0 0
0 0 1

) (
1 0 0
0 −1 0
0 0 −1

) (
0 −1 0

−1 0 0
0 0 −1

) (
−1 0 0
0 1 0
0 0 −1

) (
0 1 0
1 0 0
0 0 −1

) ⎛⎝Px

Py

Pz

⎞⎠
(1/ 1

2
1
2

1
2 ) (4z/

1
2

1
2

1
2 ) (2z/

1
2

1
2

1
2 ) (43

z /
1
2

1
2

1
2 ) (2x/

1
2

1
2 0) (2x̄y)/ 1

2
1
2 0) (2y/

1
2

1
2 0) (2xy/

1
2

1
2 0) OP(−1 0

0 −1

) (
0 1

−1 0

) (
1 0
0 1

) (
0 −1
1 0

) (−1 0
0 1

) (
0 1
1 0

) (
1 0
0 −1

) (
0 −1

−1 0

) (
η1

η2

)
(

1 0 0
0 1 0
0 0 1

) (
0 −1 0
1 0 0
0 0 1

) (
−1 0 0
0 −1 0
0 0 1

) (
0 1 0

−1 0 0
0 0 1

) (
1 0 0
0 −1 0
0 0 −1

) (
0 −1 0

−1 0 0
0 0 −1

) (
−1 0 0
0 1 0
0 0 −1

) (
0 1 0
1 0 0
0 0 −1

) ⎛⎝Px

Py

Pz

⎞⎠
(1̄/000) (4̄z/000) (mz/000) (4̄3

z /000) (mx/00 1
2 ) (mx̄y)/00 1

2 ) (my/00 1
2 ) (mxy/00 1

2 ) OP(−1 0
0 −1

) (
0 1

−1 0

) (
1 0
0 1

) (
0 −1
1 0

) (−1 0
0 1

) (
0 1
1 0

) (
1 0
0 −1

) (
0 −1

−1 0

) (
η1

η2

)
(

−1 0 0
0 −1 0
0 0 −1

) (
0 1 0

−1 0 0
0 0 −1

) (
1 0 0
0 1 0
0 0 −1

) (
0 −1 0
1 0 0
0 0 −1

) (
−1 0 0
0 1 0
0 0 1

) (
0 1 0
1 0 0
0 0 1

) (
1 0 0
0 −1 0
0 0 1

) (
0 −1 0

−1 0 0
0 0 1

) ⎛⎝Px

Py

Pz

⎞⎠
(1̄/ 1

2
1
2

1
2 ) (4̄z/

1
2

1
2

1
2 ) (mz/

1
2

1
2

1
2 ) (4̄3

z /
1
2

1
2

1
2 ) (mx/

1
2

1
2 0) (mx̄y)/ 1

2
1
2 0) (my/

1
2

1
2 0) (mxy/

1
2

1
2 0) OP(

1 0
0 1

) (
0 −1
1 0

) (−1 0
0 −1

) (
0 1

−1 0

) (
1 0
0 −1

) (
0 −1

−1 0

) (−1 0
0 1

) (
0 1
1 0

) (
η1

η2

)
(

−1 0 0
0 −1 0
0 0 −1

) (
0 1 0

−1 0 0
0 0 −1

) (
1 0 0
0 1 0
0 0 −1

) (
0 −1 0
1 0 0
0 0 −1

) (
−1 0 0
0 1 0
0 0 1

) (
0 1 0
1 0 0
0 0 1

) (
1 0 0
0 −1 0
0 0 1

) (
0 −1 0

−1 0 0
0 0 1

) ⎛⎝Px

Py

Pz

⎞⎠

the OP components (η1(ξ ), η2(ξ )) vary between (η, 0)
and (0, η) [or (−η, 0) and (0, η)] via (η, η) [or (−η, η)]
in the domain wall center (ξ = 0). If we use Table I to
find out which symmetry operations leave (η1(ξ ), η2(ξ ))
unchanged along the path −∞ � ξ � ∞, we obtain:
Pbcm(ξ = −∞) → P21/m(−∞ < ξ < 0) → Cmcm(ξ =
0) → P21/m(0 < ξ < ∞) → Pcam(ξ = ∞). Thus, the
symmetry of the domain wall center (Cmcm) coincides with
the symmetry A13 of V1 + V3 = (η, 0) + (0, η) = (η, η) of
Ref. [39].

All these groups are nonpolar, in contrast to the general
statement, saying that all mechanically compatible ferroelas-
tic domain walls must be polar [42]. The reason for this over-
estimation of symmetry is that in the above approximations
a three-dimensional domain wall structure is assumed, while
a planar domain wall has only two-dimensional periodicity
within this plane.

B. Antiphase boundary paths of KSCN

There are three different ways (paths 1, 2, or 2′ in Fig. 3)
to connect 11 and 12 along a given path ξ via a translational
antiphase boundary. Path 1 leads—using Table I—to the

following sequence of epikernel symmetries:
Pbcm(−∞ � ξ < 0), I4/mcm(ξ = 0), Pbcm(0 < ξ �
∞). Paths 2 and 2′ lead to: Pbcm(ξ = −∞) →
P21/m(−∞ < ξ < 0) → Pcam(ξ = 0) → P21/m(0 < ξ

< ∞) → Pbcm(ξ = ∞). Let us not forget that
the average order parameter symmetry [39] A12 of
(V1 + V2) = ((η, 0) + (−η, 0)) = (0, 0) yields I4/mcm,
independently on the path between 11 and 12. It should be
noted that also for the translational antiphase boundaries
both approaches yield nonpolar groups, in contrast to our
previous findings [19], where we have used layer groups to
analyze the domain wall symmetries. Also here, the obtained
symmetries are too high, since the two-dimensional character
of the domain wall is not properly taken into account. The
change of symmetry within a domain wall along the path ξ

is taken fully into account by the layer group method [17],
which is widely used in the next sections.

