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Recent scanning tunneling microscopy experiments in NbN thin disordered superconducting films found
an emergent inhomogeneity at the scale of tens of nanometers. This inhomogeneity is mirrored by an
apparent dimensional crossover in the paraconductivity measured in transport above the superconducting critical
temperature Tc. This behavior was interpreted in terms of an anomalous diffusion of fluctuating Cooper pairs
that display a quasiconfinement (i.e., a slowing down of their diffusive dynamics) on length scales shorter than
the inhomogeneity identified by tunneling experiments. Here, we assume this anomalous diffusive behavior of
fluctuating Cooper pairs and calculate the effect of these fluctuations on the electron density of states above Tc.
We find that the density of states is substantially suppressed up to temperatures well above Tc. This behavior,
which is closely reminiscent of a pseudogap, only arises from the anomalous diffusion of fluctuating Cooper
pairs in the absence of stable preformed pairs, setting the stage for an intermediate behavior between the two
common paradigms in the superconducting-insulator transition, namely, the localization of Cooper pairs (the
so-called bosonic scenario) and the breaking of Cooper pairs into unpaired electrons due to strong disorder (the
so-called fermionic scenario).
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I. INTRODUCTION

The physics of the superconductor-insulator transition
(SIT) in disordered superconducting thin films [1] is attract-
ing an ever increasing interest both for applicative purposes
[2,3] and for fundamental reasons [4–6]. In this latter regard,
while in structurally granular thin films the intrinsic granu-
larity plays an evident role, the situation is more involved
in nominally homogeneous (i.e., nongranular) disordered thin
films. On the one hand, what is often referred to as the
“fermionic” scenario proposes that the SIT is driven by the
reduced screening of the Coulomb repulsion with increasing
disorder, that leads to a weakening of pairing and to a reduc-
tion of the critical temperature Tc [7]. In this case, the insu-
lating state hosts localized fermions and standard paracon-
ductive fluctuations are expected above Tc, due to Gaussian-
distributed short-lived Cooper pairs. In granular systems, the
situation may be more complex with the appearance of vari-
ous crossovers theoretically predicted [8] and experimentally
observed [9].

On the other hand, tightly bound Cooper pairs survive the
SIT in a “bosonic” scenario, in which the gap persists above
Tc despite the loss of phase coherence. In this framework, the
bosonic pairs either localize because the disorder-enhanced
Coulomb interaction destroys their phase-coherent motion
at large scales [10,11], or disorder itself blurs the phase
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coherence without any relevant role of the Coulomb repulsion
[12–15]. In the latter case, it was also proposed that the super-
conducting state is characterized by an emergent disordered
glassy phase [15], with filamentary superconducting currents
[12]. An anomalous distribution of the superconducting order
parameter was proposed by theorists [15,16], and observed
experimentally [6,17]. A numerical approach to uniformly
disordered superconductors [18] has also shown that there is a
continuous evolution [19] from the weak-disorder limit, where
the system has a rather homogeneous fermionic character,
to the strong-disorder limit, where marked inhomogeneities
appear in the superconducting order parameter, with an emer-
gent bosonic nature characterized by a single-particle gap
persisting on the insulating side of the SIT. A great deal of
experimental activity has been devoted to this more disor-
dered realization of the SIT [6,20]. The intermediate situation,
where Cooper pairs begin to evolve into bosonic pairs, but
keep their fermionic character, has been recently investigated
by scanning tunneling microscopy (STM) and transport mea-
surements in NbN thin films. STM revealed the occurrence of
an emergent inhomogeneous state and pseudogap effects over
scales of a few tens of nanometers [21]. This intermediate-
scale inhomogeneity affected the transport properties with
the paraconductivity displaying a crossover from a seemingly
zero-dimensional [22,23] Aslasmazov-Larkin (AL) behavior
to the expected two-dimensional behavior when Tc was ap-
proached from above. This crossover was interpreted in terms
of an anomalous slowing down of the dynamics of fluctuating
Cooper pairs at length scales smaller than those set by the
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(b)

