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Elastic fields in superconductors caused by moving vortices
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Strains in superconductors due to moving vortices and vortex lattices are discussed. It is shown that the energy
stored in elastic strains increases with vortex velocity. For moving vortex lattices, the elastic energy depends on
velocity orientation relative to the lattice having minimum for the velocity directed along one of the unit cell
vectors of the moving lattice. It is shown that for supersonic motion, the vortex-induced stress field has a shape
similar to supersonic shock waves.
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I. INTRODUCTION

The subject of this work are vortex induced strains in
superconductors, which are related to the stress dependence
of the critical temperature ∂Tc/∂ p. It turned out that this
derivative in pnictides, and in Ca(Fe1−xCox )2As2 in partic-
ular [1], by one or two orders of magnitude exceeds values
for conventional superconductors, making Fe-based pnictides
favorable for observation of magnetoelastic effects.

Still, experimental evidence for strains in the mixed state in
the absence of pinning is scarce. In Ref. [2], the experimental
disagreement with predicted by the London theory vortex
lattice structure in NbSe2 in tilted fields was attributed to extra
magnetoelastic interactions of vortices. Such comparisons are
difficult because complete sets of elastic moduli are usually
unavailable. Besides, vortex lattices are extremely sensitive to
a multitude of factors such as electronic band structure, order
parameter symmetry, etc.

The stress due to vortices should affect the free energy of
the system proportional to their number, i.e., to the magnetic
induction B, and—along with energy—the equilibrium mag-
netization M [3]. This was suggested as a reason for the hump
in reversible M(B) observed in La1.45Nd0.40Sr0.15CuO4, and
CeCoIn5 [4,5]. The data on reversible M(B) are extremely rare
since they imply absence of pinning.

Hence, as it stands today, the existence of vortex-induced
strains and the magnetoelastic intervortex interactions are still
to be confirmed. It is hard to expect progress in microscopic
description of vortex-induced strains at arbitrary tempera-
tures, although near Tc progress has been made [6,7]. For
this reason, the London approach within which the core is
represented by a δ function deserves a try, though clearly it
sweeps under the rug many important questions. Neverthe-
less, given a long history of London approach in describing
magnetic properties of type-II superconductors, one can hope
that applying it to magnetoelastic effects might be useful.

Magnetoelastic interactions are long range and, their weak-
ness notwithstanding, should affect the mixed state in gen-
eral [2,3,6], intervortex interactions [8], and vortex lattice
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structures in particular [9]. In this paper, the focus is on
magnetoelastic effects caused by moving vortices.

The vortex core of a size ξ , the coherence length, is not
the only source of elastic strains. Supercurrents around the
core, which extend to distances ∼λ are argued to contribute
even more to strains because usually λ � ξ [6,7]. Since
the currents decay exponentially, the corresponding strain
source can be considered as local, its relatively large size
notwithstanding. Hence, at distances r � λ this source can
be considered as pointlike, and the approach developed below
for core-size sources can be generalized to λ-size sources by
a proper rescaling.

II. ELASTIC ENERGY OF VORTEX AT REST

Nucleation of the normal vortex core strains the host super-
conductor, since the normal phase has a larger specific volume
as compared to superconductor. The relative volume change
ζ is related to the pressure dependence of the condensation
energy or of the critical field Hc [10]:

ζ = Vn − Vs

Vs
= Hc

4π

∂Hc

∂ p
. (1)

The elastic energy density in isotropic solids reads:

F = λu2
ll/2 + μu2

i j . (2)

Here, ui j is the strain tensor and λ, μ are Lamé coefficients;
summation over double indices is implied [11]. The stress
tensor σi j = ∂F/∂ui j = λullδi j + 2μui j , and the equilibrium
condition ∂σi j/∂x j ≡ σi j, j = 0 is

λull,i + 2μui j, j = 0. (3)

For a single vortex along z at the origin, the displacement
u = (ux, uy, 0) is radial in the plane xy, i.e., curl u = 0 or
u = ∇χ , and uαβ = χ,αβ where χ is a scalar and α, β acquire
only x and y values. The equilibrium condition (3) reads
(λ + 2μ)χ,αββ = 0 with the first integral

