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Superfluid weight and polarization amplitude in the one-dimensional bosonic Hubbard model
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We calculate the superfluid weight and the polarization amplitude for the one-dimensional bosonic Hubbard
model with focus on the strong-coupling regime via variational, exact diagonalization, and strong coupling
calculations. Our variational approach is based on the Baeriswyl wave function, implemented via Monte Carlo
sampling. We derive the superfluid weight appropriately in a variational setting. We emphasize the importance
of implementing the Peierls phase in position space and to allow for many-body interference effects, rather
than implementing the Peierls phase as single particle momentum shifts. At integer filling, the Baeriswyl wave
function gives zero superfluid response at any coupling. At half filling our variational superfluid weight is
in reasonable agreement with exact diagonalization results. We also calculate the polarization amplitude, the
variance of the total position, and the associated size scaling exponent, which corroborate that this variational
approach produces an insulating state at integer filling. Our Baeriswyl based variational method is applicable to
significantly larger system sizes than exact diagonalization or quantum Monte Carlo.
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I. INTRODUCTION

The bosonic Hubbard model (BHM) was introduced by
Gersch and Knollman [1] to study the condensation of repul-
sive interacting bosons. The phase diagram of the superfluid-
insulator transition was described by Fisher et al. [2]. Since
then the phase diagram has been calculated and refined by a
variety of means, including mean-field theory [2,3], pertur-
bative expansion [4], quantum Monte Carlo [5–10] (QMC),
density matrix renormalization group [11–15], and exact di-
agonalization [16]. For a review see Ref. [17]. Due to the
experimental realization of the model [18,19] as ultracold
atoms in an optical lattice, the model has gained renewed
interest.

The BHM is often applied to model Bose solids, e.g.,
solid 4He [20]. One question of interest in these systems is
under what conditions a superfluid type response is exhibited
[21,22]. Some experimental [23] and some theoretical [24]
results suggest that solid helium becomes supersolid at low
temperatures. The experimental conclusions, some of which
are based on torsional oscillator measurements, have since
been challenged by the suggestion that other effects may be
responsible for the observed drop in rotational inertia, such as
quantum plasticity [25], moreover the role played by defects
still awaits clarification (see Ref. [26] for an overview). For
the BHM Anderson [20] has suggested that the ground state
at integer filling is a supersolid.

In this work we apply a variational Monte Carlo [27] for
strongly correlated bosonic models based on the Baeriswyl
wave function [28–34] (BWF) and exact diagonalization (ED)
to study the superfluid response and the polarization ampli-
tude [35–44] of the one-dimensional BHM. Central to our
study is the derivation of the expression for the superfluid

weight valid in variational calculations and emphasis of the
role of interference between Peierls phases of particle paths in
calculating the superfluid weight. According to our derivation,
the Peierls phases should be implemented in position space,
and phases along the paths of different particles should be
allowed to interfere between exchanging particles. If the
relevant propagators are Fourier transformed, and the Peierls
phases are implemented as single-particle momentum shifts,
interference effects are missed. The Fourier transform of the
polarization amplitude shows a peak at small hopping strength
for both the ED and the BWF-MC, which both decrease as
the hopping strength is increased. This similarity is merely
quantitative; the insulator-superfluid transition is only picked
up in ED, where the scaling exponent of the variance of the po-
larization indicates gap closure. We also analyze Anderson’s
treatment [20] of the BHM in light of our findings.

Our paper is organized as follows. In the next section we
present the model and the two methods used in this work,
ED and the BWF-MC method. Subsequently, we discuss the
superfluid weight. In Sec. IV the polarization amplitude and
cumulants are described. In Sec. V our results are presented.
In the penultimate section we comment on the calculation of
the superfluid weight by Anderson; subsequently we conclude
our work. A strong coupling treatment is presented in the
Appendix.