(a)

FIG. 1. (Adapted form Fig. 7 of Ref. [21]) Sketch of the
anomalous diffusion of the fluctuating Cooper pairs induced by
the emergent inhomogeneity in NbN thin films. (a) The fluctuating
Cooper pairs above Tc diffuse in the system, but are slowed inside
the emergent inhomogeneities (represented by the darker regions).
The multiple scattering inside these regions pictorially represents the
diffusion slowdown leading to a quasiconfinement of the fluctuating
Cooper pairs. This mechanism is expected to give rise to a pseu-
dogap and to the zero-dimensional character of the paraconductive
fluctuations. (b) Over longer distance and timescales a “coarse-
grained” standard diffusive behavior of the fluctuating Cooper pairs
is recovered, leading to the usual two-dimensional AL behavior of
the paraconductivity.

emergent inhomogeneity. Figure 1 pictorially illustrates this
effect. The theoretical framework elaborated to explain the
experiments in Ref. [21] and the analysis reported in this work
provides therefore a third paradigm “intermediate” between
the fermionic and the bosonic ones. In particular, in this paper
we explore other consequences of this intriguing emergence
of inhomogeneity. Specifically, we consider the effects of
this anomalous dynamics of the fluctuating Cooper pairs
on the electron density of states above Tc, showing that, in
the presence of disorder, the slowing down of Cooper pair
fluctuations may give rise to pseudogap effects on the same
length scale over which the Cooper pairs are quasiconfined.
This will explain the occurrence of the pseudogap observed in
STM experiments despite the persistence of purely fluctuating
Cooper pairs (as opposed to the stable pairs of the bosonic
scenario), which are needed to account for the standard
Aslamazov-Larkin paraconductivity.

The structure of this paper is as follows. In Sec. II
we present our phenomenological scheme involving the

anomalous diffusion of fluctuating Cooper pairs. Section III
is devoted to the theoretical many-body calculation that de-
termines the effects of the fluctuating Cooper pairs on the
electron density of states (DOS). This section will also present
the systematic analysis of these effects and a comparison with
the experimental results of STM on NbN. Section IV contains
our final remarks and conclusions.

II. THEORETICAL BACKGROUND

The core idea of the phenomenological theoretical frame-
work used in Ref. [21] to fit the paraconductivity of NbN
thin film is that there exist some regions, inside the supercon-
ducting film, where the lifetime of fluctuating Cooper pairs
above the superconducting critical temperature Tc is longer
than expected for a standard diffusion process, resulting in
a quasiconfinement of the fluctuating Cooper pairs within
nanoscopic regions, dubbed supergrains, to emphasize the
fact that they do not correspond to the structural grains.
Indeed, these regions, of a linear dimension Li ≈ 50 nm, are
much larger than the typical disorder length scale of a few
nanometers structurally present in nominally homogeneous
NbN films. In this scenario, fluctuations with characteristic
wavelength smaller than the typical inhomogeneity dimension
Li are more long lived than they would be in a standard
diffusion process, thus giving an explanation to the experi-
mentally observed paraconductivity anomalies, resembling a
zero-dimensional behavior.

It is well established from the theory of fluctuations in
superconductors, that the propagator of the fluctuating Cooper
pairs in the weak-coupling (BCS) limit has the following form
[22,23]:

L(q,�) � −8T

N0

1

τ−1
GL + ε(q) − i�

, (1)

where N0 is the electron DOS at the Fermi level, τ−1
GL =

8Tc
π

log T
Tc

is the inverse Ginzburg-Landau lifetime, and ε(q)
is the dispersion law, determining the increase of the inverse
diffusion time with increasing magnitude of the wave vector
q of the fluctuating mode. In this work we adopt units such
that the Planck constant h̄ and the Boltzmann constant kB are
unity.

