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Odd-frequency Berezinskii superconductivity in Dirac semimetals
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We formulate a general framework for addressing both odd- and even-frequency superconductivity in Dirac
semimetals and demonstrate that the odd-frequency or the Berezinskii pairing can naturally appear in these
materials because of the chirality degree of freedom. We show that repulsive frequency-dependent interactions
favor the Berezinskii pairing while an attractive electron-electron interaction allows for the BCS pairing. In the
case of Dirac and Weyl semimetals at the charge neutrality point, both the conventional BCS and odd-frequency
Berezinskii pairings require critical coupling. Since these pairings could originate from physically different
mechanisms, our findings pave the way for controlling the realization of the Berezinskii superconductivity in
topological semimetals. We also present the density of states with several cusplike features that can serve as an
experimentally verifiable signature of the odd-frequency gap.
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Introduction. The odd-frequency (OF) superconductivity,
which was first suggested by Berezinskii in the 1970’s as
a possible order parameter for superfluid 3He [1], continues
to be a challenging and interesting problem both from the
theoretical and experimental perspective (for reviews of the
OF superconductivity, see Refs. [2–4]).

Following the initial attempts with the phonon-mediated
interactions in Refs. [5,6], it was proposed that the spin-
dependent fluctuations might lead to the realization of the
Berezinskii pairing [6,7]. Later, the OF pairing was consid-
ered in the Hubbard models for strong-coupling electron-
phonon systems [8–10]. However, the fundamental question
about the microscopic mechanism of the intrinsic OF super-
conductivity still awaits clarification. It is known that the OF
pairing requires an electron-electron interaction with strong
frequency dependence. Compared with the infrared diver-
gence governing an even-frequency (EF) pairing, an OF one
seems to be disfavored in the bulk of conventional metals.

There are now numerous platforms where the OF or
Berezinskii superconducting states might appear in various
condensed matter systems including heterostructures [11–13],
multiband [4,14,15] and driven [16] systems, vortices in the
type-II superconductors [17], to name but a few examples.

In this Rapid Communication, we provide a general the-
oretical scheme to study the OF superconductivity in nodal
Dirac and Weyl systems. First, by using the effective action
approach [18,19], we consider the possibility of intrinsic
OF pairing in Dirac semimetals [20–23], which are a nat-
ural platform for topologically nontrivial superconductivity
[24–26]. Next, we propose a scenario for realizing OF Cooper
pairs due to a repulsive frequency-dependent interaction. This
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possibility is plausible since the OF gap is determined by the
derivative of the potential with respect to frequency rather than
the potential itself. Therefore, the repulsive pairing potential
can lead to an effectively attractive potential for the Berezin-
skii pairing. This allows for a completely different pairing
mechanism, which is usually absent for the EF case. Finally,
we demonstrate that the generation of both even- and odd-
frequency gaps in Dirac semimetals at the charge neutrality
point requires values of the potential strengths that exceed the
critical ones. This provides the possibility to rule out the BCS
type of superconductivity that is ubiquitous in conventional
materials. As an experimental signature, the distinctive cus-
plike features in the density of states (DOS) are identified.
We believe also that our work will stimulate the study of
superconductivity in dynamical systems. In particular, it is
important in view of a possible realization of OF states in
interacting organic Dirac materials reported in Ref. [27] and
in twisted bilayer graphene [28].

Model. OF pairing is essentially a time-dependent pairing
state, where the inclusion of retardation effects is crucial.
Therefore, we choose not to use the effective Hamiltonian
language that is challenging and debated [18,19,29]. Instead,
we employ the effective action approach. While the derivation
is provided in Sec. II of the Supplemental Material (SM) [30],
here we present only the key details. The inverse Green’s
function G−1

N (x1 − x2) is

G−1
N (x1 − x2) = [i∂t1 − ĤN(x1)]δ(x1 − x2)

− τ+
2

�MF(x1 − x2) − τ−
2

�
†
MF(x1 − x2), (1)

where τ are the Pauli matrices acting in the Nambu
space, τ± = τx ± iτy, x = (t, r) is the time-space four-vector,
�MF(x1 − x2) is the mean-field (MF) gap, and throughout this
Rapid Communication, we set h̄ = c = kB = 1. The Nambu
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FIG. 1. The spin-singlet, s-wave pairing channels in Dirac semimetals (DSMs) in the case of (a) even- and (b) odd-frequency pairings.
The EF gap corresponds to pairing of the quasiparticles of the same chirality (intranode channel). The OF Cooper pairs are allowed by the
interchirality pairing. In both panels, red and blue dashed lines correspond to the right- and left-handed quasiparticles.

