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Higgs oscillations in time-resolved optical conductivity
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Driving superconductors out of equilibrium is a promising avenue to study their equilibrium properties as
well as to control the superconducting state. Nonequilibrium superconductors are often studied using time-
resolved optical conductivity measurements. Thus, the characterization of a superconducting state in a pump
driven nonequilibrium state requires careful attention in the time domain. We calculate the time-resolved optical
conductivity of a pumped superconducting state using a nonequilibrium Keldysh approach. Through functional
derivation, the optical conductivity is obtained with full vertex corrections and used to characterize the transient
superconducting state. The transient optical conductivity shows the suppression of the superconducting order
parameter in the time domain. The subsequent recovery of the order parameter exhibits oscillatory behavior that
corresponds to the Higgs amplitude mode, and may be seen in several parts of the spectrum.
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Advancements of time-resolved spectroscopic techniques
have enabled the measurement [1] and control [2–7] of hid-
den properties of ground states and low-energy excitations
in correlated materials, which are not easily accessible in
equilibrium. In the energy spectrum, relatively low-energy
scale—terahertz and midinfrared—frequencies have a special
place in such techniques because of their noninvasive nature
(to suppress the heat production that may destroy the ordered
state) and suitability for observation of low-energy excitations
of the ground states.

Within the context of superconductivity, the excitations of
superconducting condensate are of great interest. The scalar
nature of the condensate restricts any coupling to the elec-
tromagnetic (EM) field in the linear regime. Moreover, when
the superconducting order is perturbed by any means, the
underlying U(1) symmetry breaks spontaneously and results
in two oscillating bosonic modes: the massless phase, and
the massive amplitude mode—the Higgs mode [8–14]. The
elusive Higgs mode resides at a frequency of twice the su-
perconducting gap (2�). Recently, it has been shown that the
amplitude mode can be excited, and observed, by an EM field
using a coexisting order, e.g., charge density wave [15], by
nonlinear coupling to the EM field (generation of the third
harmonic) [16,17], by time-resolved conductivity [18], or by
using the presence of supercurrent [19,20].

Given that the optical conductivity is the primary probe
of the Higgs mode, a proper theoretical description of the
conductivity is a necessity. Numerous work has been done to
calculate the conductivity (and other response functions) of
correlated electrons in an equilibrium [21–24] and nonequi-
librium state [10,25–28]. In a nonequilibrium state, such as
induced by a pump-probe setup, a calculation of the con-
ductivity through the Bethe-Salpeter (BS) equation, which
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is necessary to capture the effects beyond the bare-bubble
susceptibility, becomes computationally prohibitive because
the Hamiltonian loses time-translational symmetry. Previous
solutions to this problem include exact diagonalization of the
Hamiltonian (which is limited by system size), mean-field
analyses of the BCS Hamiltonian (which is a priori not gauge
invariant and neglects inelastic collisions and dynamics of the
interactions) [29], and the time-dependent dynamical mean-
field theory (td-DMFT) [30,31] where optical conductivity of
a superconductor was not considered.

In this work, we go beyond these limitations and calculate
the time-dependent optical conductivity using a functional
derivation approach based on nonequilibrium Green’s func-
tions. We solve the Nambu-Gor’kov equations for electron-
phonon mediated superconductivity self-consistently on the
Keldysh contour and calculate the nonequilibrium interact-
ing Green’s functions in the time domain. We consider the
Holstein model with impurity scattering as a particular in-
stance to study the transient optical conductivity of a su-
perconductor. The optical conductivity is calculated by a
functional derivative of the current with respect to the applied
field. One of the advantages of this particular method is that
it naturally includes vertex corrections [32–34], but bypasses
the calculation of the BS equation in the time domain. In
equilibrium, our results reproduce several features of the
known conductivity of dirty superconductors such as an up-
turn towards low frequencies inside the gap [21,22]. In a
pump driven, nonequilibrium case, the conductivity reflects
the temporal dynamics of superconducting order including
suppression, recovery, and the Higgs oscillations. These are
clearly present in the features of the conductivity that are com-
monly associated with the superconducting order in equilib-
rium, i.e., the energy location of the gap, the coherence peak,
and the phonon features in the real part of the conductivity,
as well as in the inductive 1/ω low-frequency response in
the imaginary part. We quantify and characterize the transient
superconducting state using these features as well a purely
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time domain feature (the probe current). All the quantities
show excellent correlation to the gap dynamics which are
known from the underlying simulations [12].