The standard results from fluctuation theory are obtained
with a quadratic diffusion law ε(q) = Dq2 (where q ≡ |q|).
On the other hand, the anomalous diffusion should give higher
lifetimes for wavelengths smaller than Li and recover the
standard behavior at larger scales. In particular, it was found
[see the inset in Fig. 4(b) of Ref. [21]] that the pararesistivity
(i.e., the inverse of the paraconductivity) crosses over from a
seemingly zero-dimensional (0D) behavior ∝(T − T̃c)2 to the
expected two-dimensional (2D) behavior ∝(T − Tc), with T̃c

being somewhat smaller than Tc. A good description of the
0D-2D crossover occurring in the experimental paraconduc-
tivity measurements on NbN thin films was achieved through
the following anomalous diffusive expression:

ε(q) = Dq̄2 log

(
1 + q2

q̄2

)
, (2)
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FIG. 2. The two different diffusion laws: the dashed line rep-
resents the standard quadratic law, while the blue curve is the
anomalous one. It is possible to observe that on small momenta the
two coincide asymptotically, while above q/q̄ = 1 the anomalous
diffusion becomes quite smaller than the standard one, representing
the quasiconfinement of the fluctuating Cooper pairs inside the
supergrains.

where D is the diffusion constant and q̄ ≈ L−1
i . The theoretical

framework leading to the above expression is discussed in
Appendices A, B, and C. Here, we notice that the experiments
only constrain the asymptotic behaviors for q � q̄ or q � q̄,
while the intermediate behavior, as it customarily occurs in
crossover phenomena, is much less constrained and rather
immaterial. Figure 2 compares the standard quadratic diffu-
sion law (black dashed line) with the anomalous diffusion
of Eq. (2) (solid blue line). We point out that the value of
the diffusion constant D in the presence of disorder may be
severely suppressed with respect to the standard BCS value
[22,23]. As long as D stays finite, however, its value does not
appear in the AL paraconductivity in two dimensions, as the
consequence of a cancellation enforced by gauge invariance
[24]. Disorder may also introduce corrections to the BCS
value of τ−1

GL , as it seems indeed to be the case in the more
strongly disordered NbN films [21].

At small momenta the two lines coincide since the sys-
tem is normally diffusive over large length scales. At q � q̄
instead, the anomalous diffusion becomes much smaller than
the quadratic one, indicating that for these modes the diffusion
occurs with characteristic frequencies � ∼ τ−1

GL + ε(q) much
smaller (i.e., with much longer characteristic times) than in
the standard case � ∼ τ−1

GL + Dq2

This work aims at understanding the effects of such an
anomalous diffusion of fluctuating Cooper pairs on the elec-
tron density of states of a two-dimensional superconductor.

III. DENSITY OF STATES FROM ANOMALOUS
DIFFUSION OF FLUCTUATING COOPER PAIRS

Following a standard quantum many-body approach, the
density of states of an electron system is given by the imagi-
nary part of its retarded Green function GR(k, ω):

N (ω) = − 1

2π

∫
d2k

(2π )2
Imm [GR(k, ω)]. (3)

FIG. 3. Feynman diagram for the contribution of fluctuating
Cooper pairs to the electron Green function. The thick (thin) solid
line represents the dressed (bare) electron Green function, the wavy
line represents the propagator of fluctuating Cooper pair, and the
shaded semicircles represent the impurity ladders that dress the
electron–Cooper pair fluctuation vertex and embody the effect of
microscopic disorder.

The Feynman diagrams of Fig. 3 give the fluctuative con-
tribution to the Green function in the dirty limit [25–27]. The
wavy line corresponds to the propagator of fluctuating Cooper
pairs L(q,�n). While here we adopt the finite-temperature
formalism with Matsubara frequencies �n [22,23], the form
in Eq. (1) has been analytically continued to real frequency �

in order to obtain a diffusive pole for the fluctuating Cooper
pairs above Tc. The shaded semicircles are vertices coupling
the Cooper pair fluctuations with the electron quasiparticles.
In the presence of disorder due to quenched impurities and in
the so-called ladder approximation [22,23] they read as

�(q, ωm,�n) = 1

τ

1

ε(q) + ∣∣2ωm + sign (ωm )
τ

− �n

∣∣ , (4)

where τ is the relaxation time of the electronic scattering on
the impurities, while ωm = (2m + 1)πT and �n = 2nπT are
the fermion and boson Matsubara frequencies, respectively.