Hamiltonian ĤN(x) is defined as

ĤN(x) = 12 + τz

2
Ĥ (r) − 12 − τz

2
�̂Ĥ (r)�̂−1, (2)

where Ĥ (r) for three-dimensional (3D) Dirac semimetals
(DSMs) is defined in Eq. (4) below.

The MF gap equation in the momentum space reads

�̂(ω, k) = −i
∫

dω′d3k′

(2π )4
V̂ (ω − ω′; k − k′)F̂ (ω′, k′), (3)

where F̂ (ω′, k′) is the causal anomalous Green’s function.
(The normal and anomalous Green’s functions are defined in
Sec. II of the SM [30].) As usual, the gap equation follows
from the extremum of the MF action with respect to �

†
MF.

To study the possibility of OF superconductivity in 3D
DSMs, we employ a minimal model with a single Dirac point.
The case of a 2D DSM is considered in Sec. VI of the SM
[30]. The explicit form of the low-energy Hamiltonian for free
electrons reads

Ĥ (r) = −μ14 − ivF γ 0(γ · ∇). (4)

Here, μ is the electric chemical potential, vF is the Fermi
velocity, and γ 0 and γ are mutually anticommuting gamma
matrices. The eigenvalues of the γ5 ≡ iγ 0γxγyγz matrix cor-
respond to the chirality χ degree of freedom.

Let us discuss the structure of both even- and odd-
frequency gaps. In general, two distinctive types of super-
conducting pairing of chiral fermions can be considered in
Weyl and Dirac semimetals [31–38], which are schematically
described in Figs. 1(a) and 1(b). For simplicity, we consider
the following gaps that are odd and even in frequency,

�̂odd(ω) = iσy ⊗ 12�odd(ω), (5)

�̂even(ω) = 12 ⊗ 12�even(ω), (6)

respectively. Here, the first matrix in the tensor product acts
in the chirality space and the second one is in the pseudospin
space. The gap properties are summarized in Table I.

Gap equation. The gap equation (3) is an integral equation
that usually determines an unknown gap function �(ω, k) for
a predefined potential. In the case of OF superconductivity,
we find it convenient to reformulate the gap equation as an
equation for the pairing potential itself. In what follows, a
theoretical scheme that is both able to restore the pairing
potential via the known gap and determine the gap via the
known potential is provided.

For simplicity, we consider only the case of the s-wave
pairing, where the dependence on momentum can be omitted,
although the approach can be generalized to other cases. Be-
low we concentrate only on the case of vanishing temperature
T → 0 and electric chemical potential μ → 0. In addition,
we will consider pairing potentials that do not grow at ω →
∞, which is indeed the case for physical potentials. Then,
performing the transformation ω → iω in Eq. (3), one obtains
the following gap equation,

�̂(ω) =
∫ ∞

−∞
dω′V̂ (ω − ω′) f̂ (ω′), (7)

where

f̂ (ω′) ≡
∫

d3k′

(2π )4
F̂ (ω′, k′), (8)

with the momentum integral taken up to a cutoff �k . The
explicit form of f̂ (ω′) in the case of odd- and even-frequency
pairings is given in Sec. III of the SM [30]. Since the matrix
structure of f̂ (ω′) coincides with that in �̂(ω) and V̂ ∝ 18, the
matrix structures can be omitted.

A convenient method to solve the integral equation (7) is
to transform it into the differential one with the appropriate
boundary conditions. By factorizing the matrix structure, the
gap equation (7) can be approximated as follows [see also
Eq. (5) and Sec. III A of the SM [30]),

�odd(ω) = −2
∫ ω

0
dω′ω′V ′(ω) fodd(ω′)

− 2
∫ ∞

ω

dω′ωV ′(ω′) fodd(ω′). (9)

We note that only the derivative of the potential with respect
to frequency V ′(ω) ≡ ∂ωV (ω) enters the gap equation for the

TABLE I. The odd- and even-frequency gaps given in Eqs. (5)
and (6) as well as their symmetry SP∗χT ∗ classification. Here, S,
P∗, χ , and T ∗ denote the symmetry properties with respect to the
spin, relative coordinate, chirality, and relative time permutations,
respectively. The SP∗χT ∗ = −1 rule, which is analogous to the
SP∗OT ∗ = −1 in multiorbital systems [3], is satisfied for spin-
singlet, s-wave, odd-frequency pairing due to the chirality degree of
freedom. (For details, see Sec. I of the SM [30].)