II. MODEL AND METHODS

We study the BHM with nearest neighbor hopping in one
dimension at fixed particle number. The Hamiltonian is

H = −J
L∑

i=1

(ĉ†
i+1ĉi + ĉ†

i ĉi+1) + U
L∑

i=1

n̂i(n̂i − 1), (1)
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where L denotes the number of sites, J and U > 0 are the
hopping and repulsive on-site interaction parameters, respec-
tively, ĉ†

i (ĉi ) denotes a bosonic creation (annihilation) opera-
tor at site i, and n̂i denotes the density operator at site i.

While the method we developed is described in detail for
the BWF elsewhere [27], here we describe aspects that are
relevant to this study. The BWF has the form

|�B〉 = exp(−αT̂ )|∞〉, (2)

where α denotes the variational parameter, and |∞〉 is the
wave function at U = ∞. T̂ denotes the hopping operator
[first term in Eq. (1)]. The crucial step in the construction
of our method is that the kinetic energy propagator can be
represented in real space as

〈x| exp(−αT̂ )|x′〉 = 1

L

∑
k

e−αεk+ik(x−x′ ), (3)

where εk = −2J cos(k). The full probability sampled [27]
consists of a product of single particle propagators. Bosonic
exchanges have to be implemented by exchanging the po-
sitions of pairs of particles and accepting or rejecting such
exchange moves.

For smaller systems, we diagonalize Eq. (1) by the well-
known iterative Lánczos scheme. An important aspect of
the method we use is the indexing of the states, which is
based on the Lehmer combinatorial code [45,46], a way to
order permutations. This procedure is also called Ponomarev
ordering [47–49] and has been implemented in the BHM by
Raventos et al. [50].

III. SUPERFLUID WEIGHT

It is not immediately obvious that there is an issue with
this quantity when it is considered specifically in a varia-
tional context. Usually the second derivative of the variational
ground state energy with respect to the flux at zero Peierls
flux is calculated [51] [see Eq. (13) for how the Peierls phase
enters]. One way to elucidate the issue [52] is to consider that
a variational estimate of the ground state energy is a weighted
average of exact energy eigenvalues,

Evar =
∑

i

Pi(�)Ei(�), (4)

where Pi = |〈�(�)|ψi(�)〉|2 (|�(�)〉 denotes the variational
wave function, |ψi(�)〉 denotes the ith eigenstate of the
Hamiltonian), and Ei(�) denotes the ith energy eigenvalue.
We argue here that the correct superfluid weight, when calcu-
lated in a variational calculation, is given by the expression

nS = 1

L

∑
i

Pi(�)
∂2Ei(�)

∂�2

∣∣∣∣∣
�=0

, (5)

in other words, the derivative of Pi(�) with respect to the flux
need not be taken, in spite of its � dependence. However,
in actual variational calculations, often neither Ei(�) nor
Pi(�) are available, so we give an alternative but equivalent
expression for nS , applicable in numerical settings.

Let us briefly recall the arguments of Pollock and Ceperley
[53]. In their work a continuous system of interacting atoms is

considered, at finite temperature. Below we modify their steps
to account for our lattice model. Pollock and Ceperley [53]
considered a thought experiment, aimed to mimic the rotating
bucket experiments on superfluids. In this setup, the sample is
rotated and the rotational inertia is measured. Below the criti-
cal temperature, where the superfluid fraction ceases to rotate
with the container, the rotational inertia takes a nonclassical
value [54,55], different from the rotational inertia calculated
from the amount of fluid present in the container. In the
context of supersolidity Leggett suggested [56] that torsional
oscillator experiments can access the rotational inertia and
therefore the superfluid weight.

In Ref. [53] the sample is enclosed between two circular
walls: one of radius R, the other of radius R + d . When
R � d , the system becomes equivalent to the sample between
two parallel planes. In the experiment the walls are moved
by an outside agent with velocity v. It is expected that the
normal component of the fluid will move with the walls,
due to friction, while the superfluid component will remain
stationary in the laboratory frame.