From the second diagram in the right-hand side of Fig. 3,
we obtain the corrections to the electron Green function due
to fluctuating Cooper pairs. Upon integration over the electron
momenta k, we obtain

δG(ωm) = − T

πN0

[ ∑
�n

∫
d2q

(2π )2
L(q, i|�n|)�2(q, ωm,�n)

×
∫

d2k
(2π )2

G2
0(k, ωm)G0(q − k,�n − ωm)

]
,

(5)

where G0(k, ωm) = [iωm − vF (k − kF )]−1 is the free-electron
Green function in the Matsubara formalism, vF and kF be-
ing the Fermi velocity and Fermi wave vector, respectively.
The sum over boson Matsubara frequencies and the integral
over fermion momenta can be carried out analytically as it
was done in Ref. [26] for the case of standard diffusion of
fluctuating Cooper pairs. Analytically continuing the fermion
frequencies (iωm → ω − i0+) and taking the imaginary part
in Eq. (5), one obtains the variation of the DOS:

δN (ω) = − 16T 2

πN0τ

∫
q dq[

τ−1
GL + ε(q)

][
τ−1

GL + 2ε(q)
]2

×
(
4|ω| + 1

2τ

)2 − [
τ−1

GL + ε(q)
]2

{(
4|ω| + 1

2τ

)2 + [
τ−1

GL + ε(q)
]2}2

, (6)
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FIG. 4. Effects of (anomalously diffusing) Cooper pair fluctua-
tions on the quasiparticle DOS at T/Tc = 1.84, at fixed level of dis-
order. The elastic scattering rate is 1

τ
= 20 meV ≈0.067 EF , where

EF = vF kF is the Fermi energy. The black line shows the result for
standard diffusion, with barely any visible effect as compared to
the much stronger suppression observed in the case of anomalous
diffusion.

where the last integration over q = |q| can be carried out
numerically, and we made explicit that ε(q) only depends
on q.

Starting from the numerical evaluation of Eq. (6), we
systematically investigate the role of disorder (namely, of
the scattering time τ ) and of the inhomogeneity length scale
(Li). One first generic finding is that the anomalous diffusion
of fluctuating Cooper pairs substantially increases the size
and the extension in temperature above Tc of the pseudogap
effects (i.e., of the partial DOS suppression that occurs above
Tc because of superconducting fluctuations) in comparison
with the standard diffusion law ε(q) = Dq2. These effects are
markedly larger in the disordered case than in the clean case
(i.e., in the τ → ∞ limit): only in the disordered case the
DOS suppression can become quantitatively comparable to
the suppression observed by STM experiments in NbN. This
is why in the following we will focus on the disordered case
only.

In Fig. 4, different δN (ω) curves are compared, at T/Tc =
1.84 (corresponding to T = 7 K for the sample X0 in Ref. [21],
having Tc = 3.8 K), rather far above Tc. The black line repre-
sents the curve obtained with the standard diffusion law, while
the colored ones have been obtained with different values of
Li = 20, 30, 50 nm [i.e., different q in Eq. (2)], all in the range
of the inhomogeneity sizes observed in Ref. [21].

It is evident that anomalous diffusion greatly enhances the
pseudogap effects. Quite far above Tc, at T/Tc = 1.84, the
DOS suppression in the standard diffusion case (black solid
line) is barely appreciable adopting a common scale, being
much smaller than the suppression observed in the case of
anomalous diffusion. This demonstrates that these pseudogap
effects are quite robust in temperature. We also notice that in-
creasing the parameter Li, we obtain a more pronounced DOS
suppression, as this reduces q̄, thus extending the region in
q space where the anomalous diffusion of fluctuating Cooper
pairs occurs.