� S P∗ χ T ∗ Total

�odd(ω) − + − − −
�even(ω) − + + + −
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FIG. 2. (a) The OF gap (red solid lines) as well as the pairing potential (blue dashed lines) as functions of frequency at α = 10−2�k . Black
dotted lines represent the critical value of the pairing potential obtained at α → 0. (b) The dependence of the gaps on the coupling constant for
the EF (red solid line) and OF (blue dashed line) gaps. The 1D phase diagram is shown by the thick red, blue, and black lines at �̃ = 0. For
the sake of definiteness, ω = 10−2�k . In addition, �̃(ω) = �(ω)/�k and Ṽ (ω) = V (ω)/|Vcrit|, where Vcrit is given in Eq. (17). Note also that
we used a finite frequency cutoff �ω = 2�k in the numerical calculations.

OF gap. Thus, we conclude that the Berezinskii pairing can
be supported by a wide range of potentials that have a suitable
derivative. The differential form of the gap equation is derived
in Sec. III A in the SM [30].

The equation for the pairing potential V (ω) that allows for
the OF pairing reads (for the details of the derivation, see Sec.
III A of the SM [30])

ωV ′′(ω) − V ′(ω) = −ω�′
odd(ω) − �odd(ω)

2
∫ ω

0 dω′ω′ fodd(ω′)
. (10)

The boundary condition is

V ′(ω)
∣∣
ω→∞ = − �odd(ω)

2
∫ ω

0 dω′ω′ fodd(ω′)

∣∣∣∣∣
ω→∞

. (11)

In addition, in order to fix the pairing potential itself, it is
physically reasonable to demand that it vanishes at large
frequencies.

Next, let us consider the case of EF pairing. The gap
equation (7) can be approximated as

�even(ω) = 2
∫ ω

0
dω′V (ω) feven(ω′)

+ 2
∫ ∞

ω

dω′V (ω′) feven(ω′). (12)

Unlike the case of OF pairing, the EF gap is sensitive to the
potential V (ω) itself. For the details of the derivation as well
as the differential gap equation, see Sec. III B of the SM [30].

The equation for the EF pairing potential is

V ′(ω) = �′
even(ω)

2
∫ ω

0 dω′ feven(ω′)
, (13)

with the boundary condition

V (ω)|ω→∞ = �even(ω)

2
∫ ω

0 dω′ feven(ω′)

∣∣∣∣∣
ω→∞

. (14)

Pairing potentials. Let us illustrate the proposed frame-
work by calculating the pairing potentials for a few
representative gap Ansätze. The simplest EF gap is

�even(ω) = α. (15)

As for the OF gap, let us consider an Ansatz that produces a
vanishing at ω → ∞ potential,

�odd(ω) = α
�k

ω
. (16)

Due to the complicated form of the functions fodd(ω) and
feven(ω), which is provided in Sec. III of the SM [30], the
solutions for the potentials are obtained numerically. The
OF gap as well as the corresponding pairing potential are
presented in Fig. 2(a). We found that the potential diminishes
approximately as ∝1/ω2 at large frequencies and diverges at
small ones.

Next, let us discuss the dependence of the even- and odd-
frequency gaps on the coupling constant g. The corresponding
results are shown in Fig. 2(b). We found that the potential for
the EF gap does not depend on frequency and its critical value,
which separates the normal and EF superconducting phases,
reads as

Vcrit = geven
cr = −8π2v3

F

�2
k

. (17)

As expected, the pairing potential is attractive in this case.
The coupling constant g, which is just a potential itself in
this case, should exceed the critical value |geven

cr | to allow for
an EF gap. Indeed, this is a well-known result in quantum
mechanics when the DOS vanishes at the Fermi level (see,
e.g., Ref. [39]).