The density matrix of the system is

ρ̂v = exp(−βĤv ), (6)

where β denotes the inverse temperature, and

Ĥv =
N∑

j=1

( p̂ j − mv)2

2m
+ V̂ , (7)

where p̂ j denotes the momentum of an individual particle, m
denotes the mass of a particle, and V̂ denotes an interaction.
The total momentum of the system (the momentum of the
normal component) is given by

ρn

ρ
Nmv = Tr{ρ̂vP̂}

Tr{ρ̂v} , (8)

where ρn denotes the density of the normal phase, ρ denotes
the total density, and

P̂ = ∂Ĥv

∂v

∣∣∣∣
v=0

=
N∑

j=1

p̂ j . (9)

We can write the free energy of the system as

exp(−βFv ) = Tr{exp(−βĤv )}. (10)

Taking the first derivative of Fv with respect to v results in

∂Fv

∂v
= Nmv

(
1 − ρn

ρ

)
, (11)

resulting in the superfluid weight of

ρs

ρ
= 1

Nm

∂2Fv

∂v2

∣∣∣∣
v=0

. (12)

In a lattice model the analog of the velocity v is the Peierls
phase, which we introduce into the Hamiltonian as

H (�) = −J
L∑

i=1

(ei�ĉ†
i+1ĉi + e−i�ĉ†

i ĉi+1) + U
L∑

i=1

n̂i(n̂i − 1).

(13)
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In exact diagonalization calculations, the analog of Eq. (12),
the superfluid weight, is obtained by calculating the response
of the system to the Peierls phase (or boundary twist) as

nS = 1

L

[
∂2Eg(�)

∂�2

]
�=0

. (14)

Here Eg(�) denotes the ground state of the system, since our
lattice system is studied at zero temperature.

In the BWF-MC method we use, where the exact eigenen-
ergies are not available, it is not possible to calculate the
superfluid weight directly [via Eq. (14)]. Instead we derive
the superfluid weight in a variational context based on the
reasoning of Pollock and Ceperley [53]. Our starting point is
the normalization of the Baeriswyl wave function,

Q̃� = 〈∞| exp(−2αT̂ (�))|∞〉 = exp(−2αF̃�), (15)

which is analogous to the partition function in statistical
mechanics. We also defined F̃�, the “free energy” in the
variational context. The analog of Eq. (11) is

∂F̃�

∂�
= cos �J� − sin �T�, (16)

where

J� = 〈∞| exp(−αT̂ (�))Ĵ exp(−αT̂ (�))|∞〉, (17)

with the current operator Ĵ being

Ĵ = ∂H (�)

∂�

∣∣∣∣
�=0

= −2J
∑

k

sin(k)nk, (18)

and

T� = 〈∞| exp(−αT̂ (�))T̂ exp(−αT̂ (�))|∞〉, (19)

with T̂ indicating the hopping energy operator at zero flux.
Note that Ĵ is the lattice analog of the total momentum
operator [compare Eq. (18) and Eq. (9)].

From Eq. (11), we derive our proposed expression for the
superfluid weight for variational calculations,

nS = 1

L

∂2F̃�

∂�2

∣∣∣∣
�=0

= 1

L

(
∂J0

∂�
− T0

)
. (20)

In the case of an exact eigenstate, this expression corresponds
to Eq. (14), but in the case of a weighted average of the type
in Eq. (4) it corresponds to Eq. (5). To see this, we first write
T0 as

T0 =
∑

i

PiTi, (21)

where Ti denotes the expectation value of the kinetic energy
in eigenstate i, and write J� as

J� =
∑

i

Pi(�)Ji(�), (22)

where Ji(�) denotes the expectation value of the current
operator (Ĵ) in the eigenstate |ψi(�)〉, and take the derivative
with respect to �, resulting in

∂J�

∂�
=

∑
i

[
∂Pi(�)

∂�
Ji(�) + Pi(�)

∂Ji(�)

∂�

]
. (23)

Setting � = 0, we can use the fact that Ji(0) = 0, leaving us
with

nS = 1

L

∑
i

Pi

(
∂Ji(0)

∂�
− Ti

)
, (24)

which is exactly Eq. (5).
The second derivative in Eq. (20) involves two limits,

� → 0 and L → ∞. In one dimension the order of limits
is inconsequential; the superfluid weight is obtained in both
cases [57,58]. Below we evaluate the second derivative in
Eq. (20) by way of finite difference on a grid � = m2π/L,
with m integer.