FIG. 5. Effect of the disorder strength on the Cooper fluctuation
contribution to the DOS at T/Tc = 1.3 and Li = 30 nm.

In Fig. 5, we report the results of our analysis on the
effects of disorder. It is evident that, for a given fixed value of
Li = 30 nm, at T/Tc = 1.3, the DOS suppression increases by
increasing the elastic scattering rate 1

τ
. This indicates that the

homogeneously distributed microscopic disorder represented
by the impurities is cooperative with the large-scale inhomo-
geneity producing a stronger effect of the anomalous diffusion
of Cooper pair fluctuations.

The results reported above show that the pseudogap effects
induced by the anomalous diffusion of fluctuating Cooper
pairs are large enough to account for the sizable pseudogap
effects observed by STM in NbN. On the other hand, the DOS
corrections shown in Figs. 4 and 5 systematically display a
suppression (i.e., a negative correction) with respect to the ref-
erence DOS of the normal metallic state at high temperature.
Therefore, results cannot account for the experimental obser-
vation of coherence effects that rather symmetrically produce
an enhancement of DOS at finite energy (finite bias in tunnel
experiments) above or below the Fermi level (ω = 0). Of
course, the spectral weight is not lost in our calculations, but
is simply distributed over a very broad range, larger than the
range of the figures. To obtain more realistic tunnel spectra, it
is crucial to recall that the two different fluctuational regimes
observed in the transport experiments of Ref. [21], appear
to be characterized by two different critical temperatures. In
other words, the transition temperature in the two-dimensional
regime that sets in when the true Tc is approached, is larger
than the critical temperature of the anomalously diffusing
regime. This latter is when fluctuating Cooper pairs that shape
the paraconductivity data at higher temperatures further away
from Tc display the seemingly zero-dimensional character.
This observation, substantiated in Fig. 4(b) of Ref. [21],
is not surprising because the 0D regime occurs at higher
temperatures and is dominated by the anomalous diffusion of
fluctuating Cooper pairs over length scales shorter than Li and
at these scales the system is seemingly unaware of the actual
critical temperature Tc at which the true two-dimensional
global superconducting state is established [28].

Therefore, in order to mimic this “flowing” of the criti-
cal temperature when shorter and shorter length scales (i.e.,
larger and larger inverse timescales) dominate the Cooper
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FIG. 6. The curve representing the proposed Tc(ω). A smooth
change from the two-dimensional (2D) regime to the zero-
dimensional (0D) one can be tuned using an arctangent interpolating
function. The values of the asymptotic critical temperatures are those
obtained in Ref. [21].

fluctuations, we assumed a smooth steplike energy dependent
Tc(ω), as shown in Fig. 6. Here, T 0D

c and T 2D
c are taken from

the already mentioned pararesistivity measurements [see the
inset in Fig. 4(b) of Ref. [21]]. In particular, for Tc(ω) reported
in Fig. 6 we used the values found for sample X0 of Ref. [21]
(see also the Supplemental Material of this reference).

When evaluating Eq. (6), the Tc appearing in the definition
of τGL is replaced by Tc(ω). With this phenomenological
assumption, we then obtain the fitting of tunnel spectrum
reported in Fig. 7 for T = 1.1 Tc (corresponding to the ex-
perimental conditions for sample X0 in Fig. 2 of Ref. [21]).
The data were obtained taking the experimental spectra of the

FIG. 7. Comparison of the theoretical curve (red line) for
N (ω)/N0, where N (ω) = N0 + δN (ω) [see Eq. (6)], with experimen-
tal data (×) at a temperature T = 1.1 Tc and with Li = 16.5 nm as
typical size of the inhomogeneity. Here, 1/τ = 5 meV. The theoret-
ical curve has been convoluted with a Gaussian with variance σ =
0.4 meV to account for the experimental resolution. The theoretical
curve before convolution is also reported with green dotted line for
comparison.