χ,ββ ≡ ∇2χ = C = const. (4)

To fix this constant, one notes that χ,ββ = uββ describes
compression and is related to the hydrostatic pressure within
the system. For the problem of the strain caused by a single
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vortex in otherwise unrestrained crystal, the pressure is zero,
and one has to solve ∇2χ = 0 under the boundary condition
u → 0 at large distances. Hence, the problem is the same as
that of a linear charge in electrostatics, where the potential
satisfies

∇2χ = Aδ(r), (5)

where A is related to the linear charge density. From a simple
core model as a normal cylinder of a size ξ follows [2]:

A = 2πξ 2γ , γ = ζ (λ + μ)

2(λ + 2μ)
. (6)

One, then, has χ = (A/2π ) ln r + const. and

u = γ ξ 2r
r2

, uαβ = γ ξ 2

r2

(
δαβ − 2

r2
xαxβ

)
. (7)

The elastic energy per unit length of a vortex is

E =
∫

d2r
(
λu2

αα/2 + μu2
αβ

)
. (8)

According to Eq. (7) uαα = 0 and

u2
αβ = u2

xx + u2
yy + 2u2

xy = A2

2π2r4
. (9)

Integrating over r in Eq. (8) from ξ to ∞, one obtains:

E = A2μ

2πξ 2
= 2πμξ 2γ 2. (10)

III. VORTEX MOVING WITH SUBSOUND VELOCITY

If the vortex moves, the elastic displacement at a particular
material point depends on time and the local equation of mo-
tion is σαβ,β = ρüα where ü ≡ ∂2u/∂t2 and ρ is the material
density.

For a point source of stress one has to add to the energy
density a term ηαβuαβδ(r − vt ), so that the stress tensor
has an addition ∂F/∂uαβ = ηαβδ(r). In isotropic case ηαβ =
η δαβ and the equation of motion is (λ + 2μ)χ,αββ − ρχ̈,α =
η ∂αδ(r − vt ), with the first integral

(λ + 2μ)∇2χ − ρχ̈ = η δ(r − vt ), (11)

where the coefficient η is fixed by comparison with the static
Eq. (5): η = A(λ + 2μ). Hence, we have

∇2χ − 1

v2
s

χ̈ = A δ(r − vt ), (12)

where vs = √
(λ + 2μ)/ρ is the longitudinal sound velocity

[12].
Equation (12) is solved by Fourier transform

χ (r, t ) =
∫

d2k dω

(2π )3
χ (k, ω)ei(kr−ωt ). (13)

Transforming the right-hand side (RHS) of Eq. (12),∫ ∞

−∞
dt

∫
dr δ(r − vt )e−i(kr−ωt )

=
∫ ∞

−∞
dte−i(kv−ω)t = 2πδ(kv − ω), (14)

one obtains:

χ (k, ω) = 2πv2
s A

δ(ω − kv)

ω2 − v2
s k2

. (15)

In real space

χ (r, t ) = v2
s A

∫
d2k
4π2

eik(r−vt )

(kv)2 − k2v2
s

. (16)

If v = 0, the static solution is recovered (the integral for v = 0
is divergent, but the derivative ∂rχ = A/2πr is the same as in
the static case).

For the velocity v = vx̂, one has at t = 0:

χ (r, 0) = − A

4π2

∫
d2k eikr

(1 − V 2)k2
x + k2

y

, (17)

where the reduced velocity V = v/vs < 1. This differs from
the static solution by rescaling kx → √

1 − V 2 kx or, in real
space, by x → x/

√
1 − V 2. In other words, for V < 1, the

circles of constant χ for the vortex at rest, become ellipses
x2/(1 − V 2) + y2 = const. with the x semiaxis

√
1 − V 2

times shorter than that of y. Hence, the static potential
χ (x, y) is contracted in the direction of motion by the factor√

1 − v2/v2
s and moves as a whole with the vortex velocity v.