Some care needs to be exercised in applying the derivative
with respect to �. It appears highly tempting to implement
the Peierls phase as a shift in k, as εk → εk+� in each single
particle propagator [Eq. (3)]. This approach leads to a finite
superfluid weight even at integer filling. However, in this case
the interference between the particles is neglected.

To elaborate, let us write Q̃� in the coordinate representa-
tion as

Q̃� =
∑
xL,xR

〈∞|xL〉〈xL| exp(−2αT̂ (�))|xR〉〈xR|∞〉, (25)

where xL/R = xL/R,1, ..., xL/R,N , indicating particle positions
in the “left” or “right” coordinate bases. For the moment, let
us consider a one-particle propagator,

〈x| exp(−2αT̂ (�))|x′〉
= 〈x|(1 − 2αT̂ (�) + 2α2T̂ (�)T̂ (�))|x′〉. (26)

A term in which the difference between x′ and x is a fixed
number will involve all different paths which go from x to x′.
The different paths may have a different number of hoppings,
left and right, but the difference between x′ and x is the same.
Each right hopping contributes a phase of �, while each left
hopping contributes a phase of −�. Thus, the net change in
phase will be determined solely by x′ − x; we can write

〈x| exp(−2αT̂ (�))|x′〉 = exp[i�(x′ − x)]

× 〈x| exp(−2αT̂ (0))|x′〉. (27)

We used the fact that for a periodic system 〈x|x′〉 = δx,x′+L.
Armed with this, we can rewrite Q̃(�) as

Q̃� =
∑
xL,xR

exp

[
i�

N∑
i=1

(xR,i − xL,i )

]

× 〈∞|xL〉〈xL| exp(−2αT̂ (0))|xR〉〈xR|∞〉. (28)

We note that the operator appearing in the exponential∑N
i=1(xR,i − xL,i ) is a sum of differences between single par-

ticle positions. The contributions from different particles are
now added, and they can cancel. The position operator is
undefined in a periodic system, but its exponential, provided
that � = m2π/L, is well defined. Such an operator is used in
the many-body analog of the modern theory of polarization
[35,36], also to express a second derivative in the momentum
shift [42]. Following the same steps, we can write

nS = − lim
L→∞

[
L2

4απ2

]
Re ln Q̃2π/L. (29)

174517-3



HETÉNYI, MARTELO, AND TANATAR PHYSICAL REVIEW B 100, 174517 (2019)

If the system has integer filling, it always holds that

N∑
i=1

(xR,i − xL,i ) = 0, (30)

leading to a superfluid weight of zero. According to this
derivation a finite superfluid weight can only arise for non-
integer fillings. This coincides with previous results on the
Drude weight of the Baeriswyl wave function in fermionic
systems [30].

The derivation we provided above is specific to the BWF, in
which the hopping energy appears explicitly in the projector.
In variational wave functions where that is not the case, one
has to apply a Baeriswyl projector, threaded by a Peierls flux,
and take the limit of α → 0 in the final expression for nS .