large pseudogap regions (the supergrains) and dividing them
by the corresponding measurements in the small pseudogap
regions [the red and blue curves, respectively, in Fig. 2(b) of
Ref. [21]], to extract the contribution of anomalously diffusing
Cooper pair fluctuations and get rid of any background contri-
bution. We used Li and τ as adjustable parameters. The fitting
DOS suppression (normalized to the DOS in the metallic
state) was obtained for Li = 16.5 nm, quite comparable with
the typical size of supergrains observed in NbN films, and for
1/τ = 5 meV, for which we have no independent determina-
tion. Figure 7 reports the comparison between the theoretical
calculations and the experimental data. The theoretical curve
has also been convoluted with a Gaussian with variance σ =
0.4 meV to account for the experimental resolution.

The agreement between the theoretical curve and experi-
mental data is quite satisfactory at every ω. The convolution
with the finite-resolution Gaussian plays a role only near
ω = 0, where it transforms the cusplike theoretical curves
(see, e.g., Fig. 5) in the more rounded red line of Fig. 7.

IV. CONCLUSIONS AND OUTLOOKS

In this paper, we presented a theory for the DOS suppres-
sion due to anomalously diffusing fluctuating Cooper pairs
above the critical temperature Tc of a two-dimensional super-
conductor. Our theoretical results highlight the effectiveness
of the anomalous diffusion of fluctuating Cooper pairs in
enhancing the pseudogap at temperatures well above Tc. Since
a similar effect was observed experimentally in some ultrathin
NbN films, we compared our curves with STM experiments,
in order to get an estimate of the parameters of the theory.
Good agreement with experimental data is achieved, espe-
cially after introducing the natural idea that Cooper fluctu-
ations at different energies may “perceive” different critical
temperatures. This led us to the phenomenological assumption
that the critical temperature should, in our theory, be fre-
quency dependent, as a consequence of the 0D-2D crossover,
with the asymptotic high-frequency (0D) and low-frequency
(2D) values fitted to match the experimental paraconductivity
[21], and a smooth interpolating behavior at intermediate
frequency. This work has been carried out on a phenomeno-
logical basis in the form of the anomalous diffusive law of
Cooper pairs and of Tc(ω) and the understanding of the actual
microscopical reasons giving rise to the inhomogeneities,
their length scales, and their effects on the above laws is
lacking. Nevertheless, we point out that our work opens the
way to a different microscopic understanding of the SIT, in
which Cooper pairs are not stable bosonic entities, but keep
a fluctuating character. It is their slowing down that produces
marked pseudogap effects mimicking that of preformed pairs
and strengthening the idea of a gradual and continuous evolu-
tion between the bosonic and fermionic scenarios.
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APPENDIX A: ZERO-DIMENSIONAL AL FLUCTUATIONS

The theory discussed here was previously elaborated to
explain the experimental paraconductivity measurements re-
ported in Ref. [21]. Owing to the more theoretical character
of this work, we feel it useful to provide in these appendices a
more detailed description of this theoretical framework.

To discuss AL paraconductivity, we shall assume overall
isotropy (at least in the average) and start from the expression
[29]

δσD(ε) = πe2

4h̄

∫
dDq

(2π )D

1

D

(∇qνq
)2 1

(ε + νq)3
, (A1)

that reproduces the standard AL result in D dimensions
with νq ≡ ξ 2

0 |q|2, where ξ0 is the coherence length and ε ≡
log(T/Tc), Tc being the critical temperature. In these appen-
dices we use the more convenient dimensionless quantities ε

and νq, which are related to the dimensional quantities used
in the main text by the following relations: τ−1

GL = 8Tcε/π and
ε(q) = 8Tcνq/π . The expression in Eq. (A1) appears to be
rather general [24], although the precise expression of ε may
change depending on the microscopic theory giving rise to
collective paraconductive fluctuations, so that the expression
ε ≡ α(T − Tc)/Tc, with a dimensionless prefactor α not nec-
essarily equal to one, may be used.