As for the pairing potential for the OF case, it also should
be sufficiently strong to generate the gap, i.e., |g| � |godd

cr | (see
also the results in Ref. [40]). This critical value is determined
at α → 0 assuming that the potential V can be factorized
as V (α, ω) = g(α)Ṽ (ω). Then, g/godd

cr = V (α, ω)/V (0, ω). In
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FIG. 3. The dependence of the electron DOS ν(ω) on frequency at a few values of the gap strength α for (a) �(ω) = α and (b) �(ω) =
α�k/ω. As expected, the generation of the EF gap pushes the states away from the region of small frequencies, where the spectral weight is
recovered at the energy cutoff ω ≈ �k (see also Fig. S2 in the SM [30]). The case of the Berezinskii pairing is qualitatively different and is
manifested in the formation of the cusplike features at small ω. These features originate from the additional branches of the energy dispersion
induced by the OF gap. (The details are provided in Sec. V of the SM [30].)

general, such a separation is not exact, which, however, does
not change our main qualitative conclusions. The gap as
well as the dependence of the corresponding potentials on
frequency are summarized in Table II. Another key result of
this study is that the pairing potential for the OF gap (16)
can be repulsive, V (ω) > 0. Microscopically, such pairing
potentials might correspond to the dynamically screened
Coulomb potential and long-time-tail effects in electronic
correlations of disordered systems [41–44]. The results for
2D DSMs, which are presented in Sec. VI in the SM [30],
are qualitatively the same.

As an experimental signature of the Berezinskii pairing,
we propose to study the DOS, where characteristic double-
cusp features universally appear. The corresponding results
are shown and discussed in Figs. 3(a) and 3(b) (see also Sec. V
of the SM [30]). The cusplike features originate from the poles
of the spectral function that are found self-consistently for the
frequency-dependent gaps. The main controlling parameter of
the splitting is the magnitude of the gap or strength of the
interaction potential.

Conclusions. We solved the gap equation for both odd- and
even-frequency superconductivity pairings in Dirac semimet-
als. By using the effective action approach, we derive the inte-
gral gap equation and show how to convert it into a differential
one with the appropriate boundary conditions. There are two
ways how the proposed framework can be utilized. The first is
to determine the superconductivity gap via a given potential.
The second way is to consider the inverse problem in which
the pairing potential is determined via the predefined gap. We

TABLE II. The even- and odd-frequency gaps as well as the
qualitative dependence of the pairing potentials on frequency.

�(ω) V (ω)

α const < 0
α�k/ω ∝1/ω2 > 0

start by noting that both even- and odd-frequency pairings
require values of the coupling potential that exceed some
critical values in Dirac semimetals at the charge neutrality
point. This allows us to rule out the ubiquity of the former
and puts both pairings on an equal footing.

We show that the gap equation for an EF pairing is deter-
mined by the pairing potential itself. On the other hand, the OF
gap depends only on the derivatives from the potential with
respect to frequency. Thus, the OF pairing can be generated
by a repulsive potential with an appropriate derivative.

The proposed scheme is illustrated for spin-singlet, s-
wave gaps. In agreement with the general consideration, the
pairing potential for the OF gap is indeed repulsive. The
corresponding derivative, which enters the gap equation, is,
however, negative. This finding should be contrasted to the
case of the EF pairing, where the gap exists only for an
attractive interaction. Thus, we suggest another scenario in
the search for superconductors that support Berezinskii pair-
ing due to a strongly frequency-dependent repulsive pairing
potential.

We compare the key aspects of even- and odd-frequency
superconductivity in conventional metals and DSMs in
Table III. While the explicit calculations were performed in
the case of the DSM within a spin-singlet and s-wave channel,
we believe that the proposed scenario is quite general and

TABLE III. The key aspects of even- and odd-frequency super-
conductivity in conventional metals and DSMs. Unlike the BCS
superconductivity in metals, the generation of both odd- and even-
frequency gaps requires the pairing potential to exceed a certain
critical value. Further, OF pairing might be possible for repulsive
interactions.

BCS, EF OF

Metal: εk = k2/(2m) − μ gcrit → 0 |g| > |gcrit|
DSM: εk = vF k g < geven

crit < 0 g > godd
crit > 0
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could be realized in various systems. A rigorous study of
other pairing channels and their competition will be reported
elsewhere.
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