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Chiral p-wave superconductors have complex coherence and magnetic field penetration lengths

Martin Speight,1 Thomas Winyard ,1 and Egor Babaev2

1School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
2Department of Physics, KTH-Royal Institute of Technology, Stockholm SE-10691, Sweden

(Received 29 May 2019; revised manuscript received 22 September 2019; published 20 November 2019)

We show that in superconductors that break time-reversal symmetry and have anisotropy, such as p + ip
materials, all order parameters and magnetic modes are mixed. Excitation of the gap fields produces an excitation
of the magnetic field and vice versa. Correspondingly, the long-range decay of the magnetic field and order
parameter is in general given by the same exponent. Thus, one cannot characterize p + ip superconductors
by the usual coherence and magnetic field penetration lengths. Instead, the system has normal modes that are
associated with linear combinations of magnetic fields, moduli of and phases of the order-parameter components.
Each such normal mode has its own decay length that plays the role of a hybridized coherence/magnetic field
penetration length. On a large part of the parameter space, these exponents are complex. Therefore, the system
in general has damped oscillatory decay of the magnetic field accompanied by damped oscillatory variation of
the order-parameter fields.
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I. INTRODUCTION

Superconducting states that spontaneously break time-
reversal symmetry (BTRS) are a subject of intense experi-
mental pursuit. Two types of BTRS state that attract particular
interest are chiral p-wave superconductors where the most
intense discussions were focused on Sr2RuO4 [1,2], and s + is
or s + id superconducting states, evidence for which was
recently found in iron-based superconductors [3,4]. BTRS
states are described by an order parameter that has at least
two components because they break at least U(1) × Z2 sym-
metry. Also, rather generically, there is anisotropy in such
superconducting states. In this work, we investigate the most
basic property of that state: The magnetic field penetration and
coherence lengths.

The basic fundamental length scales of superconductors
were first discussed by Fritz and Heinz London [5] and
Ginzburg and Landau [6] in an ordinary superconductor. This
was done in the model for the simplest superconductor that
breaks U(1) symmetry, described by a single complex field
|�| neglecting crystal anisotropies. The London magnetic
field penetration length λ is the power in the exponential
law of decay of the magnetic field: B = B0e−r/λ. The co-
herence length ξ is the scale associated with the exponential
law describing how the modulus |�| of the complex field,
describing the order parameter, restores its ground-state value

¯|�| away from a perturbation: |�|(r) ≈ ¯|�| − const × e−r/ξ .
The microscopic BCS theory of superconductivity related the
modulus of the order-parameter field |�| to a superconducting
gap � in the single-electron spectrum. The definition of the
coherence length in the context of superconductivity has an
extra factor

√
2 which we absorb for brevity in the definition

of ξ . Often, the coherence length is assessed only approxi-
mately, and it is important to remember the limitations of these
approximate definitions. For example, while in the simplest
Ginzburg-Landau model coherence length is often estimated
via vortex core size or slope of the order parameter near the