IV. SYMMETRY OF DOMAIN PAIRS

Previously, a detailed symmetry analysis of domain pairs
and boundaries in KSCN has been performed in Refs. [17,19].
Here we use the same settings and notations, but at some steps
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FIG. 3. Sketch of the Landau free energy landscape in the OP
space (η1, η2) of KSCN, representation of homogeneous domain
states (points) and transition pathways (dotted lines) between them.
1 = straight path, also called linear antiphase boundary (LAPB),
2 and 2′ are side paths, also called rotational antiphase boundaries
(RAPBs), 3 = ferroelastic domain boundary. Path 4 describes an-
other ferroelastic boundary. The epikernel symmetries at the points or
segments of the transition pathways [51] are also depicted. Generally
they do not correspond to the correct local structures, since the rate
of structural changes is usually not small, especially close and at the
domain wall centers.

we took advantage of the known irrep of the order parameter
(OP). Moreover—as we show below—working in OP space
helps a lot to connect to Landau-Ginzburg theory, i.e., to
find the most important coupling terms, which are needed
to describe the (functional) properties of the corresponding
domain walls.

To find the symmetry of a domain wall between domain
states Si and S j with the symmetry groups Fi and Fj , one
usually starts with the symmetry analysis of a corresponding
domain pair (DP) [45]. A DP represents an intermediate step
between domain states (DS) and domain walls and can be
visualized as two overlapping structures Si and S j , which exist
independently of each other, both filling the entire space. It
can be treated either as an unordered domain pair

{Si, S j} = {S j, Si} (1)

or an ordered domain pair

(Si, S j ) 	= (S j, Si ), (2)

where (S j, Si ) is a transposed domain pair of (Si, S j ).
Operations f ∈ G0 that leave both Si and S j unchanged are

operations common to Fi and Fj . They form a group Fi j

Fi j = Fi ∩ Fj . (3)

The group Fi j is thus the symmetry group of an ordered
domain pair (Si, S j ).

The symmetry group Ji j of an unordered domain pair
{Si, S j} consists of the group J ′

i j = Fi j and in addition, it con-
tains all transposing operations ĵi j ∈ G0 which transform the
ordered pair (Si, S j ) into the transposed domain pair (S j, Si ).
All transposing operations are contained in the left coset J ′′

i j =
ĵi jFi j . Thus the symmetry group Ji j of the unordered domain

pair {Si, S j} is equal to

Ji j = J ′
i j ∪ J ′′

i j = Fi j ∪ ĵi jFi j . (4)

The group Ji j can be treated as a dichromatic (e.g., black and
white) group [50]. If one colors the domain states, say Si black
and S j white, then operations f ∈ J ′

i j = Fi j (without caret) can
be treated as color-preserving operations and operations with
caret f̂ ∈ ĵi jFi j = J ′′

i j as color-changing ones.
Let us apply now this procedure to find the symmetry

groups Ji j of unordered DPs in KSCN using order parameter
symmetries. In the present case there are six DPs, denoted as
{11, 12}, {11, 21}, {11, 22}, {12, 21}, {12, 22}, {21, 22}. Accord-
ing to Table IV of Ref. [19], there are two sets of symmetri-
cally inequivalent DPs. Out of these we will consider only the
two inequivalent DPs {S1, S2} = {11, 12} (translational DP)
and {S1, S3} = {11, 21} (orientational DP).

A. Symmetry of orientational domain pairs of KSCN

Since a DP corresponds to an overlap of homogeneous
DSs, which can be represented as points in OP space, Ji j

can be conveniently calculated using the OP symmetry in
terms of the active irreducible representation (Table I). To
show this, let us first consider the DP {11, 21} (= {S1, S3}, see
Fig. 2), which we represent in OP space as {(η, 0), (0, η)}.
F13 consists of all symmetry elements f ∈ I4/mcm for which
f {(η, 0), (0, η)} = {(η, 0), (0, η)}, i.e., which leave each of
the two DSs unchanged. In terms of irreducible represen-
tations this condition translates to τ ( f )(η, 0) = (η, 0) and
τ ( f )(0, η) = (0, η), where τ ( f ) is a matrix corresponding to
f , see Table I. According to Table I these are the symmetry
elements where τ11( f ) = τ22( f ) = 1 and τ12( f ) = τ21( f ) =
0. This implies that F13 reads

F13 = T
{
(1/000)

(
2z/

1
2

1
2

1
2

)
(mz/000)

(
1̄/ 1

2
1
2

1
2

)}
, (5)

with translations (Fig. 4) T = nao + mbo + lco and ao = a −
b, bo = a + b and co = c. This is a nonpolar P21z/mz space
group.

In order to identify the domain state-exchanging symmetry
operations ĵ within I4/mcm, it is convenient to exploit again
the active irrep of the transition. The searched symmetry op-
erations should fulfill ĵ{(η, 0)(0, η)} = {(0, η)(η, 0)}. There-
fore, for each such operation the matrix τ = τ ( ĵ) has to satisfy
τ (η, 0) = (0, η) and τ (0, η) = (η, 0), and thus τ11 = τ22 = 0
and τ12 = τ21 = 1. This is fulfilled for a set of operations J ′′

13

T
{(

2xy/00 1
2

) (
2x̄y/

1
2

1
2 0

) (
mx̄y/00 1

2

) (
mxy/

1
2

1
2 0

)}
. (6)

Combining both results yields

J13 = J ′
13 ∪ J ′′

13 = Cm̂xyĉx̄ymz = D17
2h,

again with translations (Fig. 4) T = nao + mbo + lco and
ao = a − b, bo = a + b and co = c.

A graphical picture of the symmetry elements of J13

is given in Fig. 4. All color-preserving elements (F13) are
marked in black, whereas all color-changing elements (J ′′

13)
are marked in green. It should be noted that for this DP
{11, 21} the symmetry J13 is coincidentally the same as A13

(Cmcm). Or stating it another way around, for this example the
OP approaches of Ref. [39] and Ref. [51] yield the symmetry
of a DP, which generally is higher than the symmetry of the
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FIG. 4. Top: Orientational DP {11, 21} = {S1, S3}. The ferroe-
lastic domain walls at positions p = pa for p = 0, 1

2 , and − 1
2 are

indicated by yellow and orange lines. Bottom: Symmetry elements
of J ′

13 [that is (1/000), (2z/
1
2

1
2

1
2 ), (mz/000), and (1̄/ 1

2
1
2

1
2 ), drawn

in black] and of J ′′
13 [that is (2xy/00 1

2 ), (2x̄y/
1
2

1
2 0), (mx̄y/00 1

2 ),
(mx̄y/00 1

2 ) and (mxy/
1
2

1
2 0), drawn in green] forming altogether J ′

13 ∪
J ′′

13 = Cm̂xyĉx̄ymz = D17
2h attached to the structure of the DP. The unit

cell (blue lines) of Cmcm which is related to Pbcm (deep red)
according to ao = a − b, bo = a + b, and co = c is also shown. To
keep consistency with earlier work, the y axis is drawn as horizontal.
Graphics made with VESTA.

corresponding domain wall, as will be shown below. Resulting
domain pair symmetry J13 obviously coincides with the result
obtained by the original procedure of Ref. [19].