The energy stored in the elastic distortion of a vortex
moving with a constant velocity is time independent. To
evaluate this energy one can use the potential (17) for t = 0.
This evaluation can be done in real space. Since the static
potential χ = (A/4π ) ln(x2 + y2), we have for the moving
vortex

χ = A

4π
ln

(
x2

1 − V 2
+ y2

)
(18)

(an irrelevant constant is omitted). Clearly, the lines of con-
stant χ (the circles for the vortex at rest) are elliptic with a
short semiaxis

√
1 − V 2 along the direction of motion; this

ellipse is strongly squeezed when the velocity approaches that
of the sound. The strains follow:

uxx = − A(x2 − β2y2)

2π (x2 + β2y2)2
, uyy = Aβ2(x2 − β2y2)

2π (x2 + β2y2)2
,

uxy = − Aβ2xy

π (x2 + β2y2)2
, β2 = 1 − V 2. (19)

The elastic energy (8) can now be evaluated as shown in
Appendix A:

E = A2(1 + β2)

16πξ 2β3

[
λ

2
(1 − β2)2 + μ(1 + β2)2

]
. (20)

This gives for low velocities V = v/vs 	 1:

E ≈ A2μ

2πξ 2

(
1 + λ + 3μ

8μ
V 4

)
(21)

with correct limit (10) for V = 0. If the velocity approaches
vs, the elastic energy diverges as

E ≈ A2

16
√

2πξ 2

λ + 2μ

(1 − V )3/2
. (22)

The elastic potential χ (r, t ) obtained solving linear
Eq. (12) is a partial solution of this equation with the source
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term ∝δ(r − vt ) at the RHS. In fact, this equation has also
solutions of the homogeneous equation without the RHS,
i.e., of the wave equation ∇2χ − χ̈/v2

s = 0. These are sound
waves generated by the moving elastic field; these waves carry
away energy and contribute to the vortex drug coefficient. This
problem, however, is out of the scope of this paper.

IV. VORTEX LATTICE

A. Static lattice

Consider now a two-dimensional periodic lattice of vor-
tices at positions a in an infinite sample. As argued in Ref. [3],
the elastic potential in this case is a solution of

∇2χ = A

[∑
a

δ(r − a) − B

φ0

]
, (23)

where B is the magnetic induction. In terms of electrostatic
analogy, the source term of the Poisson equation (23) must
have a negative background density B/φ0 to make the system
quasineutral for the equation to have periodic finite solutions
on the whole plane.

One looks for χ (r) as Fourier series

χ (r) =
∑

G

χ (G)eiGr, χ (G) = B

φ0

∫
drχ (r)e−iGr (24)

with G being the reciprocal lattice vectors. Transforming the
RHS of Eq. (23) one can use identities [13]:

∑
a

δ(r − a) = B

φ0

∑
G

eiGr,
B

φ0
= B

φ0

∑
G

δG,0eiGr, (25)

where the symbol δ0,0 = 1 and δG,0 = 0 for G �= 0. One then
obtains:

χ (G) = −2πγ ξ 2B

φ0G2
(1 − δG,0). (26)

Being transformed to real space, the part of χ (G) containing
δG,0 generates an uncertain constant,

∑
G

1 − δG,0

G2
eiGr =

∑
G �=0

eiGr

G2
+ const., (27)

which is coordinate independent and therefore irrelevant.

B. Moving lattice

If the lattice moves, the vortex positions are a + vt where
a define the lattice at t = 0. The elastic potential obeys

∇2χ − χ̈

v2
s

= A

[∑
a

δ(r − vt − a) − B

φ0

]
. (28)

One now employs the Fourier transform

χ (r, t ) =
∑

G

∫
dω

2π
χ (G, ω)ei(Gr−ωt ), (29)

χ (G, ω) = B

φ0

∫
dr dt χ (r, t )e−i(Gr−ωt ), (30)

see Appendix B, to obtain:

χ (G, ω) = χ0
δ(ω − Gv) − δ(ω)δG,0

ω2 − G2v2
s

(31)

χ0 = 4π2Bγ ξ 2v2
s

φ0
= 2πBγ v2

s

Hc2
. (32)

Hence, only the frequencies ω = Gv are present in the Fourier
transform over time [14]. One could expect this because an
observer of a moving vortex lattice should register the main
period a1/v ∝ 1/G1v where a1 is the real space lattice period
and G1 is the corresponding reciprocal vector.