center of the vortex core, such estimates are known to fail
even in the simplest models at low temperatures [7]. Another
indirect way to assess coherence length assumes its inverse
proportionality to the gap function � in the BCS expression
ξ0 ∝ 1/�. Likewise, this expression has very limited validity.
It cannot serve as an estimate at strong coupling or in the
multicomponent case. For example, in the case of several gaps
that would give unphysical divergence of coherence length
where a gap is closing (i.e., at the crossover from s++ to s±
states where all coherence lengths should be finite because
there is no symmetry breaking and no accidental degenera-
cies). Similarly, that estimate would miss the divergence of
coherence length when a superconductor transitions from
ordinary to BTRS state, i.e., s to s + is or s to s + id state,
whose existence is dictated by symmetry. These examples
show that accurate coherence length calculations are required
while simple estimates can be highly misleading. Calculations
of coherence and magnetic field penetration lengths have been
made for isotropic multicomponent models for general inter-
actions both in phenomenological and microscopic models
[8–12]. The multicomponent nature of these systems strongly
affects only the coherence lengths, while the magnetic field
penetration length is merely renormalized by intercomponent
couplings. The situation was found to be very different in U(1)
multiband superconductors if different bands have different
anisotropies. While usually the magnetic (London) modes
decouple from other normal modes of the system, such as
density and phase difference (Leggett) modes, having differ-
ent anisotropies in different bands results in a hybridization
of the London mode with the phase-difference mode [13–15].
For a system with N bands, that means that magnetic field
decay is described by several modes with different expo-
nents and there could be up to N + 1 such modes in the
systems considered in [13–15]. Furthermore, the powers in the
corresponding exponents under certain conditions are com-
plex, leading to a damped oscillatory decay of the magnetic
field.
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That raises the following question: What is the behavior
of the magnetic field and what are the coherence lengths in
p + ip superconductors since such systems are inherently
both multicomponent and anisotropic? The important differ-
ence with the systems considered in [13–15], as discussed
below, is the fact that such a superconducting state has spon-
taneously broken time-reversal symmetry.

The standard Ginzburg-Landau model for a p + ip super-
conductor can be written in dimensionless units as

F = 1
2 Qαβ

i j DiψαDjψβ + 1
2 B2 + Fp, (1)

where the greek indices enumerate components of the order
parameter and latin indices stand for space directions. Sum-
mation over repeated indices is implied, Di = ∂i − iAi is the
covariant derivative with the gauge field Ai, and the complex
fields

ψα = ραeiθα , α = 1, 2 (2)

represent the different superconducting components. We con-
sider here a quasi-two-dimensional system or a configura-
tion of a three-dimensional system that is translation invari-
ant in the z direction. The magnetic field B = (0, 0, B) =
(0, 0, ∂1A2 − ∂2A1) is directed so that the spatial indices take
only the values 1,2. Fp represents the potential terms which, by
gauge invariance, may depend only on ρα and θ12 := θ1 − θ2.
For the standard p + ip superconductor, the θ12 dependence
enters only via a term of the form (ψ1ψ

∗
2 )2 + c.c. [16–18],

that is,

Fp = V (ρ1, ρ2) + η

8
ρ2

1ρ2
2 cos 2θ12 (3)

with η > 0. Then, the ground states (minima) of Fp are
degenerate occurring with θ12 = ±π/2. The ground state of
this system is not gauge equivalent to its complex conjugate.
Hence, the system exhibits broken time-reversal symmetry.
Note that, although our focus below will be on the example
of p + ip superconductors, the model is very general, also
describing other BTRS states such as s + is and s + id su-
perconductors [19,20]. Our results obtained below apply also
to such states when anisotropy is present.

The anisotropy of the system enters through the parameters
Qαβ

i j , which must satisfy Qβα
ji = (Qαβ

i j )∗ to ensure F is real.

Henceforth, we assume, as is standard, that all Qαβ
i j are real.

II. CALCULATION OF LENGTH SCALES

The spatial dependence of the fields at equilibrium is gov-
erned by the Ginzburg-Landau (Euler-Lagrange) equations for
the functional F = ∫

R2 F :

Qαβ
i j DiDjψβ = 2

∂Fp

∂ψα

, (4)

∂ j (∂ jAi − ∂iA j ) = Ji, (5)

where the total supercurrent is

Ji := Im
(
Qαβ

i j ψαDjψβ

)
. (6)

Consider the behavior of the system a long distance from some
defect (e.g., a vortex, domain wall, or material boundary).
Since the fields are close to their ground-state values, they

should be well approximated by solutions of the lineariza-
tion of the Euler-Lagrange equations about the ground state.
That is, since the characteristic exponents, such as coherence
lengths, define the exponential decay of a small perturbation
of a field from its ground state, in order to calculate them one
expands fields in the Euler-Lagrange equations around their
ground-state values (see, e.g., [21,22]). For a conventional
superconductor the coherence length is obtained by expanding
in small deviations of the field modulus |ψ | [23], but that
cannot a priori be done for our system involving multiple
fields. Instead, we should expand in small deviations in all
degrees of freedom and see if there is a coupling between the
fields arising at the lowest order. Because we are dealing with
a superconductor, we have a coupling to the gauge field A and
some care must be taken in handling the gauge invariance of
the system. Let us define the phase field