B. Symmetry of translational domain pairs of KSCN

The translational DP {11, 12} is shown in Fig. 5. The color
preserving operations of F12 = F1 ∩ F2 are those which leave
both (η, 0) and (−η, 0) unchanged. According to Table I
these are the elements marked in red, i.e. F12 = Pbcm. The
color changing operations are those with τ11 = −1. They are
marked in Table I in blue color. Thus the symmetry elements
that leave the DP {11, 12} invariant form the space group

J12 = Pbcm + 2̂zPbcm = Ib̂xâymz = D26
2h. (7)

It consists of the union of elements marked in red and blue in
Table I with T = na + mb + lc. For this DP the symmetry
group [39] G(V1 + V2) = I4/mcm (see Sec. III B) is even
higher than the symmetry (Ibam) of the unordered DP.

FIG. 5. Translational DP {11, 12} = {S1, S2} of the KSCN struc-
ture. The unit cell of the group J12 = Ibam = D26

2h is shown in
magenta. Note, that the centring translation (dotted magenta vector)
is conserved only if we omit the colors, i.e., if we treat it as an
unordered DP. Graphics made with VESTA.

V. SYMMETRY OF DOMAIN BOUNDARIES

In the next step we complement the layer group approach
[16] by OP symmetry and calculate the symmetry of domain
boundaries [19] using layer groups and irreps. Sometimes it is
convenient to introduce the concept of domain twin, which
consists of two semi-infinite domains which meet along a
planar transitional layer region, called domain wall or domain
boundary. With this definition, symmetry of both objects
(planar domain twin and planar domain boundary) is the same.
A position of planar domain boundary can be defined by a
normal n to the boundary plane and one selected position
vector p within this plane. The vector n defines also the
sidedness of the arrangement, i.e., the side of the first domain
state with respect to n. Both vectors are typically defined with
respect to the parent or the child crystal lattice; p is understood
as a position with respect to the origin of the crystallographic
cell. Sometimes it is convenient to select the position vector of
the boundary as its intercept p with respect to the origin of the
selected unit cell, p = pn. A convenient symbol of a domain
boundary is then (Si|n, p|S j ) or (Si|n, p|S j ). All g ∈ D18

4h that
leave the domain boundary invariant, i.e. for which

g(Si|n, p|S j ) = (gSi|gn, gp|gS j ) = (Si|n, p|S j ) (8)

holds, form a layer group (space group with 2D periodic-
ity) Ti j [52], which determines the symmetry of the domain
boundary. Sometimes dependence of the layer group on n and
p will be shown explicitly as Ti j (n, p).

Generally the group Ti j consists of two parts

Ti j = T ′
i j ∪ T ′′

i j = F̄i j ∪ t̂i j F̄i j, (9)

where T ′
i j = F̄i j consists of all operations in Fi j that leave

Si, S j, n, p invariant while T ′′
i j = t̂i j F̄i j consists of all opera-

tions of J ′′
i j that simultaneously exchange Si and S j and trans-

form n into −n (the latter property is made by underlining the
symbols of such operations). If T ′′

i j = 0, then Ti j = T ′
i j , and the

domain boundary is denoted an asymmetric domain boundary.
In the opposite case, when T ′′

i j 	= 0, the domain boundary
is called a symmetric domain boundary. These symmetry
properties of domain boundaries are important in the context
of domain wall properties. In the following we show how the
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TABLE II. Layer group symmetry of ferroelastic domain bound-
aries of KSCN.

Domain boundary Position p Layer group

(11|(110), p|21) 0 T13 = pmz

F̄13 = pmz

− 1
2 T13 = pm̂xŷ2xȳmz

F̄13 = pmz

(11|(11̄0), p|21) 0 T13 = p̂2xŷcxȳmz

F̄13 = pmz
1
2 T13 = pmz

F̄13 = pmz

symmetry elements of T ′
i j, T ′′

i j , and Ti j can be systematically
calculated by inspecting how the order parameter components
transform under the action of a given symmetry element, how-
ever taking into account how n transforms at the position p.

A. Ferroelastic domain boundaries of KSCN

It is known that for the present symmetry reduction
I4/mcm → Pbcm there exist two elastically compatible do-
main wall orientations, i.e., n = (1, 1, 0) and (1, 1̄, 0) for
orientational (ferroelastic) domains. First we calculate the
symmetry of an orientational (ferroelastic) domain boundary
(11|(1, 1, 0), 0|21).

By inspecting Fig. 4, we find those operations of F13 =
P21/mz, which at p = 0 leave n = (1, 1, 0) invariant. Invari-
ant of n at p means that those operations should neither
change the orientation of n, nor shift the domain wall from
its position p. These elements form the layer group T ′

13 =
T{(1/000) (mz/000)} ≡ pmz. Since only shifts within the do-
main wall plane are allowed, one obtains T = n(a − b) +
mc (n, m ∈ Z). There are no position-preserving operations
within J ′′

13, which at p = 0 change n → −n, so that

T13 = T ′
13 = T{(1/000) (mz/000)}. (10)

These symmetry elements form the layer group T13 ≡ pmz

(note, that layer group symmetries are marked by small letters
in front of the symbol). It is obvious that this layer group
T13 of the domain boundary is polar and thus allows for a
polarization component P[11̄0] in the center of the domain wall.

To calculate the symmetry of an orientational (ferroelastic)
domain boundary (11|(1, 1, 0),− 1

2 |21) we proceed as before.
Inspecting Fig. 4 we identify the symmetry operations of
F13 = P21/mz, which leave p = − 1

2 and n = (1, 1, 0) invari-
ant. They form the layer group F̄13 = T{(1/000) (mz/000)} ≡
pmz, where T = n(a − b) + mc (n, m ∈ Z). Those elements
of J ′′

13, which at p = − 1
2 change n → −n are T ′′

13 =
T{(mxy/

1
2

1
2 0)(2xȳ/

1
2

1
2 0)}. Combining both yields

T13 = T
{
(1/000) (mz/000)

(
mxy/

1
2

1
2 0

)(
2xȳ/

1
2

1
2 0

)}
. (11)

Therefore, the resulting symmetry is T13 ≡ pm̂xŷ2xȳmz

(Table II).