In this Appendix, we shall study the formal limit D →
0 of the standard AL paraconductivity, while in the next
appendices we shall study more general expressions, apt to
describe the phenomenology of NbN thin films. The angular
integration in Eq. (A1) factors out and, observing that νq only
depends on q ≡ |q|, one obtains

δσD = πe2�D

4h̄D(2π )D

∫
dq qD−1

(
dνq

dq

)2 1

(ε + νq)3
,

where

�D = 2πD/2


(

D
2

)
is the surface of the unitary sphere in D dimensions and (z)
is the Euler gamma function. Exploiting the expression of νq

one obtains

δσD = πe2�Dξ 4
0

h̄D(2π )D

∫ ∞

0
dq

qD+1(
ε + ξ 2

0 q2
)3 .

When D → 0, �D inherits the singularity of (D/2) ≈ 2/D,
so that �D ≈ D. Then,

δσD→0 = πe2ξ 4
0

h̄

∫ ∞

0
dq

q(
ε + ξ 2

0 q2
)3

= πe2ξ 2
0

2h̄

∫ ∞

0
dz

1

(ε + z)3 , (A2)

with the change of variable z = ξ 2
0 q2. The integral over z is

straightforward and one obtains

δσD→0 = πe2ξ 2
0

4h̄ε2
.

The above result shows that there exists a well-defined limit of
the AL paraconductivity as D → 0, that scales with ε−2, and
qualitatively agrees with the behavior observed in the thinnest
NbN films [21].

There are, however, two difficulties: The first is that the
zero-dimensional conductivity has to be converted into the
measured conductance per square, dividing it by the square
of a suitable length scale �, possibly related with the size of
the fluctuating (nano)domains. Thus, one should expect

δσmeasured =
(

ξ0

�

)2
πe2

4h̄ε2
.

The second, more fundamental, difficulty is to provide a clear
meaning to the formal limit D → 0 of the AL paraconductiv-
ity. Although the supergrains may behave as quantum dots,
in the end, the system is two dimensional, the supergrains
are eventually coupled, and the paraconductive fluctuations
must cross over to D = 2. The formal limit does not allow
for a description of this crossover and the identification of the
relevant length scales. The next appendices are devoted to the
attempt to describe the crossover.

APPENDIX B: EFFECTIVE DENSITY OF STATES

A crucial remark of Ref. [29] is that the AL theory can
be cast in an even more general form, introducing a suitable
weighted density of states

ND(ν) ≡
∫

dDq
(2π )D

(∇qνq)2δ(ν − νq),

which allows to write the paraconductivity in the form

δσD = πe2

4h̄D

∫ ∞

0
dν

ND(ν)

(ε + ν)3
.

The standard AL result is recovered with

ND(ν) ≡ 4ξ 4
0 �D

(2π )D

∫ ∞

0
dq qD+1δ

(
ν − ξ 2

0 q2
)

= 2ξ 2−D
0 �D

(2π )D

∫ ∞

0
dz zD/2δ(ν − z)

= 2ξ 2−D
0 �D

(2π )D
νD/2, (B1)

yielding

δσD = πe2ξ 2−D
0 �D

2h̄D(2π )D

∫ ∞

0
dν

νD/2

(ε + ν)3
.

However, we shall argue that the observed 0D-2D crossover
stems from a different form of ND(ν), that results from
the supergrains (endowed with an internal structure) being
connected in a 2D network.

Let us set D = 2 for the sake of definiteness, assuming
a two-dimensional system. Then, ND=2(ν) = ν/π and the
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standard AL expression is cast in the form

δσD=2 = e2

8h̄

∫ ∞

0
dν

ν

(ε + ν)3
= e2

16h̄ε
.

This result crucially depends on the presence of the factor ν

in the numerator of the integrand. Now, we argue that this ν

should be replaced by a crossover function

g(ν) =
{

ν, for ν � ν̄

ν̄, for ν > ν̄

where ν̄ is a suitable constant, the connection with the
weighted density of states being established as ND=2(ν) =
g(ν)/π , and show that this expression produces a 0D-2D
crossover at ε ≈ ν̄.