Methods. We consider the Holstein Hamiltonian on two-
dimensional (2D) square lattice to simulate a phonon-
mediated, s-wave superconductor,

H =
∑
k,σ

ξ (k)c†
k,σ

ck,σ
+ �

∑
q

(
b†

qbq + 1

2

)

+ g√
N

∑
σ

k,q

c†
k+q,σ ck,σ

(bq + b†
−q) +

∑
i,σ

Vic
†
i,σ ci,σ . (1)

Here, ξ (k) (= −2Vnn[cos(kx ) + cos(ky)] − μ) is the nearest-
neighbor tight-binding energy dispersion measured relative
to the chemical potential μ, c†

k, ck (b†
q, bq) are the standard

creation and annihilation operators for an electron (phonon),
g is the momentum-independent e-ph coupling constant, and
� is the frequency for the Einstein phonon. Vi is the cou-
pling between electrons and impurities which are distributed
randomly on lattice sites. The choice of the Hamiltonian is
appropriate for the time-dependent problem considered here
as the Hamiltonian can be handled computationally. While
this model was originally developed for electron-phonon
problems, a formally identical boson exchange model can be
used to treat repulsive spin-fluctuation-mediated interactions
[35].

The phonon subsystem is treated as a heat reservoir whose
properties do not change in time as we drive the electronic
subsystem, which is valid for the small pump fluences con-
sidered here [36,37]. The interactions are treated within a
self-consistent diagrammatic-perturbative framework, which
sums the diagrams to all orders of a subclass of diagrams
(see the Supplemental Material [38]) and ensures the con-
servation laws [39]. The superconducting state is treated
within a self-consistent Migdal-Eliashberg formalism, and
the time evolution is done by solving the Gor’kov equations
self-consistently on the Keldysh contour [12,38] (see also
Refs. [34,40–42]).

The pump field, which is applied in the (11) direction, is
included via the minimal coupling i.e., Peierls’ substitution
k(t) = k − A(t). In addition to the pump pulse, a secondary
(probe) pulse is included in the same way as the pump.
However, the probe amplitude and frequency are optimized
to ensure that the probe is in the linear-response regime and is
able to probe the conductivity within the 2� range. The pump
and probe pulse envelopes are taken to be Gaussian curves
A(t ′) = Amaxsin[ω(t ′ − t0)] exp( −(t ′−t0 )2

2σ 2 )(1, 1) with different
parameters.

For the simulation, we use band electronic parameters
Vnn = 0.25, μ = 0.0 eV, phonons parameters � = 0.2, g2 =
0.12 eV and impurity coupling 〈Vi〉2 = 0.01 eV. These pa-
rameters result in an equilibrium superconducting gap � ≈
46 meV at temperature T ≈ 83 K. The choice of parameters
does not represent a specific material. Rather, the parameters
were chosen for numerical tractability. For the pump and
probe field we use ωp = 1.5 eV, σp = 8 (1/eV) and ω =
0.01 eV, σ = 3 (1/eV), respectively.

To calculate transient conductivity we have used the
algorithm proposed in Refs. [33,34,43]. The central idea

FIG. 1. The conductivity of the Holstein model in equilibrium.
Panels (a) and (b) show the real and the imaginary part of optical
conductivity at different temperatures, respectively. The temperature
range spans the superconducting phase transition. The dark shaded
region shows the maximum superconducting optical gap near zero
temperature 2�(T ≈ 0). The light shaded region shows the phonon
window (0 < ω < � = 0.2 eV). Panel (c) displays the ratio of real
parts of conductivity in the superconducting state to normal state at
T = 25 meV. The dashed line in panel (a) shows σ1 calculated using
bare-bubble susceptibility at T = 12.2 meV.

is that first we calculate nonequilibrium current Jpump

for the pumped state without a probe via J(ta) =
N−1

k

∑
k ∇ξ (k − A) Im G<

k (t ′, t ′′ = t ′), where ta = t ′+t ′′
2 and

the derivative is taken along the field (11) direction. Then, for
each pump-probe delay time (t = probecenter − pumpcenter),
we calculate change in the current as function of time (δJ =
Jpump+probe − Jpump). The current and the probe time profiles
are then used to calculate time-dependent conductivity as
σ (t, ω) = δJ(t,ω)

Eprobe(ω) . Here, we have taken the Fourier transform

along average-time axis ta (t ′ = t ′′). However, depending on
the experimental settings other time axes can also be used to
take the Fourier transform, as described in Refs. [44–49]. For
this particular choice, the length of the time signal averages
out the amplitude of the Higgs mode.