B. Translational domain boundaries of KSCN

Unlike ferroelastic domain walls, translational antiphase
boundaries are not subject to strain compatibility relations
and can therefore generally be oriented (if we neglect other
anisotropy effects) in any direction. Let us start with the
domain boundary (11/(0, 1, 0), 0/12). To calculate F̄12 we
select those symmetry operations of F12 = Pbcm, which at
p = (000) leave n = (0, 1, 0) invariant. Inspecting Fig. 5
this yields F̄12 = T{(1/000) (mz/000)} ≡ pmz, where T =
na + mc (n, m ∈ Z). Note that T12 is a layer group, i.e., the
translational elements T act only parallel with the plane of
the domain wall. To determine T ′′

12 we take those opera-
tions of J ′′

12, which at p = (000) change n → −n. These are
T ′′

12 = T{(1̄/000) (2z/000)}. Thus,

T12 = T{(1/000) (mz/000) (1/000) (2z/000)} ≡ p̂2z/mz.

(12)

For the domain boundary (11|(0, 1, 0), 1
4 )|12) (see Fig. 5)

we obtain by checking for the corresponding symme-
try operations preserving the (010) plane at p = 1/4.
This yields T ′

12 = T{(1/000) (mz/000)} ≡ pmz and T ′′
12 =

T{(2x/
1
2

1
2 0) (my/

1
2

1
2 0)}. Thus, for (11|(0, 1, 0), 1

4 )|12), the
T12 layer group reads

T12 = T
{
(1/000) (mz/000)

(
2x/

1
2

1
2 0

) (
my/

1
2

1
2 0

)}
= p̂21xâymz. (13)

Figure 6 displays the antiphase boundaries for these two
different positions p = 0 and p = 1

4 together with the cor-
responding symmetry groups T12. It is obvious that T12 at
p = 0 is a nonpolar layer group, whereas T12 at p = 1

4 is a
polar layer group, which allows for a polarization component
Px 	= 0 (screw axis 21x) in the corresponding domain wall.
Quite similar behavior is also obtained for other orientations
of translational antiphase boundaries (see Table III).

C. Inversion domain boundaries of lacunar spinels

We believe that the selected example of KSCN allowed us
to describe most of the aspects that can be encountered in sym-
metry analysis of domain boundaries in an arbitrary nonpolar
material. To broaden the perspective with another example, let
us briefly consider inversion antiphase boundaries in lacunar
spinels of the GaV4S8 family.

At ambient conditions, these materials have noncentrosym-
metric cubic structure, F = F 4̄3m (T 2

d ). This structure can
be understood as derived from a parent, completely filled
centrosymmetric spinel of G0 = Fd3m (O7

h) symmetry. The
symmetry reduction can be described by a one-component
order parameter η which transforms as the A2u pseudoscalar
one-dimensional irrep [53]. In other words, the parent-child
relationship corresponds to an equitranslational phase transi-
tion, where the macroscopic symmetry changes from m3̄m to
4̄3m. There are only two domain states 1 and 2 (orientational
ones), describing two possible enantiomorphic forms of the
material. Symmetry reduction belongs to a nonferroelectric
and nonferroelastic species, but domain states 1 and 2 differ
in the sign of the piezoelectric tensor [54,55].
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FIG. 6. Translational antiphase boundaries with n = (0, 1, 0)
orientation at positions p = 0 and p = 1

4 together with corresponding
layer groups T12. Graphics made with VESTA.

The parent symmetry group has 48 symmetry operations
per primitive unit cell. One half of these operations are proper
operations (preserving handedness), the other half is formed
by the improper operations (there the determinant of the ro-
tational part of the operation equals to −1). The pseudoscalar
nature of the order parameter implies that the former set of op-
erations forms a halving subgroup describing the symmetry of
the child phase (it is an identical group for both domain states)

TABLE III. Symmetry groups of translation domain boundaries
of different orientations n at various positions p. ()∗ marks asymmet-
ric domain boundaries, i.e., no color changing operations ∈ T12 exist.
(NP)=nonpolar group, (P)=polar group.

Domain boundary Position p Layer group

(11|(100), p|12) (000) T12 = p̂cxcymz (NP)
F̄12 = p2xcymz

( 1
4 00)∗ T12 = p2xcymz (P)

F̄12 = p2xcymz

(11|(010), p|12) (000) T12 = p̂2z/mz (NP)

F̄12 = pmz

(0 1
4 0) T12 = p̂21x̂aymz (P)

F̄12 = pmz

and the other half represents all state-exchanging operations.
Therefore, F12 = F 4̄3m and J12 = F d̂3m̂.

Let us now consider an inversion antiphase boundary per-
pendicular to the tetragonal axis with n = (1, 0, 0) passing
through the inversion center of the parent phase (Wyckoff
position c or d with site symmetry 3m). In the standard setting
origin at the 4̄3m Wyckoff position a, this domain boundary
would thus match the position of the diagonal plane d at
fractional coordinate x = 1

8 , so that the position vector is
p = 1

8 n, p = 1
8 . The antiphase domain boundary normal and

domain state (handedness) are both preserved only by identity
1, 4x, 2x, and 43

x operations, and none of these operations
shifts the domain boundary (1|(0, 0, 1), 1

8 |2), so that F̄12 =
p4x. Simultaneous flipping of the domain boundary normal
and domain state (handedness) can be accomplished by 1̄, 4̄x,
dx, and 4̄3

x . Here again, none of these operations shifts the
domain boundary located at p = 1

8 . By making a union of both
sets, the symmetry of the (1|(0, 0, 1), 1

8 |2) domain boundary
is obtained as T12([100], (000)) = p4x /̂nx. This is a nonpolar
group. On the other hand, if we assume any other position of
the domain boundary, then 1̄, 4̄3

x , mx, and 4̄3
x are not symmetry

operations anymore and we are left with a polar symmetry
layer group T12 = p4x.