θ� := 1
2 (θ1 + θ2). (7)

Note that ρα = |ψα| and θ12 are gauge invariant, while θ� and
Ai are not. The combination

pi := Ai − ∂iθ� (8)

is gauge invariant, and our strategy is to reexpress the Euler-
Lagrange equations in terms of ρα , θ12, and pi. Let us denote
the ground-state values of ρα and θ12 by uα and θ0, respec-
tively; for the p + ip model (3), θ0 = ±π

2 , but it is instructive
to leave it general, for the time being. Then, saying that the
fields are close to their ground-state values means precisely
that pi, εα , and θ� are small, where

εα := ρα − uα, θ� := 1
2 (θ12 − θ0). (9)

In particular, the small quantities εα, pi, θ� should obey the
linearization of (5) about (pi, ρα, θ12) = (0, uα, θ0). The left-
hand side is exactly ∂ j (∂ j pi − ∂i p j ) which is already of linear
order, but we must compute the supercurrent Ji to linear order.
This is straightforward once we recognize that Diψα is to
linear order

Diψ1 = [∂iε1 − i(pi − ∂iθ�)u1]ei(θ�+ 1
2 θ0 ) + · · · ,

Diψ2 = [∂iε2 − i(pi + ∂iθ�)u2]ei(θ�− 1
2 θ0 ) + · · · , (10)

so the linearization of (5) is

∂ j (∂ j pi − ∂i p j )

= −Q11
i j u2

1(p j − ∂ jθ�) − Q22
i j u2

2(p j + ∂ jθ�)

− u1u2 cos θ0
{
Q12

i j (p j + ∂ jθ�) − Q21
i j (p j − ∂ jθ�)

}
− sin θ0

{
Q12

i j u1∂ jε2 − Q21
i j u2∂ jε1

}
. (11)

Note that the left-hand side of this equation is precisely the
usual curl of the magnetic field (pi differs from Ai by a gradi-
ent, so their curls coincide). The key observation is that, unless
θ0 = 0 or π , that is, unless the ground state is phase locked
or antilocked (or Q12

i j ≡ 0), this partial differential equation
(PDE) couples all the degrees of freedom together (through
its final term), so that they all decay to zero with the same
dominant length scale. Any other value of θ0 (including ±π

2 )

corresponds to a ground state (ψ1, ψ2) = (u1ei 1
2 θ0 , u2e−i 1

2 θ0 )
which is not gauge equivalent to its complex conjugate, and
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hence breaks time-reversal symmetry. Hence, the effects de-
scribed below are generic when one has BTRS and spatial
anisotropy.

To compute the length scales, we must linearize (5) in
(pi, εα, θ�) also. Henceforth, we specialize to the p + ip case
with potential (3), so that θ0 = ±π

2 . Substituting (8) and (9)
into the Euler-Lagrange equations and discarding all terms
nonlinear in small quantities yields

−(
∂2

1 + ∂2
2

)
pi + ∂i∂ j p j − Li j∂ jθ� + Ki j p j

±Q12
i j (u1∂ jε2 − u2∂ jε1) = 0, (12)

±Q12
i j (u2∂i∂ jε1 + u1∂i∂ jε2) − Ki j∂i∂ jθ�

+ Li j∂i p j + 2ηu2
1u2

2θ� = 0, (13)

−Q11
i j ∂i∂ jε1 ± Q12

i j u2∂i(p j + ∂ jθ�) + H1βεβ = 0, (14)

−Q22
i j ∂i∂ jε2 ∓ Q12

i j u1∂i(p j − ∂ jθ�) + H2βεβ = 0, (15)

where we have defined the matrix coefficients

Ki j = Q11
i j u2

1 + Q22
i j u2

2, (16)

Li j = Q11
i j u2

1 − Q22
i j u2

2, (17)

and

Hαβ = ∂2Fp

∂ρα∂ρβ

∣∣∣∣
(u1,u2,± π

2 )
(18)

is the Hessian of the potential Fp about the ground state, with
respect to (ρ1, ρ2).