IV. POLARIZATION AMPLITUDE

For a periodic lattice system the total position operator is
ill defined. In a many-body system the standard approach [35]
is to calculate the expectation value of the twist operator [59],
also known as the polarization amplitude [41],

Zq = 〈�| exp

(
i
2πq

L
X̂

)
|�〉, (31)

where X̂ = ∑N
i=1 xin̂i. This quantity can be interpreted as a

characteristic function, and derivatives with respect to q give
the average of X̂ , the variance of X̂ or higher order cumulants.
The second cumulant, σ 2

N , which measures the spread of the
center of mass, can be used to determine whether a system is a
conductor or an insulator [35,36,38,40,60]. In a finite system
the definition of the spread is

σ 2
N = − L2

4π2


2 ln Zq


q2

∣∣∣∣
q=0

, (32)

where 
G

q indicates a discrete derivative of G with respect

to q. While the commonly used expression for the variance
of the total position of Resta and Sorella is [35,36] σ 2 =
− L2

2π2 Re ln Z1 [consistent with Eq. (32)], for small system
sizes scaling exponents are difficult to obtain from Eq. (32). A
simple remedy [42] is to take the derivative of the ln function
analytically and apply discrete derivatives to the remaining
cases,

σ 2
N = − L2

4π2

⎡
⎣(


2Zq


q2

∣∣∣∣
q=0

)
−

(

Zq


q

∣∣∣∣
q=0

)2
⎤
⎦. (33)

In our calculations below we will use Eq. (33) to calculate
the variance and the size scaling exponent γ from an assumed
scaling form of

σ 2
N (L) = aLγ . (34)

We also calculate the discrete Fourier transform of Zq, which
we define as

Z̃x =
L∑

q=1

exp

(
i
2πqx

L

)
Zq, (35)

where x = 1, ..., L.
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FIG. 1. Superfluid weight based on exact diagonalization calcu-
lations and BWF-MC as a function of J/U for different system sizes
for fillings of one half and one. The inset compares the energy per
particle for integer filling for the Baeriswyl wave function based
variational Monte Carlo method, exact diagonalization, and the
strong coupling expansion based on the Baeriswyl wave function
(−2J2/U ) for filling one.

V. NUMERICAL RESULTS

Figure 1 shows the superfluid weight for systems of dif-
ferent system sizes at filling one half and one. The half-filled
system is always superfluid. The BWF-MC and ED results are
reasonably close in the case of half filling. For integer filling
only the ED results are shown, since the BWF-MC are zero,
as shown above. The ED results show no superfluid response
for small hopping values up to J/U ∼ 0.2. At that point the
superfluid weight starts to grow for the smallest system size.
Larger system sizes persist in an insulating state until larger
values of J/U , but all of them are noticeable by J/U ≈ 0.3.
In the half-filled system the energy as a function of � was
found to be discontinuous at a finite value of �, indicating a
level crossing. No level crossing was found for filling one.
We note that at filling one the gap closure (corresponding
to the Kosterlitz-Thouless transition) occurs [11–13,16] at
(J/U )KT ≈ 0.6. In particular, the ED calculation extended
by a renormalization group analysis by Kashurnikov and
Svistunov [16] gives JKT = 0.608(4), nearly twice the value
where the superfluid weight begins to grow in Fig. 1. Actually,
for hopping value J/U ∼ 0.3–0.5, ED indicates a nonzero
superfluid weight, but this is not a reliable result, once we
are approaching a quantum transition, (J/U )KT ≈ 0.6, and the
smallness of the system sizes, up to L = 14, becomes highly
manifest.

In Fig. 2 the variance of the total position σ 2
N and its size

scaling exponent γ are shown. The size scaling exponent γ is
shown in the insets. The size scaling exponent γ is known [42]
to take the value two in a closed gap (conducting) system and
the value one for an insulating system. We notice that in the
upper panel of Fig. 2, the exact diagonalization calculations
bear out these expectations, notwithstanding the limitations of
small system sizes. The scaling exponent γ is near the value
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FIG. 2. Second cumulant of the polarization as a function of
J/U for filling one for different system sizes based on exact diag-
onalization (upper panel) and variational Monte Carlo (lower panel)
calculation. The inset shows the respective size scaling exponents.

one when J/U is small and increases to two around J/U ∼
0.5, in reasonable agreement with the results of Kashurnikov
and Svistunov [16]. For the BWF-MC calculations (lower
panel of Fig. 2), the size scaling exponent is near one, in
agreement with what is expected for an insulating phase.
As argued in Sec. III the superfluid weight is zero for the
Baeriswyl wave function at integer filling. This conclusion is
corroborated by our variational results shown in the inset of
the lower panel of Fig. 2.