VI. SYMMETRY OF ORDER PARAMETER PROFILES

A. Ferroelastic domain boundaries of KSCN

In the following we show that a proper combination of
layer groups with OP symmetry is very useful to get a clue on
the domain wall profiles of OP components, polarization pro-
files, etc. even without solving Euler-Lagrange equations. Let
us consider, e.g., the example of a (110)-oriented ferroelastic
domain wall (11|(110),− 1

2 |21). The symmetry elements of
T13 = T{1, mz, 2̂xȳ, m̂xy} are condensed in Table IV, together
with the corresponding irreducible representations for the
polarization V (g) and order parameter.

The layer group T13 of the domain boundary requires that
the OP profile along the path ξn (−∞ < ξ < ∞) is invariant
with respect to the symmetry operations g ∈ T13. Since the OP
components transform under the action of a symmetry ele-
ment g according to τ (g) this translates to τ (g)(η1(ξ ), η2(ξ )).
We find for all symmetry elements f ∈ F̄13 (black elements
in Table IV) τ ( f )(η1(ξ ), η2(ξ )) = (η1(ξ ), η2(ξ )). Symmetry
operations of T ′′

13 change n → −n, i.e., ξ → −ξ , so that for
them τ (η1(ξ ), η2(ξ )) = (η2(−ξ ), η1(−ξ )). Taking it together,
the symmetry of the domain boundary requires for the or-
der parameter components the relation η1(ξ ) = η2(−ξ ) and
η2(ξ ) = η1(−ξ ). At the domain wall center (ξ = 0) these
relations lead to η1(0) = η2(0).

So, even without solving the Euler-Lagrange equations of
the corresponding Landau-Ginzburg-Devonshire free energy
expansion, one gets a good guess of the domain wall profile
in OP space. Figure 7 shows a sketch of the OP profile in
a ferroelastic domain wall of KSCN with the corresponding
symmetry groups attached. Note that only at ξ = ±∞ the
space groups are three dimensional (marked by capital P in
the space group symbol), whereas at the center of the domain
wall as well as in the regions near the domain wall (the “shoul-
ders”) the groups are layer groups with two-dimensional
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TABLE IV. Symmetry elements of the layer group T13 = pm̂xŷ2xȳmz describing symmetry of (11|(1, 1, 0), 1
2 |21) domain boundary and

corresponding irreducible representations of the order parameter τi j (g) (i, j = 1, 2) and polarization Vi j (g) (i, j = 1, 2, 3).

g (1/000) (mz/000) (2xȳ/
1
2

1
2 0) (mxy/

1
2

1
2 0) OP

τ (g)
(

1 0
0 1

) (
1 0
0 1

) (
0 1
1 0

) (
0 1
1 0

) (
η1

η2

)

V (g)

(
1 0 0
0 1 0
0 0 1

) (
1 0 0
0 1 0
0 0 −1

) (
0 −1 0

−1 0 0
0 0 −1

) (
0 −1 0

−1 0 0
0 0 1

) ⎛⎝Px

Py

Pz

⎞⎠

periodicity of the OP (marked by small p in the space group
symbol) which varies along ξ .

Additionally, this method is also helpful to get a clue on
the polarization profile in the domain wall. Any polarization
vector P(ξ ) which is compatible with the domain boundary
symmetry T13 has to fulfill the condition V (T13)P(ξ ) = P(ξ ).
Inspecting Table IV this implies that for the “shoulder”
region 0 < |ξ | < ∞ two nonzero polarization components
are possible in the (x, y) plane, i.e., P(ξ ) = (Px(ξ ), Py(ξ ), 0).
For further considerations it is instructive to split the po-
larization vector into a component parallel to the domain
wall, i.e., P[11̄0] = (P,−P, 0) and a component perpendicular
to the domain wall, i.e., P[110] = (P, P, 0). From Table IV
we find that the symmetry elements which change ξ into
−ξ transform P[11̄0] = (P,−P, 0) into (P,−P, 0) = P[11̄0], im-
plying P[11̄0](−ξ ) = P[11̄0](ξ ), i.e., a symmetric profile. For
the component parallel to the domain wall normal P[110] =
(P, P, 0) changes to (−P,−P, 0) = −P[110] for ξ → −ξ , im-

FIG. 7. Top: OP profile of a ferroelastic domain boundary with
wall with n = (1, 1, 0) orientation. Bottom: Polarization profile
P(ξ ) = (P[11̄0](ξ ), P[110](ξ )), which is compatible with the symmetry
T13 = pm̂xŷ2xȳmz of the domain boundary. Note that P[11̄0] is sym-
metric with respect to ξ , whereas P[110] is antisymmetric to fulfill the
symmetry requirements of T13.

plying P[110](−ξ ) = −P[110](ξ ), i.e., the profile is antisym-
metric. Figure 7 (bottom) shows a sketch of the polarization
profile of a ferroelastic domain wall which is compatible with
the symmetry T13 of the domain boundary and which clearly
shows that these symmetry requirements are fulfilled.

The symmetry of the (11|(110), p|21) ferroelastic do-
main boundary at the position p = 0 is T13 = p̂2xŷcxȳmz (see
Table V). There we find that the profile of the polariza-
tion component perpendicular to n is symmetric, P[110] =
(P, P, 0) → (P, P, 0) = P[110] for ξ → −ξ , while the profile of
the normal polarization component is antisymmetric, P[11̄0] =
(P,−P, 0) → (−P, P, 0) = −P[11̄0] for ξ → −ξ .

B. Antiphase boundaries of KSCN

Let us consider for comparison the two translational an-
tiphase boundaries (Fig. 6) with n = (0, 1, 0), at p = 0 and
at p = 1

4 . Table VI shows the symmetry elements of T12

with corresponding irreps and vector representations, whose
application leads to the following important results: The sym-
metry of the layer group of the translational domain boundary
(11|(0, 1, 0), 0|12) (Fig. 6 top) allows only for one component
(e.g., η1) of the OP to vary within the domain wall. The other
component (e.g., η2) has to be strictly zero, i.e., for 11 → 12 at
p = 0 the OP path along −∞ � ξ � ∞ must fulfill the con-
dition (η, 0) → (η(ξ ), 0) → (−η, 0). This results from the
action of the color changing symmetry operations (Table VI)
on the OP components, which for n → −n imply η2(−ξ ) =
−η2(ξ ) → η2(ξ = 0) = 0. Such a domain wall corresponds
to the straight (LAPB) path 1 in Fig. 3.