Note that in the case where there are no mixed gradient
terms Q12 = 0, the linearized equations decouple into a pair
for (pi, θ�) and a pair for (ε1, ε2). That means that small
fluctuations in the density fields do not cause a perturbation
of the phase difference and do not create magnetic field, as
is indeed the case in ordinary superconductors, or in the class
of anisotropic models studied in [13–15]. However, we see
that for anisotropic superconductors that break time-reversal
symmetry, such as p + ip superconductors, no such simplifi-
cation takes place: All the gauge-invariant fields εα, θ�, pi are
coupled to one another, and when one changes all the others
should change too. The implication of this is that systems
like chiral p + ip superconductors cannot be characterized by
coherence and magnetic field penetration lengths in the usual
sense, but the decay length scale of a small perturbation of
the order-parameter field and magnetic field is in general the
same. Furthermore, it implies that one cannot reliably use the
London limit to calculate the magnetic field penetration length
because density modes do not asymptotically decouple from
magnetic modes. Below, we calculate these length scales.

Since the equations are anisotropic, to extract the length
scales we must first select a direction (normal to the do-
main wall or material boundary, or radial from the vortex
core, depending on context), denoted by a unit vector n =
(n1, n2), and then reduce the equations to ordinary differential
equations (ODEs) with n-dependent coefficients, by imposing

translation invariance orthogonal to n. So, we demand that

pi = a(X )n⊥
i + b(X )ni,

(19)
θ� = θ�(X ), εα = εα (X ),

where X = nixi and n⊥ = (−n2, n1). Substituting (19) into
(12)–(15), one obtains a coupled set of five ODEs. The two-
vector-valued ODE (12) implies a pair of scalar-valued ODEs,
obtained by taking its scalar product with n and n⊥. The n
component implies

b = −n
n · Kn

· (Kn⊥ a − Ln θ ′
� ± Q12n(u1ε

′
2 − u2ε

′
1)) (20)

(where ′ ≡ d/dX ), which can be used to eliminate b(X ) from
the other ODEs. We now have four coupled ODEs, forming
a linear system, that describe the response of the system to a
small perturbation about its ground state

A 
w′′ + B 
w′ + C 
w = 0, (21)

where 
w = (ε1, ε2, θ�, a)T and A, B, C are certain constant
4 × 4 real matrices. It is important to note that A and C
are symmetric, while B is skew, and that all three depend
on the choice of direction n. Their exact form is given in
Appendix A.

Recall that (21) is the linearized system of field equations
describing how a system recovers from a perturbation in the
n direction under the assumption of translation invariance
orthogonal to n, for example, how the system behaves near the
boundary of a superconductor subject to an external magnetic
field. Its general solution is


w(X ) =
8∑

i=1

ci
vie
−μiX , (22)

where μ1, μ2, . . . , μ8 are the solutions of the degree 8 poly-
nomial equation

det(μ2A − μB + C) = 0. (23)

The constants μi should be interpreted as field masses which
set the length scale λi of spatial decay of the associated linear
combination of fields via

λi = 1

μi
. (24)

The quantities 
v1, 
v2, . . . , 
v8 are the corresponding eigenvec-
tors [by eigenvector we mean a unit length vector satisfy-
ing (μ2

i A − μiB + C)
vi = 
0], and c1, c2, . . . , c8 are arbitrary
constants, determined by boundary conditions and nonlinear-
ities. Each exponential power is associated to a normal mode,
determined by 
vi. In an ordinary superconductor the normal
mode associated with the coherence length is the modulus
of the order parameter, while the magnetic field penetration
length is attributed to a massive vector field: The magnetic
field. Instead, we see that in the chiral p + ip superconductor
the normal modes are associated with linear combinations of
magnetic and matter degrees of freedom.