The upper panel of Fig. 3 shows Z̃x, the discrete Fourier
transform of Zq in the form of a color map (J/U is the variable
on the x axis, the variable conjugate to Z̃x is on the y axis).
The system is the unit filled one. The interesting result on this
figure is the peak, which occurs at x = 7, half the unit cell,
which is where it should be for a half-filled system with no
spontaneous polarization. The peak is relatively constant until
J/U ≈ 0.3 then starts to decrease. Again, this occurs at J/U
where the superfluid weight increases in Fig. 1. The lower
panel of Fig. 3 shows Z̃x as a function of x and J/U based on
our variational Monte Carlo results. The similarity between
the upper and lower panels are striking: A sharp peak halfway
through the supercell exists near J = 0, which decreases

FIG. 3. Z̃x , the Fourier transform of the function Zq, as a function
of x (the variable conjugate to q) and J/U for a system of filling one.
Upper panel: exact diagonalization (L = 14), lower panel: BWF-MC
(L = 80).

around J/U ≈ 0.3. An important difference between the two
results is the scaling of the spread of the distributions, shown
in the insets of Fig. 2. In spite of the qualitative similarity, the
two distributions are indicative of different physical behavior.

In order to analyze the behavior of the superfluid weight
(next section), we present two more sets of results in Figs. 4
and 5. The former shows the spread of the position as a

0 100 200 300 4000.01

0.02

0.03

0.04

σ N
/L

0 100 200 300 400
L

0

0.002

0.004

σ 1/L

FIG. 4. Standard deviation of the position (divided by the system
size) vs system size, for a system with J/U = 0.25 at filling one.
Upper panel: total position for a bosonic system, lower panel: single-
particle position with bosonic exchange moves turned off.
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FIG. 5. Upper panel: position of one particle on the lattice, lower
panel: total position modulo the size of the system, for a system with
J/U = 0.25, N = 320 particles, and size L = 320 lattice sites.

function of system size J/U = 0.25 for two cases, both at
filling one. In the upper panel the total position is shown, in-
dicating convergence with system size, or insulating behavior.
In the lower panel, we show the variance in the position of
one particle, when bosonic exchange moves are turned off (in
other words, in a system of distinguishable particles). Figure 5
shows two time series in the course of the MC simulation, the
upper panel for the position of a single particle (with bosonic
exchange moves), the lower panel for the total position. We
see that even though the single particle delocalizes over the
whole lattice, the total position fluctuates around the center of
the unit cell. We see that bosonic exchange delocalizes single
particles but leaves the center of mass localized, fluctuating
around the center of the supercell. Similarly, a superfluid
weight calculation which neglects the interference of particles
would lead to a finite superfluid response (we checked this).

VI. DISCUSSION

Anderson has argued [20], based on a strong coupling
expansion, that the superfluid response of the BHM is finite
at integer filling. Here, we show that his formalism is sim-
ilar to our strong-coupling expansion, and that his way of
implementing the Peierls flux does not allow for interference
between particles. The finite superfluid weight is an artifact of
this implementation.

We follow the steps of Ref. [20], but we use a system
threaded by a flux � at the outset. For filling one in the
strong coupling limit U � J and up to the leading order in
J/U , the many-body ground state is written as the product of
nonorthogonal bosons, the so-called “eigenbosons,”

|�A(�)〉 =
L∏

i=1

b̂†
i (�)|0〉 (36)

where the “eigenbosons” are given by

b̂†
i (�) = 1

M

[
ĉ†

i + e−i� J

2U
ĉ†

i+1 + ei� J

2U
ĉ†

i−1

]
(37)

with M =
√

1 + 2(J/2U )2. Let us write down the first few
terms of Eq. (36). The zeroth order term is∏

i

ĉ†
i |0〉 (38)

which is equal to |∞〉, the term zeroth order in J/U in
Eq. (A9). The term first order in J/U is

J

2U

∑
i

[exp(i�)ĉ†
i+1 + exp(−i�)ĉ†

i−1]
∏
j 
=i

c†
j |0〉, (39)

which is exactly the first order term in Eq. (A9). For this
system we calculated the ground state energy and showed that
the superfluid weight is zero.