For a translational antiphase boundary at p = 1
4 the situa-

tion is quite different. Here the layer group (second part of Ta-
ble VI) allows for a two component OP (η1(ξ ), η2(ξ )) within
the corresponding domain wall. This is because the color

TABLE V. Symmetry elements of the layer group T13 =
p̂2xŷcxȳmz describing symmetry of (11|(1,−1, 0), 0|21) domain
boundary and corresponding irreducible representations of the order
parameter τi j (g) (i, j = 1, 2) and polarization Vi j (g) (i, j = 1, 2, 3).

g (1/000) (mz/000) (2xy/00 1
2 ) (mxȳ/00 1

2 ) OP

τ (g)
(

1 0
0 1

) (
1 0
0 1

) (
0 1
1 0

) (
0 1
1 0

) (
η1

η2

)

V (g)

(
1 0 0
0 1 0
0 0 1

) (
1 0 0
0 1 0
0 0 1

) (
0 1 0
1 0 0
0 0 −1

) (
0 1 0
1 0 0
0 0 1

) ⎛⎝Px

Py

Pz

⎞⎠
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TABLE VI. Symmetry elements of the layer groups T12 for (11|(0, 1, 0), p|12) domain boundaries corresponding to irreducible represen-
tations τi j (g) (i, j = 1, 2) and vector representations Vi j (g) (i, j = 1, 2, 3).

p = 0 (1/000) (mz/000) (1̄/000) (2z/000) OP

τ (g)
(

1 0
0 1

) (
1 0
0 1

) (−1 0
0 −1

) (−1 0
0 −1

) (
η1

η2

)

V (g)

(
1 0 0
0 1 0
0 0 1

) (
1 0 0
0 1 0
0 0 1

) (
−1 0 0
0 −1 0
0 0 −1

) (
−1 0 0
0 −1 0
0 0 1

) ⎛⎝Px

Py

Pz

⎞⎠
p = 1

4 (1/000) (mz/000) (2x/
1
2

1
2 0) (my/

1
2

1
2 0) OP

τ (g)
(

1 0
0 1

) (
1 0
0 1

) (−1 0
0 1

) (−1 0
0 1

) (
η1

η2

)

V (g)

(
1 0 0
0 1 0
0 0 1

) (
1 0 0
0 1 0
0 0 1

) (
1 0 0
0 −1 0
0 0 −1

) (
1 0 0
0 −1 0
0 0 1

) ⎛⎝Px

Py

Pz

⎞⎠

changing elements do not change the sign of η2(ξ ) if ξ → −ξ .
Thus, for the antiphase boundary at p = 1

4 (Fig. 6 bottom) the
OP varies for −∞ � ξ � ∞ as (η, 0) → (η1(ξ ), η2(ξ )) →
(−η, 0), via (0, η2(0)) at the domain wall center. Such a
boundary—which corresponds to the side path 2 or 2′ (RAPB
in Fig. 3).

VII. LANDAU-GINZBURG THEORY

The profile of the order parameter across the domain
boundary can be calculated in the framework of Landau-
Ginzburg-Devonshire theory. In this approach, the expres-
sion for the Landau-Devonshire free energy density is com-
plemented by weakly nonlocal terms depending on spa-
tial gradients of the order parameter components. The
Landau-Devonshire model for phase transition in KSCN reads
[47]

	 = A(T − Tc)

2

(
η2

1 + η2
2

) + B1

4

(
η4

1 + η4
2

) + B2

2

(
η2

1η
2
2

) + ...

+1

2
C0

i jklεi jεkl + 	η,ε(ηi, εkm) + 	η,P(ηi, Pj ) (14)

where

	(ηi, εkm) = a
(
η2

1 + η2
2

)
(ε11 + ε22) + c

(
η2

1 + η2
2

)
ε33

+ b
(
η2

1 − η2
2

)
(ε11 − ε22) (15)

describes the lowest order coupling between strain and the
order parameter and 	η,P(ηi, Pj ) contains all terms needed
to describe local coupling of polarization and the order
parameter.

The lowest order gradient terms in all materials include
terms in the form

	g + 	 f = gi jkl
∂ηi

∂x j

∂ηk

∂xl
+ fi jkl Pk

∂εi j

∂xl
, (16)

where the first term is the usual Ginzburg term and the latter is
the flexoelectric coupling [36]. In principle, multicomponent
order parameters allow us to construct also Lifshitz-like gra-
dient terms 	h. In the case of KSCN, by inspecting Table I,
we can easily find that the following Lifshitz-like invariant,

mixing polarization components with gradients of the primary
order parameter,

Pxη1
∂η2

∂y
+ Pyη2

∂η1

∂x
− Pxη2

∂η1

∂y
− Pyη1

∂η2

∂x
(17)

is also allowed by symmetry. Thus, in principle, this term
should be included in the Landau-Ginzburg-Devonshire the-
ory of KCSN.

A. Polarization in ferroelastic domain boundaries

In general, quantitative calculations of domain wall pro-
files requires not only to select the right analytic form
of the Ginzburg-Landau-Devonshire functional but also to
determine all relevant material constants. Nevertheless, the
simplest form of the potential involves a quartic Landau
potential and 	g gradient term. Assuming in addition that
the order-parameter trajectory of the (11|(1, 1, 0), p|21) fer-
roelastic domain boundary is restricted to a linear path in
the order-parameter space, one can cast the solutions of the
Euler-Lagrange equation in a very simple analytic form

η1(ξ ) = η

2

(
1 − tanh

ξ − ξ0

δ

)
and

η2(ξ ) = η

2

(
1 + tanh

ξ − ξ0

δ

)
, (18)

where η is the OP of the homogeneous domain state, δ is the
thickness of the domain boundary and ξ0 is the ideal center of
the boundary.