Equilibrium results. First, we calculate the conductivity of
the system in an equilibrium state, i.e., without a pump field.
The results are shown in Fig. 1 as a function of temperature T .
For reference, we have also labeled the curves by their equi-
librium superconducting gap 2� as determined from the static
component of the anomalous retarded self-energy �F

R (ω = 0).
In the normal state (T > Tc) we observe the Drude features
in the conductivity near zero frequency, and the effect of the
Einstein phonon at the phonon frequency �. The presence of
a phonon lowers the optical spectral weight in the vicinity of
the phonon frequency (�); this may be observed as a flattening
of the spectral weight in σ1 at �. It is important to note that
the minimum of the real part of the conductivity lies at the
phonon frequency � in the normal state and shifts by 2� in
the superconducting state. This particular feature will be used
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FIG. 2. Probe current in equilibrium state. Panel (a) shows the
probe current as a function of time at different temperatures in
equilibrium. The temperature range spans the superconducting phase
transition. Panel (b) displays the zoomed region around the global
minimum of the probe current. Panel (c) shows the correlation
between the probe-current minimum and the superconducting order
parameter calculated using �F

R(ω = 0).

to study the dynamics of the superconducting edge (the gap)
in the superconducting state.

In the superconducting state (T < Tc) we observe the
opening of the gap in the conductivity i.e., the lowering of
the optical spectral weight inside the 2� window (marked
by the first shaded region in the figure near zero frequency).
In addition, we note the shift of the minimum around the
phonon frequency from � to � + 2�. The normalized
conductivity [σ1(T < Tc)/σ1(T = 25)] is plotted in inset
(c), which clearly shows the opening of the gap and the
development of the coherence peak. The imaginary part of the
conductivity [Fig. 1(b)] can also be analyzed in a similar way
to characterize the superconducting state; it shows 1

ω
behavior

inside the 2� window. For comparison we include the
conductivity calculated from the bare-bubble susceptibility
χ (q = 0, ω) = ∫

d (t ′ − t ′′)
∑

k |vk|2[G>
k (t ′, t ′′)G<

k (t ′′, t ′) −
G<

k (t ′, t ′′)G>
k (t ′′, t ′)]e−iω(t ′−t ′′ ) in the figure (dashed line).

We observe noticeable qualitative differences because of the
vertex corrections in the conductivity calculated from the
functional derivation of probe current, mainly near the gap
edge and for low energies.

As has been shown in THz pump-probe experiments [18],
the probe current maximum or minimum can also be used as
an indicator to study changes in the physical state of a system,
e.g., phase transitions or pump induced changes in the system
response. We analyze our data in a similar way and plot the
equilibrium probe current at different temperatures ranging
from normal state to the superconducting state in Fig. 2. As
the temperature is reduced, rapid oscillations appear in the
probe current, and the minimum is reduced [see Fig. 2(b)].
The minimum of the probe current directly correlates with
the superconducting order parameter, which is shown in panel
(c) where we plot the first minimum of the probe current and
the superconducting order parameter. This particular feature

FIG. 3. Conductivity of the system in a pump driven nonequilib-
rium state. Panels (a) and (b) show the real part of optical conduc-
tivity as a function of frequency at different delay times for pump
fluence Amax = 0.2 (1/a0 ) and 0.4 (1/a0). Each curve is shifted by
an offset (scaled as the delay time) along Y axis to show the changes
in the transient conductivity. The top dashed line in each panel shows
the conductivity of normal state in equilibrium. Conductivity of the
superconducting state is shown by t = −40 (1/eV) in equilibrium.
The blue shaded region II shows the vicinity where the location of the
σ1 minimum resides near the phonon frequency �. The minima are
shown by the dotted curve connecting different delay-time curves.
The red shaded region I shows the region where the gap edge is
located and marked by the dotted line connecting different delay-
time curves.

can also be used to characterize the transient conductivity in a
pump driven superconductor which is shown in the following
sections.

Pump-probe results. Next, we discuss the dynamics of
electrons in a pump-driven nonequilibrium state. Figure 3
shows the real part (σ1) of the transient conductivity as a
function of pump-probe delay time for two pump fluences
Amax = 0.2, 0.4 (1/a0). We observe noticeable changes in the
conductivity from the equilibrium state [at t = −40 (1/eV)].
Mainly, the suppression of superconducting order can be
observed as the edge of the gap (indicated by red markers
in region I) moving towards zero during early delay times.
The second indicator, the location of the minimum in the
real part of the conductivity near the phonon frequency �,
also shifts on the frequency axis. These minima are located
within the shaded region II in the figure. Such suppression
of superconductivity is expected in the transient state of the
system when the pump drives the system because, intuitively,
the pump injects energy in the system and creates excitations.
These excitations raise the effective temperature of the system
and result in the observed superconducting order suppression.
It is important to notice that the effective-temperature picture
does not imply a local equilibrium in the transient state
as shown previously [12,13,50]. Rather, the system is in a
dynamic nonthermal state where oscillation of the superfluid
condensate is observed (this will be discussed in the following
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FIG. 4. Higgs oscillation. The figure shows the dynamics of the
superconducting order parameter in a pump induced nonequilibrium
state [for Amax = 0.2 (1/a0 )]. Panel (a) shows the order parameter as
a function of average time calculated using anomalous self-energy.
Panels (b) and (c) display the estimated order parameter using the
location of the minimum of the real part of optical conductivity
around the phonon frequency (shown in the blue shaded region II in
Fig. 3) and the gap edge location (the red shaded region I in Fig. 3),
respectively. Panels (d) and (e) show the probe current minimum and
σ1(ω = 0.09) as a function of time, respectively. All five quantities
shown in panels exhibit oscillations in time with approximately same
frequency [ωHiggs ≈ 2�(t )], which is calculated by fitting the data to
an oscillatory decaying function. The Fourier transform of the data
also shows a peak at the same frequency (f).