C. Elastic energy of moving lattice

The quasistatic elastic energy density of the vortex lattice is

F = B

φ0

∫
cell

dr
(
λu2

αα/2 + μu2
αβ

)
, (33)

where the integration is extended over the unit cell. Being
interested in a stationary state, one can calculate the energy
at t = 0. Fourier components of the potential χ at t = 0 are

χ (G, 0) =
∫ ∞

−∞

dω

2π
χ (G, ω)

= χ0

2π

[
1

(Gv)2 − G2v2
s

+ δG,0

G2v2
s

]
. (34)

As in the static case, the last term here generates in real space
a coordinate independent constant, which can be disregarded
because only gradients of χ have physical meaning.

After straightforward algebra one obtains:

F = χ2
0 (λ + 2μ)

2

∑
G �=0

G4[
(Gv)2 − G2v2

s

]2 . (35)

The sum here is divergent due to long-range elastic perturba-
tions. It can be evaluated numerically because, when treating
vortex cores as δ functions, the maximum G should be of the
order of 1/ξ .

One can now compare energies of hexagonal vortex lattices
moving with velocities v oriented differently relative to the
lattice. Let the hexagonal lattice have one of the unit cell
vectors along the x axis:

a1 = a0x̂, a2 = a0(x̂ +
√

3ŷ)/2, a2
0 = 2φ0/B

√
3, (36)

that correspond to the reciprocal lattice

Gx = G0

√
3

2
n, Gy = G0

(
m − n

2

)
, G2

0 = 2B

φ0

√
3

(37)

with integers n and m. The squared length of a lattice vector is
G2 = G2

0(n2 − nm + m2). The velocity orientation is fixed by
the angle α with the x axis: v = v(x̂ cos α + ŷ sin α). Hence,
we have for the sum in Eq. (35):

S(v) = v4
s

∑
G �=0

G4[
(Gv)2 − G2v2

s

]2

=
∑

n2+m2 �=0

(n2 − nm + m2)2

d (α, n, m)
,
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FIG. 1. S(α) of Eq. (38) calculated for h = 0.1 and V =
v/vs = 0.6.

d = [V 2(
√

3n cos α + (2m − n) sin α)2/4

− (n2 − nm + m2)]2, (38)

where V = v/vs. To ensure that the sum is not extended to
G � 1/ξ , we introduce in the numerator of the sum (38) a
factor

exp(−G2ξ 2) = exp[−h(n2 − nm + m2)],

h = 2Bξ 2

φ0

√
3

∼ B

Hc2
. (39)

Figure 1 shows the numerically evaluated S(α) accord-
ing to Eqs. (38) and (39) for v = 0.6 vs and h = 0.1 (or
B/Hc2 ≈ 0.5). It is seen that minimum energy corresponds to
velocity directed along the unit cell vectors, i.e., to α = 0 and
α = π/3, whereas α = π/6 corresponds to the maximum
energy. Although the difference S(π/6) − S(0) is of the order
10−3, it is worth recalling that in the isotropic case the hexag-
onal vortex lattice at rest is degenerate relative to arbitrary
rotations. The difference �S = S(π/6) − S(0) increases fast
with increasing velocity.

The difference in elastic energies for the two orientations is

�F ≈ χ2
0 λ̃

v4
s

�S ≈
(

B

Hc2
γ

)2

λ̃�S, (40)

where λ̃ ∼ 1012 egr/cm3 is an estimate for the elas-
tic constants. Taking γ ∼ ζ ∼ 10−5, one obtains �F ∼
10−3 erg/cm3 for our example.