Indeed, the polynomial equation (23) has real coefficients
and is quartic in μ2 (since A, C are symmetric, while B is
skew); hence, if μ is a solution, so are −μ, μ∗, and −μ∗.
This demonstrates that complex length scales are caused by
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mixing, as this is the only way for multiple length scales
to become linked and hence be complex conjugates of each
other. Exactly half the eigenvalues, which we choose to label
μ1, . . . , μ4 have positive real part, while the others have
negative real part. We seek solutions that decay to 0 as X →
∞; these are obtained by setting ci = 0 for i � 5 in Eq. (22).

The long-range behavior of the fields, in direction n, is
governed by the dominant eigenvector 
vi = 
v∗, defined to
be the eigenvector whose eigenvalue μi = μ∗ has smallest
positive real part (hence the longest length scale λ∗ = 1/μ∗
of spatial decay). Note that, in general, μ∗ may be complex,
in which case the fields at large X are spatially oscillatory,
behaving like

(ε1, ε2, θ�, a) ∼ c
vr,∗e−Re(μ∗ )X cos Im(μ∗)X, (X → ∞)

(25)

where c is some real constant and 
vr,∗ is the real part of 
v∗.
The complex magnetic field penetration length implies oscil-
latory decay of the magnetic field as observed in anisotropic
systems without BTRS [13–15]. Here, we find that in a p + ip
superconductor one cannot assume that a perturbation of the
gap fields will decay with real exponents: i.e., there are no
real coherence lengths in general. Note that for dirty isotropic
multiband superconductors, the phase difference and density
modes can be mixed even without breaking time-reversal
symmetry [12]. Our findings of the complete mixing of the
order parameters and magnetic modes would apply also for
that case.

Importantly, as detailed below, in general one needs to
retain contributions from the modes associated with shorter
length scales. Of course, our analysis should reproduce the
usual picture of separate real length scales (the coherence
length and magnetic penetration depth) in the case of a
spatially isotropic system, where Qαβ

i j = δαβδi j , and should
hold approximately for a small perturbation of this. In the
near-isotropic regime, when Q11, Q22 ≈ I2 and Q12 ≈ 0, the
coupling between εα, θ�, a is weak, the spectrum is real, and
one of the eigenvectors, 
v4 say, is approximately (0, 0, 0,
1), while the others, 
v1, 
v2, 
v3, are approximately normal to
(0, 0, 0, 1). We then recover the usual picture of separate
length scales associated with the magnetic field λmag = λ4

and the condensates λ1,2,3. Consider the case where λ∗ =
λmag, that is, 
v4 is dominant. Although all fields do, strictly
speaking, decay like (25) [with Im(λ∗) = 0] at very large X ,
the coefficients in front of ε1, ε2, θ� are very small, while
the coefficient in front of a is of order of unity [
v∗ = 
v4 ≈
(0, 0, 0, 1)] so at intermediate-range contributions from the
subdominant eigenvectors are larger. This allows one to iden-
tify approximately λmag as a penetration depth and min{λi} as
a coherence length, and classify the system as type-2 (since
λmag is the largest length scale). Similar remarks apply if one
of the condensate modes is dominant. This is consistent with
the numerical solutions obtained earlier in such regimes
[24]. One therefore may approximately call the exponents
associated to matter-field-dominated modes coherence lengths
and those associated with magnetic-field-dominated modes
magnetic field penetration lengths. However, this approximate
picture disappears as one increases the anisotropy and mag-
netic and matter field couplings in (21) become significant.