sections). For the larger fluence Amax = 0.4 (1/a0), the melt-
ing of the superconducting order is stronger and the gap is
closed further. Furthermore, it is important to notice that for
larger fluences the conductivity (σ1) does not show a “clear”
spectral gap in the spectrum as shown in Fig. 3(b) at delay
time t = 24 (1/eV). However, the superconductivity remains
in the system (as evidenced by a finite off-diagonal order) as
shown here [12]. Out of equilibrium, the direct connection
between a gap in the optical spectra and finite off-diagonal
order is broken.

Here, we study the dynamics of the superconducting order
parameter in the pump-induced nonequilibrium state from the
perspective of the time-resolved optical conductivity. Mainly,
we discuss the presence of the Higgs mode in our simulation.
Here they arise from a time dependence of the underlying
order parameter, which is reflected in the time-dependent
conductivity. For reference, we will use the superconducting
gap � = �F

R (ω = 0) as a function of average time. We
may estimate the order parameter using the gap edge in
σ1(ω), which in equilibrium occurs at ω = 2�. We define
the edge of the gap as the point ωedge on the frequency axis

where the mean of ( σ sc
1

σ ns
1

)max and ( σ sc
1

σ ns
1

)min is located within
the shaded region I in Fig. 3. Similarly, we use the σ1(ω)
minimum around the phonon frequency � as a reference.
These markers are shown in Figs. 4(a)–4(c), respectively.
We observe that the order parameter determined from �R

F
is suppressed when the pump is active at early times, and

it recovers back to the equilibrium value for later times,
exhibiting Higgs oscillations as it recovers. The gap edge
and the minimum location exhibit similar behavior, although
the relative change is larger at the minimum. All three
quantities show Higgs oscillations at approximately the same
frequency—in principle the frequency is time dependent as it
scales with the local (in time) gap [12], however in this time
range is it approximately constant. Note that there is a small
discrepancy in the order parameter value calculated using
various pieces of the conductivity data which may arise due
to the particular choice of delay axis to Fourier transform,
and due to the frequency resolution of the probe signal.

Besides these markers, the Higgs oscillations occur across
the response. For example, the probe-current minimum as a
function of delay time shows the Higgs oscillations as well
[cf. Fig. 4(d)]. Finally, the oscillatory behavior can also be
observed when considering σ1 at some fixed frequency ω0 as
shown in Fig. 4(e). Here we have chosen ω0 within the 2�

window, but the oscillation of the conductivity may be seen at
all frequencies as a function of time delay [Fig. 4(c)] [38].

Figure 4(f) presents the Fourier transform of the quantities
shown in Figs. 4(a)–4(e). Although the limited data length
leads to wide peaks, the various measurements all oscillate
at the same frequency. This is further confirmed by a curve
fit to a decaying oscillation (shown on the individual panels),
which yields the same frequency for all the measures.

In summary, we have presented the time-resolved optical
conductivity of a pumped superconductor based on the gauge
invariant, fully vertex corrected method. The results show that
the entire spectrum undergoes changes that reflect the under-
lying changes in the gap. There are shifts (in energy) of fea-
tures in the conductivity due to the reduction from �equilibrium

to some reduced �(t ), which itself oscillates in time. These
“Higgs” oscillations are thus visible in essentially the entire
spectrum. We quantify several features that are known to
correspond to the gap in equilibrium, e.g., the gap edge and
the phonon minimum, and connect them to the underlying gap
dynamics which are known from the calculations.

We stress the suitability of the method used in this work to
calculate transient optical conductivity. The method enables
calculation of the response functions beyond the bare-bubble
susceptibility. The effect of vertex corrections varies depend-
ing on the particulars of the system. For example, they are
expected to be minor for an electron-phonon system in the
Migdal limit, but not negligible when it comes to impurity
scattering in certain regimes (this effect is observed in Fig. 1
for low energies where the impurity scattering is significant).
The functional derivative method captures these faithfully and
may have broader applicability in the evaluation of equilib-
rium and nonequilibrium two-particle quantities.
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