V. SUPERSOUND VELOCITIES

Velocities of vortices up to ≈1.5 × 106 cm/s have been re-
cently recorded in Pb films [15], which is well above the sound
speed in Pb of about 2 × 105 cm/s. Vortices were crossing
the narrow part of a thin-film bridge and were visualized with
the help of sub-μm-size scanning SQUID. The voltage and the
current along the bridge were monitored that made it possible
to evaluate vortex velocities. Vortices enter the bridge as a well
formed and stable chain but slow down penetrating the bridge
(the driving current decreases toward the strip middle) and at
some points the chain splits in two or more parallel chains.

One may speculate that the elastic perturbations caused by
fast-moving vortices play a role in forming vortex chains.

If a vortex moves with a supersound velocity V > 1,
Eq. (17) for the elastic potential at t = 0 becomes

−4π2χ (r, 0)

A
=

∫
d2k eikr

k2
y − η2k2

x

, η2 = V 2 − 1 > 0. (41)

The integration over ky is done in the complex plane of ky. The
contour of integration for y > 0 is chosen as a half-circle of a
large radius in the upper half-plane, the real axis of ky, and
infinitesimal half-circles round the poles at ky = ±ηkx chosen
as to leave the poles within the contour:∫ ∞

−∞

dky eikyy

k2
y − η2k2

x

= − y

|y|
π sin(kxηy)

ηkx
. (42)

Integration over kx then gives:

χ (r, η)t=0 = A

4η
θ (x + η|y|), (43)

the θ function here is unity for a positive argument and
zero otherwise. The potential χ (x, y) should be determined
for x < 0, because no elastic perturbation can exist in front
of a vortex moving with supersound velocity. In fact, the
potential χ (x, y) = A/4η or zero, depending on what domain
of x, y is chosen. These domains are separated by straight lines
x + ηy = 0 and x − ηy = 0, as shown in Fig. 2. The angle
between two boundaries is

α = 2 cot−1 η. (44)

In experiment of Ref. [15] v/vs ≈ 15/2 = 7.5 that corre-
sponds to the opening angle of the supersonic tale behind the
vortex α ≈ 0.27 ≈ 15◦.

When v → vs and η → 0, α → π , i.e., boundaries of the
central domain open to coincide with the y axis. At large
velocities η � 1 and α ≈ 2/η 	 1. This two-dimensional
picture is reminiscent of shock wave fronts created by a
supersound motion of a body in continuous medium.

Within London model, the potential χ changes discon-
tinuously at these boundaries, i.e., the displacement u has a

�2.0 �1.5 �1.0 �0.5 x

�1.0

�0.5

0.5

1.0

y

FIG. 2. Boundaries at which the potential χ changes discon-
tinuously for V = v/vs = 3. χ = 0 between these boundaries and
χ = A/4η otherwise.
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δ-function singularity at the boundaries. These discontinuities
are the model artifacts since the vortex is considered as a
point source of the elastic perturbation and is represented by δ

function. Clearly, in a better theory the discontinuity should be
smeared over a belt of a width ∼ξ (or λ), and the displacement
will have a sharp maximum at the boundary and go to zero out
of the belt. In turn, the strains related to second derivatives of
χ will have a sharp maximum on one side of the boundary and
a sharp minimum on the other. Hence, as a consequence of a
sharp displacement at the boundary, one expects the pressure
enhancement on one side and the depression on the other.
Interaction of other vortices with these pressure profiles is an
open question.

VI. SUMMARY AND DISCUSSION

It is shown that the rotational degeneracy of the hexag-
onal vortex lattice is removed by lattice motion due to
vortex-induced strains. Moreover, the orientation of the mov-
ing lattice with one of the unit cell vectors along the ve-
locity corresponds to minimum elastic energy. It is worth
noting here that the same orientational effect has been
predicted by considering pinning [16], the time-dependent
Ginzburg-Landau or London models of moving vortex lattices
[17,18].