The coupling to the polarization can be considered as a
second step. One frequently invoked mechanism involves the
indirect coupling through the strain. In order to elucidate this
mechanism, it is convenient to re-express the polarization P
in rotated components P[11̄0], P[110], and P[001]. The symmetry
allowed flexoelectric couplings terms [in Eq. (16)] can be
found with the help of (Table I):

	 f = f⊥P[11̄0]
∂ (ε11 − ε22)

∂ξ
(19)
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and

	 f = f‖P[110]
∂ (ε11 + ε22)

∂ξ
. (20)

It should be noted that symmetry would allow also a cou-
pling of the type 	 f ∝ P[001]

∂εkk
∂ξ

(k = 1, 2, 3), but since all
ferroelastic domain boundaries are in the (x, y) plane, there
is no spatial variation of εkk with respect to z, i.e., ∂εkk

∂z = 0,
implying P[001] = 0, in agreement with the symmetry group
T13 (contains mz).

From (19) and (20) we obtain

P[11̄0] ∝ ∂ (ε11 − ε22)

∂ξ
(21)

and

P[110] ∝ ∂ (ε11 + ε22)

∂ξ
. (22)

Since [47]

ε11 − ε22 ∝ (
η2

1 − η2
2

)
(23)

and

ε11 + ε22 ∝ (
η2

1 + η2
2

)
, (24)

we obtain

P[11̄0] ∝ ∂
(
η2

1 − η2
2

)
∂ξ

(25)

and

P[110](ξ ) ∝ ∂
(
η2

1 + η2
2

)
∂ξ

. (26)

It is easy to verify that the symmetry of the polarization
profiles calculated from the above formulas agrees with those
from the earlier numerical calculations ferroelastic domain
walls in KSCN [28,56].

In principle, the flexoelectric mechanism become inactive
if the strain gradients near the domain wall are considerably
suppressed. Nevertheless, for the present example one can
easily show that by adding the following (symmetry invariant)
coupling terms

	∇ηP = h‖P[110]
∂
(
η2

1 + η2
2

)
∂ξ

+ h⊥P[11̄0]

∂
(
η2

1 − η2
2

)
∂ξ

(27)

to the free energy expansion (14) one obtains very simi-
lar polarization profiles, as obtained from the flexoelectric
coupling. Switching off the flexoelectric coupling may lead
to a decrease of the effect, depending on the values of the
coupling coefficients fi jkl and h as well as on the magnitude
of the spontaneous strain, etc. The question of which of these
coupling terms is the most important one would need a careful
investigation of such coefficients, which exceeds the scope of
the present paper.

B. Polarization in antiphase domain boundaries

Some decades ago, the phase diagram applying to an-
tiphase boundary states was calculated [25,57,58] by several
authors. It was shown that depending on the parameters in
the Landau expansion, there exist regions in which either a

unique or bistable antiphase boundary solution is stable [57].
For a quantitative analysis, one has to know the parameters
of a Landau expansion, and we do not have them all for
KSCN. But in the present work we are only interested in
the qualitative properties of domain walls, using KSCN as
a toy model example. For some parameters in the Landau
expansion, there exist the following exact solutions [25,57] for
the order parameter components η1 and η2 within an antiphase
domain boundary

η1(ξ ) = −η

2

(
tanh

ξ − ξ0 + �

δ
+ tanh

ξ − ξ0 − �

δ

)
(28)

and

η2(ξ ) = η

2

(
tanh

ξ − ξ0 + �

δ
− tanh

ξ − ξ0 − �

δ

)
, (29)

where η is the OP of the homogeneous DS, δ is the thickness
of the antiphase boundary, and � roughly determines the half
width of the layer, where η2 is about half of its maximum
value. It is easily seen from Eq. (28) that the value � = 0
corresponds to the LAPB (path 1 in Fig. 3) and p 	= 0 corre-
sponds to a RAPB, where path 2 is obtained for, e.g., � > 0
and path 2′ for � < 0. Moreover, path 2 (η2 > 0) yields
polarization P > 0 and path 2′ (η2 < 0) leads to polarization
P < 0.

After minimizing the free energy

Px(y) ∝
(

η1
∂η2

∂y
− η2

∂η1

∂y

)
(30)

and

Py(x) ∝
(

η1
∂η2

∂x
− η2

∂η1

∂x

)
(31)

it can be easily inferred from (30) and (31) that a nonzero
polarization is obtained only if η2(ξ ) 	= 0 in the corresponding
domain wall, i.e., for RAPB walls. For LAPB [η2(ξ ) = 0]
no domain wall polarization is possible. In this way, the
positional dependence of the APB polarization is encoded
in the OP path [1 or 2 (2′) in Fig. 3] connecting the two
translational domain states.

Note that in the present example, the two solutions with
� 	= 0 are symmetry-related and energetically degenerated
ones because � plays the role of the order parameter of a
symmetry-breaking phase transition in the domain boundary
at a fixed position ξ0. Our conjecture is that Eqs. (28), (29),
(30), and (31) could be also applied to the problem of two
different symmetry-related positions of the domain boundary
in the crystal lattice.

VIII. POLARITY OF DOMAIN WALLS

Several examples discussed in the preceding sections are
nicely illustrating the richness of the possibilities of necessary
appearance of polarity in various types of domain boundaries
in otherwise nonpolar crystals. In order to appreciate the over-
all polarity of a perfect planar domain boundary, it is sufficient
to inspect the oriented crystal class (point groups Wi j) of the
calculated layer group Ti j . The symmetry point group alone
determines whether the symmetry-imposed polarity is present
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FIG. 8. Mid panel: Variation of the order parameter η1 in a linear antiphase boundary corresponding to path 1 (η2 = 0, LAPB). Upper and
lower panels show RAPB corresponding to path 2 (η2 > 0) and path 2′ (η2 < 0). Blue lines show the corresponding antiphase polarizations as
calculated from Eqs. (28), (29), (30), and (31).

and in which direction or plane it is restricted. For exam-
ple, the Wi j of mechanically compatible ferroelastic domain
boundaries of KSCN indicate that their polarity is allowed
and only restricted to the mz plane, except for the special
positions, where the boundaries have a higher symmetry and
the normal component of the polarization is vanishing. In
contrast, translational antiphase domain boundaries of KSCN
can have polarization both perpendicular and parallel to the
domain boundary, depending on the selected domain state
pair with respect to the otherwise equivalent orientation of
the domain boundary normal, or the polarization can be
completely absent, if the translational antiphase boundary
has a suitable special position. In the case of (100) oriented
inversion domain boundaries of lacunar spinels, the symmetry
imposed polarity is always perpendicular to the boundary,
except again for a special position, where the polarity vanishes
completely.