In summary, the long-range behavior of spatially decaying
solutions of our system is (25) where μ∗ = 1/λ∗ is the so-
lution of (23) with smallest positive real part. In general, μ∗
depends on n, the direction along which we impose spatial
decay, and may be complex, in which case the decay of both
magnetic and gap fields is oscillatory. We have also shown that
this coupling and the oscillations in all four fields is a direct
result of BTRS and anisotropy.

In the next section we consider the implications of these
findings for the Meissner state of a p + ip superconductor.

III. MEISSNER STATE IN A p + ip SYSTEM

We consider a simple p + ip model, such as the one
discussed in the context of the debate of the nature of super-
conducting state in Sr2RuO4 in [25]. This is of the form (1)
with (after a trivial rescaling of fields which is shown in detail
in Appendix D)

Q11 =
(

3 + ν 0

0 1 − ν

)
, Q22 =

(
1 − ν 0

0 3 + ν

)
,

Q12 =
(

0 1 − ν

1 − ν 0

)

and potential

Fp = V0
{
1 − (

ρ2
1 + ρ2

2

) + 1
8 (3 + ν)

(
ρ2

1 + ρ2
2

)2

− 1
4 (1 + 3ν)ρ2

1ρ2
2 + 1

4 (1 − ν)ρ2
1ρ2

2 cos 2θ12
}
. (26)

The model contains two unknown parameters: −1 < ν < 1
which measures the anisotropy of the Fermi surface, and
V0, the overall strength of the potential [coinciding with
b/(πγ 2K2) in the notation of Ref. [25]]. Its ground states are
(ρα, θ12) = (1,±π/2), so u1 = u2 = 1.

Consider a semi-infinite superconductor occupying the
half-space X � 0 (where, as before, X = n1x1 + x2n2), de-
noted �, with the region X < 0 occupied by an insulator.
Denote by ∂� the boundary between these regions (where
X = 0). Note that n = (cos ϕ, sin ϕ) is an inward-pointing
unit normal to this boundary. The system is subjected to a uni-
form external magnetic field H in the x3 direction. Provided
H is not too strong, the system will approach the ground state
ρ1 = ρ2 = 1, θ12 = π/2 (say) in the bulk (as X → ∞). To
find the Meissner state, we minimize the Gibbs free energy

G =
∫

�

F − H
∫

�

B +
∫

∂�

Fsurf (27)

over all fields in �, assuming invariance under translations
normal to n. Here, we use the standard boundary conditions,
advocated in [26], by including in the free energy the surface
term

Fsurf = χ1
(
ρ2

1 + ρ2
2

) + χ2
(
n2

1 − n2
2

)(
ρ2

1 − ρ2
2

)
+ 2χ3n1n2(ψ∗

1 ψ2 + ψ1ψ
∗
2 ). (28)

For simplicity, we assume reflection from the boundary is
specular, meaning that χ1 = χ2 = χ3 = χ > 0. Having im-
posed translation invariance, the problem reduces to a one-
dimensional variational problem on [0,∞), with natural
boundary conditions at 0, which can be solved by a standard
gradient-descent method. A more detailed discussion of the
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FIG. 1. Superconductor-insulator boundary of a p + ip superconductor with V0 = 3, ν = −0.95, χ = 1, and external field H = 0.3 for two
different boundary orientations: ϕ = 0 (top set of four plots) and ϕ = π/3 (bottom set of four plots). The boundary is at X = 0, the plotted
fields are the condensate magnitudes ρ1 and ρ2 and the magnetic field strength B. The green dots mark points where the spatially oscillating
fields cross their ground-state values and the blue dots mark local extrema. The distances between these successive points are compared with
the prediction of our linear analysis in the bottom right plot of each set.
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FIG. 2. Superconductor-insulator boundary at high external field H = 1 and boundary orientations ϕ = 0, π

4 , π

3 , π

2 , showing stripe
formation in the Meissner state: One condensate component goes to zero and the other achieves a maximum, producing a stripe (orthogonal to
n) of depletion of one condensate and surfeit of the other. Note that the ρ1 and ρ2 curves coincide in the case ϕ = π