In addition to reorientation of the moving lattice, elas-
tic contribution to the intervortex interaction should cause
distortions of the moving lattice structure as compared to
the lattice at rest. Distortions of static lattices in tetragonal
crystals were discussed in Refs. [3,9]. The stationary structure
of a uniformly moving lattice can be found employing the
minimum dissipation principle [18], the problem that would
take us out of the main subject of this paper.

Experimentally, there are situations when the vortex veloc-
ities are very high. In flux avalanches in thin YBCO films, vor-
tices are claimed to move with velocities up to 5 × 106 cm/s
[19]. In Pb films recently recorded vortex velocities reach
106 cm/s [15]. Hence, vortex velocities may approach and
exceed vs, the speed of sound. Within the model of this paper,
however, the elastic energy diverges when v → vs. Clearly,
the model should break down in this limit, because the energy
of the vortex system cannot exceed the superconducting con-
densation energy. In other words, the superconducting phase
should be strongly perturbed in this case, that would lead
to velocity dependence of basic material parameters such as
ζ , ξ , A, considered as constants in this paper.

As mentioned, the elastic potential χ (r) obtained solving
Eq. (12) is only a partial solution corresponding to δ(r − vt )
at the RHS. In fact, this equation has also solutions for
zero RHS, i.e., of the wave equation ∇2χ − χ̈/v2

s = 0. These
are sound waves that contribute to energy dissipation, i.e.,
to vortex drag coefficient. Of a special interest the sound
generation is for a supersound velocities, the subject of future
work.

The density difference between the normal core and the
superconducting surrounding is not the only reason for vortex-
induced elastic perturbations discussed above. The nonuni-
form distribution of supercurrents around the vortex may also
cause elastic distortions in the underlying crystal. The source
of these distortions is localized in a region of a size λ, the

London penetration depth which is usually large relative to
the core size ξ [6,7]. Elastic perturbations, though, decay only
as a power law at r > λ, i.e., they are long range, hence
their localized source can again be formally described by a δ

function. Hence, in principle, the formal treatment presented
above can be applied in this case, too. The factor A of the δ

function will, of course, differ from that given in Eq. (5).
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APPENDIX A

To evaluate the energy (8) one needs:

(uαα )2 = A2(β2 − 1)2(x2 − β2y2)2

4π2(x2 + β2y2)4
, (A1)

u2
αγ = u2

xx + u2
yy + 2u2

xy

= A2(1 + β4)(x4 + β4y4) − 2x2y2β2(1 − 4β2 + β4)

4π2(x2 + β2y2)4
.

(A2)

Further, one has:

I1 =
∫

dru2
αα

= A2(1 − β2)2

4π2

∫ ∞

ξ

dr

r3

∫ 2π

0
dϕ

(β2 sin2 ϕ − cos2 ϕ)2

(cos2 ϕ + β2 sin2 ϕ)4

= A2(1 − β2)2(1 + β2)

16πξ 2β3
. (A3)

Further, one obtains:

I2 =
∫

dru2
αγ = A2(1 + β2)3

16πξ 2β3
. (A4)

The sum λI1/2 + μI2 gives Eq. (20) of the main text.

APPENDIX B

Apply
∑

G

∫
dω/2π to the RHS of Eq. (28):

∑
a

δ(r − vt − a) = B

φ0

∑
G

eiG(r−vt )

= 2πB

φ0

∑
G

eiG(r)
∫ ∞

−∞
dωe−iωtδ(ω − Gv).

(B1)
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Hence, one has:

∑
a

δ(r − vt − a) = 2πB

φ0

∑
G

∫ ∞

−∞

dω

2π
δ(ω − Gv)ei(Gr−ωt ).

(B2)

Further, one uses

B

φ0
= 2πB

φ0

∑
G

∫ ∞

−∞

dω

2π
δG,0δ(ω)ei(Gr−ωt ). (B3)

to obtain Eqs. (31) and (32).
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Milosević, A. Gurevich, and E. Zeldov, Nat. Commun. 8, 85
(2017).

[16] A. E. Koshelev and V. M. Vinokur, Phys. Rev. Lett. 73, 3580
(1994).