The particular steps of Anderson, leading to the superfluid
weight, are as follows. The bosonic states are Fourier trans-
formed as

b̂0 = ĉ0 +
(

Je−i�

2U
ĉ1 + Jei�

2U
ĉ−1

)

= 1√
L

∑
k

[1 + (J/U ) cos(k + �)]ĉk . (40)

The kinetic energy is written

K = − J

N

∑
k

cos(k + �)

× [1 + 2(J/U ) cos � cos k + (J/U )2 cos2 k]. (41)

The second derivative of K according to � will give a finite
contribution. The issue is that in the Fourier transform of
Eq. (40), the Peierls phase is separated from the rest of the
system (in the words of Anderson a pair of lattice sites is
“embedded” in the system) and not allowed to interfere with
the Peierls phases of other hoppings. When, in our BWF-
MC calculations, a Peierls phase is implemented in each of
the propagators independently, without interference, a finite
superfluid weight also results. Moreover, at small J/U the two
results give the same scaling with J/U .

VII. CONCLUSION

In the context of solid 4He supersolidity was suggested by
Kim and Chan [23] based on torsional oscillator experiments.
It is important to note that while the bosonic Hubbard model
may give useful hints into the behavior of solid helium,
some aspects, for example vacancies and dislocations, are not
accounted for [61]. The experiments of Kim and Chan were
also brought into question by the suggestion [25] that their
results could be due to quantum plasticity. Quantum plasticity
is a phenomenon which can only be defined in more than one
dimension.

Our studies show that the Baeriswyl wave function cannot
produce a finite superfluid weight. Interestingly, the Fourier
transform of the polarization amplitude behaves very similarly
to its counterpart calculated by exact diagonalization. Closer
inspection however, for example, the calculation of the size
scaling exponent, still indicates an insulating system. There-
fore, the BWF is reliable up to J/U ≈ 0.5 not only for the
ground state energy but also for the polarization amplitude in
the insulating phase.

We also stressed the proper way to calculate the superfluid
weight in a variational context and commented on a calcula-
tion of Anderson based on which a finite superfluid response
was found for the integer filled bosonic Hubbard model. Our
central result is that the “usual” formula of the superfluid
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weight, the second derivative with respect to a momentum
shifting Peierls phase, is not directly applicable in a variational
context.
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APPENDIX: STRONG COUPLING EXPANSION BASED
ON THE BAERISWYL WAVE FUNCTION

The BHM has been studied via a number of strong cou-
pling expansions [4,62–65]. Such expansions in the case of
the BHM are usually more difficult than in the case of the
fermionic Hubbard model, where the Heisenberg model is
obtained as the limiting case.

In the atomic limit, the 1D BHM ground state at filling one
is given by a full localized boson state

|∞〉 =
L∏

i=1

ĉ†
i |0〉. (A1)

Threading the system with a flux �, using the fact that the
state |�∞〉 is not � dependent, the BWF reads

|�B(�)〉 = exp(−αT̂ (�))|∞〉 (A2)

where T̂ (�) is the first term in the r.h.s. of Eq. (13). Our first
aim is to evaluate the variational energy,

EB(α,�) = 〈�B(�)|Ĥ (�)|�B(�)〉
〈�B(�)|�B(�)〉 , (A3)

by performing a strong-coupling expansion (J/U � 1) via
expanding the kinetic projector and keeping the leading order
terms in J/U in all relevant quantities. An important point is
that successive applications of the kinetic operator on |∞〉 (a
state with all sites occupied by one particle) in expectation
values of the type in Eq. (A3) should be such that one returns
to the state 〈∞|.