The expression

δσ = e2

8h̄

∫ ∞

0
dν

g(ν)

(ε + ν)3

= e2

8h̄

[∫ ν̄

0
dν

ν

(ε + ν)3
+ ν̄

∫ ∞

ν̄

dν
1

(ε + ν)3

]
(B2)

is readily calculated and gives

δσ = e2

16h̄

ν̄

ε(ε + ν̄)
.

For ε � ν̄, the standard 2D AL behavior is recovered,
whereas for ε � ν̄ a 0D behavior is found:

δσ ≈ e2ν̄

16h̄ε2
.

A rough estimate gives ε ≈ ξ 2
0 /ξ 2, where ξ is the

temperature-dependent correlation length that diverges at the
transition. Then, the 0D-2D crossover takes place at a temper-
ature T̄ such that ξ (T̄ ) ≈ ξ0

√
ν̄. A comparison with the formal

0D limit of the AL theory allows us to identify the scale ν̄ as

ν̄ ≈ 4π

(
ξ0

�

)2

,

and to extract the typical size of the supergrains

� ≈
√

4π

ν̄
ξ0.

But for trivial numerical prefactors, we assume that � can be
identified with the scale Li in the main text. The question then
arises on the origin and meaning of the crossover function
g(ν). In the next Appendix, we shall develop a phenomeno-
logical dispersion model for collective paraconductive fluctu-
ations. Hereafter, the expression νq will be called dispersion
law, although it is more precisely a wave-vector-dependent
contribution to the inverse lifetime of the fluctuations, which
have a diffusive character at long wavelengths.

APPENDIX C: PHENOMENOLOGICAL
DISPERSION MODEL

Let us adopt an isotropic model with

νq =
⎧⎨
⎩

ν̄
( q

q̄

)2
, for q � q̄

ν̄
[
1 + log

( q
q̄

)2]
, for q > q̄

where q̄ is a characteristic wave-number scale. This model
dispersion behaves as q2 at small q (yielding diffusive long-
wavelength, i.e., hydrodynamic, paraconductive fluctuations),
but changes concavity and flattens for q > q̄. Note that νq

and its first derivative are continuous. The weighted density
of states for this model in two dimensions is

ND=2(ν)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2π

∫ q̄
0 dq q

(
2ν̄
q̄2 q

)2
δ
(
ν − ν̄

q̄2 q2
) = 1

π
ν,

for ν � ν̄

1
2π

∫ ∞
q̄ dq q

(
2ν̄
q

)2
δ
(
ν − ν̄

[
1 + log

( q
q̄

)2]) = 1
π
ν̄,

for ν > ν̄

and reproduces, except for a trivial prefactor, the crossover
function g(ν) that yields a 0D-2D crossover in the AL para-
conductivity. Taking ν̄ ≡ ξ 2

0 q̄2, to recover the standard ex-
pression at small q, we can identify q̄ ≈ √

4π/�. So, we can
interpret our result in the following manner. For q < q̄, the
long-wavelength physics dominates and the paraconductive
fluctuations are diffusive within a homogeneous (in the aver-
age) two-dimensional system. For q > q̄, the intrasupergrain
physics becomes important and the characteristic timescale
increases with respect to pure diffusion.

An alternative dispersion law is

νq = ν̄ log

[
1 +

(
q

q̄

)2
]
,

which again recovers the diffusive behavior ∝q2 at small q
and is logarithmic at large q. This expression is adopted in
the main text for definiteness because it has the advantage of
being a single expression rather than being defined piecewise.
In this case, the weighted density of states

ND=2(ν) = 1

π
ν̄(1 − e−ν/ν̄ )

is, again up to a prefactor, a smoothened version of the
crossover function g(ν) that yields a 0D-2D crossover in the
AL paraconductivity. We notice that the asymptotic behaviors
for ν � ν̄ or ν � ν̄ are relevant to fit the the 0D-2D crossover
observed in the paraconductivity data [21], while the interme-
diate behavior, as customary in crossover phenomena, is much
less constrained by experiments.
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