[17] D. Li, A. M. Malkin, and B. Rosenstein, Phys. Rev. B 70,
214529 (2004).

[18] V. G. Kogan, Phys. Rev. B 97, 094510 (2018).
[19] B. Biehler, B.-U. Runge, P. Leiderer, and R. G. Mints, Phys.

Rev. B 72, 024532 (2005).

174520-6

https://doi.org/10.1103/PhysRevB.86.220511
https://doi.org/10.1103/PhysRevB.86.220511
https://doi.org/10.1103/PhysRevB.86.220511
https://doi.org/10.1103/PhysRevB.86.220511
https://doi.org/10.1103/PhysRevB.51.15344
https://doi.org/10.1103/PhysRevB.51.15344
https://doi.org/10.1103/PhysRevB.51.15344
https://doi.org/10.1103/PhysRevB.51.15344
https://doi.org/10.1103/PhysRevB.87.020503
https://doi.org/10.1103/PhysRevB.87.020503
https://doi.org/10.1103/PhysRevB.87.020503
https://doi.org/10.1103/PhysRevB.87.020503
https://doi.org/10.1103/PhysRevB.56.2820
https://doi.org/10.1103/PhysRevB.56.2820
https://doi.org/10.1103/PhysRevB.56.2820
https://doi.org/10.1103/PhysRevB.56.2820
https://doi.org/10.1103/PhysRevB.76.224510
https://doi.org/10.1103/PhysRevB.76.224510
https://doi.org/10.1103/PhysRevB.76.224510
https://doi.org/10.1103/PhysRevB.76.224510
https://doi.org/10.1103/PhysRevB.68.144515
https://doi.org/10.1103/PhysRevB.68.144515
https://doi.org/10.1103/PhysRevB.68.144515
https://doi.org/10.1103/PhysRevB.68.144515
https://doi.org/10.1016/j.physc.2003.09.100
https://doi.org/10.1016/j.physc.2003.09.100
https://doi.org/10.1016/j.physc.2003.09.100
https://doi.org/10.1016/j.physc.2003.09.100
https://doi.org/10.1103/PhysRevB.88.144514
https://doi.org/10.1103/PhysRevB.88.144514
https://doi.org/10.1103/PhysRevB.88.144514
https://doi.org/10.1103/PhysRevB.88.144514
https://doi.org/10.1103/PhysRevB.95.054511
https://doi.org/10.1103/PhysRevB.95.054511
https://doi.org/10.1103/PhysRevB.95.054511
https://doi.org/10.1103/PhysRevB.95.054511
https://doi.org/10.1103/PhysRevB.72.094518
https://doi.org/10.1103/PhysRevB.72.094518
https://doi.org/10.1103/PhysRevB.72.094518
https://doi.org/10.1103/PhysRevB.72.094518
https://doi.org/10.1038/s41467-017-00089-3
https://doi.org/10.1038/s41467-017-00089-3
https://doi.org/10.1038/s41467-017-00089-3
https://doi.org/10.1038/s41467-017-00089-3
https://doi.org/10.1103/PhysRevLett.73.3580
https://doi.org/10.1103/PhysRevLett.73.3580
https://doi.org/10.1103/PhysRevLett.73.3580
https://doi.org/10.1103/PhysRevLett.73.3580
https://doi.org/10.1103/PhysRevB.70.214529
https://doi.org/10.1103/PhysRevB.70.214529
https://doi.org/10.1103/PhysRevB.70.214529
https://doi.org/10.1103/PhysRevB.70.214529
https://doi.org/10.1103/PhysRevB.97.094510
https://doi.org/10.1103/PhysRevB.97.094510
https://doi.org/10.1103/PhysRevB.97.094510
https://doi.org/10.1103/PhysRevB.97.094510
https://doi.org/10.1103/PhysRevB.72.024532
https://doi.org/10.1103/PhysRevB.72.024532
https://doi.org/10.1103/PhysRevB.72.024532
https://doi.org/10.1103/PhysRevB.72.024532