Symmetry Ti j and Wi j does not indicate how large the
domain boundary polarization could be, nor which domain
wall positions will be energetically more favorable. As long
as the domain boundary normal n is commensurate with the
crystal lattice periodicity of the adjacent domain, its continu-
ous translation along n is a process with a finite periodicity.
The energy dependence on p or ξ0 is then expected to have
at least one minimum and one maximum on this period. The
special positions of the boundary, in which the symmetry is
higher than in its general position, are potential symmetry-
imposed extrema of this energy profile. In other words, one of
the special positions is likely to be the ground state domain

boundary configuration, but it does not need to be so, and
symmetry alone does not tell us which one it is. Thus, the
theory can typically predict the symmetry of the ground
state configuration of a given domain wall uniquely only if
one knows either its polarity or its ground-state position in the
crystal lattice. Still, having only 2–3 candidate layer group
symmetries per domain wall orientation can be helpful in
any ab initio study or transmission image analysis of domain
boundary structures.

Moreover, the very existence of high-symmetry position
with a forbidden polarity already implies that for this ori-
entation of the boundary, the adjacent positions of the same
boundary in polar configurations exist in symmetry related
pairs, and these symmetry related locations obviously have
equal energy and opposite polarization. Therefore, even if
the polar configuration would be the ground state, statistical
distribution of energetically preferred domain boundary posi-
tions would result in zero average polarization. In the case of
KSCN, for ferroelastic boundaries with a given domain wall
normal, it implies that the statistically averaged polarization
is parallel to the boundaries. This situation is captured in our
phenomenological model of Fig. 7. Likewise, the polarization
in a set of statistically distributed parallel antiphase bound-
aries of KSCN should vanish in average, even if they have
polar ground states.

The theoretical prediction of vanishing polarity in the
random distribution of domain boundaries does not, however,
exclude potentiality of peculiar functional properties of ma-
terials with such antiphase boundaries. If the ground state
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of the boundary is polar, and the symmetry related positions
of the otherwise equivalent boundary has an opposite polarity,
there is still a possibility to exploit this circumstances. In a
dielectric material, the external electric field should couple
to the dipole moment of all boundaries and should favor
localization of domain boundaries in positions with parallel
polarity, or, in other words, the polarization can be ordered
and is, in principle, switchable. These phenomena obviously
assume situations when the domain boundary can be frozen
at a particular position, which requires that adjacent ground
state positions are separated by sufficiently high potential
barriers.

This seems to be the case of the polar configurations of
translational antiphase boundaries observed [14] in antifer-
roelectric lead zirconate (PbZrO3) by electron microscopy
and confirmed by ab initio calculations. The observed shape
of the in-plane polarization profile of translational antiphase
boundaries in lead zirconate (red points in Figs. 4 and
5 of Ref. [14]) is very much reminiscent of the shape
(Fig. 8) we obtained from the present rotopolar coupling terms
Eq. (17).

It should be stressed, however, that this polarization
switching is accompanied by nanoscale displacement of
translational antiphase boundary and in principle, one does
not deal with a bistable system but rather with an infinitely
degenerate system. Thus, this type of polarization switching
is a very peculiar phenomenon that deserves to be clearly dis-
tinguished from the spontaneous symmetry breaking within
a fixed domain boundary, which leads to formation of de-
generate domain states located at the same crystal position
[57,58]. In this latter case, the spontaneous component of the
domain boundary polarization is violating the symmetry Ti j of
the boundary, similarly as for example from the Bloch-Ising
phase transitions in ferroelectric domain boundaries [59].

Finally, it should be mentioned that at high temperatures,
domain boundaries might be freely sliding within the material
and in this case, the position of the domain wall within the
unit cell is not a well defined quantity any more. In this
case, symmetry of a sliding domain boundary can be captured
by a layer group that can be constructed with point group
symmetries, rather than with space group crystallography.
This procedure will be addressed elsewhere [60]. In either
case, this complexity already indicates that domain boundary
problems deserve using several complementary approaches.
We have shown that the layer group symmetry is very helpful
for finding the leading order coupling terms (invariants) in
a Landau-Ginzburg free energy expansion, which are needed
to describe the polarization profiles of domain boundaries. In
order to predict also the positional dependence of polarization
of domain boundaries, that is the dependence on p or ξ0, one

would obviously need a discrete model or to include explicitly
appropriate lock-in (umklapp) terms in the Landau-Ginzburg
free energy expansion.

IX. SUMMARY AND CONCLUSION

In a recent work, Tolédano et al. [39] came up with a new
concept to describe domain walls, which is based on order
parameter symmetry only. However, in the present form of this
theory one obtains domain wall structures whose symmetry is
too high, and as a result the corresponding functional prop-
erties like domain-wall polarization, etc. cannot be captured.
In the present work we show that combining the theory of
irreducible representations with the layer group formalism of
domain boundary symmetry yields symmetries (layer groups)
of domain walls which are generally lower than those deter-
mined from the order parameter (space groups) only. We illus-
trate our approach on the toy example of ferroelastic domain
walls and translational antiphase boundaries in KSCN.

It should be noted that the layer group theory alone [17,19]
is already capable of describing the correct symmetries and
structures of domain walls. The advantage of combining layer
groups with order parameter symmetry is that in this way the
concept of layer groups is readily coupled to Landau theory.
It can be used to get an educated guess on the shape of order
parameter profiles across a domain wall. This is probably
one of the main advantages of this combined approach, since
it cannot be obtained from layer groups alone, if the order
parameter is, e.g., a multidimensional quantity and not a three-
dimensional vector, like polarization, or simple shift of atoms,
etc. Moreover, the present approach helps a lot to identify
the most important coupling terms between order parameters,
order parameter gradients, polarization components, etc. in
a free energy expansion, which are necessary to describe
functional properties of domain walls.

Unfortunately no domain wall polarization was experimen-
tally detected in KSCN up to now. However, we think that the
present example shows that the method of combining layer
groups with OP symmetry is very powerful and may help to
calculate functional properties of ferroelastic domain walls
and antiphase boundaries as observed, e.g., in SrTiO3 [12],
CaTiO3 [9,11], LaAlO3 [13], or PbZrO3 [14], etc.
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