Up to first order in J/U the BWF is given by

|�B(�)〉 = |∞〉 + αJ|�d (�)〉 (A4)

where |�d (�)〉 = ∑L
i=1 (ei�ĉ†

i+1ĉi + e−i�ĉ†
i ĉi+1)|�∞〉, a

state which is a superposition of states with occupation
number ni being 0 and 2 for a pair of nearest neighboring
sites and 1 for all other sites.

The pair occupation, needed for the potential energy,
within our approximation is given by

np = 〈�B(�)|n̂i(n̂i − 1)|�B(�)〉 = 8α2J2 (A5)

and the average of the potential energy by

〈�B(�)|Û |�B(�)〉 = 8α2J2UL (A6)

where Û is the second term in the r.h.s. of Eq. (1). The boson
momentum distribution reads

n(k,�) = 〈�B(�)|n̂k|�B(�)〉 = 1 + 8αJ cos(k + �) (A7)

where n̂k = ĉ†
k ĉk and ĉ†

k = 1√
L

∑L
i=1 e−ikxi ĉ†

i . The above result
is obtained by performing the calculations in momentum
space and exponentials e±i(k+�) lead to the momentum dis-
tribution to depend on k + �. The average of the kinetic
energy is

〈�B(�)|T̂ (�)|�B(�)〉 =
∑

k

εk+�n(k,�) = −8αJ2L.

(A8)
Note that both εk+� and n(k,�) depend on k + �, therefore
the kinetic energy is not flux dependent as expected, since, at
filling one, the product εk+�n(k,�) just represents an overall
shift in the Brillouin zone relative to a system without flux.
Optimizing the total energy at any flux leads to α∗ = 1

2U . The
optimal variational wave function is given by

|�B(�,α∗)〉 = |∞〉 + J

2U
|�d (�)〉 (A9)

and the ground state energy per site by

EB(α∗) = −2J2

U
, (A10)

where we dropped the � dependence from the notation. The
inset in Fig. 1 compares this approximation to the results of
exact diagonalization for fourteen sites, and BWF-MC results
for a system of L = 160.

As for the superfluid weight [Eq. (20)], we first ex-
press the total current operator under a flux � within our
approximation as

Ĵ (�) = ∂T̂ (�)

∂�
= 2J

∑
k

sin(k + �)ĉ†
k ĉk, (A11)

and its average over |�B(�)〉 is zero

J�(�) = 2J
∑

k

sin(k + �)n(k,�) = 0 (A12)

indicating the insulating character of |�B(�)〉 at filling one.
The average of the current operator expressed by Eq. (17)
reads

J� = 2J
∑

k

sin(k)n(k,�) = −4J2

U
sin �L (A13)

while the average of the kinetic energy, expressed by Eq. (19)
reads

T� =
∑

k

ε(k)n(k,�) = −4J2

U
cos �L. (A14)

Using Eq. (20) nS = 0 for the BHM at filling one in the strong
coupling expansion, in agreement with the previous ED and
BWF-MC results.

For the 1D BHM at filling one up to order in (J/U )2,
the kinetic and potential energy per site averages (at opti-
mal variational parameter), read 〈T̂ 〉 = − 4J2

U and 〈Û 〉 = 2J2

U ,
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respectively. Physically, this means that, through the kinetic
exchange mechanism, the kinetic energy gain is bigger than
the on-site potential energy cost, in perfect analogy with the
fermionic Hubbard model (FHM) in the strong coupling limit
[66]. Along the same lines, the pair occupancy, Eq. (A5), and
momentum distribution for � = 0, Eq. (A7), read as

np = 2J2

U 2
(A15)

and

n(k) = 1 − 2εk

U
(A16)

also in perfect analogy with the FHM in the strong coupling
limit, except, obviously, for the absence of the spin-spin
term [66]. It is also worth mentioning that the momentum
distribution for � = 0, Eq. (A16), is in agreement with that
of Ref. [67].
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