4 . The model parameters
are as in Fig. 1.

boundary conditions is given in Appendix B. There is a
caveat here. It has been demonstrated recently for s-wave
superconductors that boundary conditions can be different in
superconductors from those based on the standard assump-
tions of Caroli–de Gennes–Matricon type theory [27], which
implies that the standard theory of boundary conditions for
p + ip should also be revised. However, here we are interested
not in the precise field values at the boundary, but rather
in the laws governing their decay away from the boundary.
Therefore, the precise form of the boundary conditions is not
very important. In Appendix C we present results with the
extra boundary terms omitted entirely, giving the same field
decay behavior.

The solutions depend on the unknown model parame-
ters ν,V0, χ as well as the applied field H and the bound-
ary orientation angle ϕ. We have run simulations for χ ∈
{0, 0.01, 0.1, 1, 10}, finding no qualitative change in the
physics we are focused on. For that reason, we fix χ = 1 for
the remainder of this section and present a representative sam-
ple of the other parameters. We have included a plot (Fig. 4
for χ = 0 in Appendix C for comparison) to demonstrate that
the oscillatory behavior of the fields originates in complex
coherence lengths, not from the boundary terms in Eq. (28).

For V0 = 3, ν = −0.95, H = 0.3, the Meissner states with
boundary orientations ϕ = 0 and π/3 are presented in Fig. 1.
Both exhibit oscillatory tails and field inversion of both B
and the condensates, consistent with exponential decay with
a complex coherence and magnetic field penetration lengths.
We shall return to this shortly. If the external field H is
increased further, the condensates separate more until, for
some ϕ, one or other of the densities ρ1 or ρ2 hits zero. This
produces a Meissner state depicted in Fig. 2 for H = 1 (well
below the lower critical field Hc1 = 1.34) for several angles
ϕ. We see that neither matter field component vanishes for
ϕ = π/4, whereas ρ1 vanishes for ϕ = 0, and ρ2 vanishes
for ϕ = π/2. As one condensate component goes to zero,
the other achieves a maximum exceeding its ground-state
value, producing a stripe (orthogonal to n) of depletion of one
condensate and surfeit of the other.

Returning to our main goal of testing the analysis of the
previous section, it is straightforward to compute, for any
given ϕ (boundary orientation), ν (anisotropy parameter), and
V0 (potential energy scale in the GL energy) the dominant
eigenvalue μ∗, and hence map out the parameter set on which
μ∗ is complex. Figure 3 presents pictures of the (ϕ, ν) param-
eter plane, for a sequence of values of V0, colored to show

the parameter domain where μ∗ is complex. For V0 small,
the parameter domain of complex μ∗ is small and confined
to the edges where |ν| is close to 1, but as V0 increases, the
domain swells, eventually covering the whole parameter space
(when V0 ≈ 4), predicting that the Meissner state should be
spatially oscillatory for all anisotropies ν and all boundary
orientations ϕ if V0 is around this value. Increasing V0 still
further, pockets of real μ∗ return and gradually refill the whole
parameter space for very high values of V0. Turning to the
parameter sets of Fig. 1, V0 = 3, ν = −0.95, and ϕ = 0, π/3,
we find in both cases that μ∗ is complex, consistent with
the nonlinear numerics [μ∗(0) = 0.689 + 0.548i, μ∗(π/3) =
1.013 + 0.648i]. The oscillatory decay predicted by linear
analysis predicts that the zeros of B, and of ρα − uα should be
equally spaced with period π/Im(μ∗), as should successive
extrema of these functions. These gap widths can easily be

FIG. 3. Plots of |Im(μ∗)|/|Re(μ∗)|, where μ∗ = λ−1
∗ is the lead-

ing mass scale (inverse length scale with smallest real part), in the
(ϕ, ν ) parameter space, for various values of V0. Here, ϕ is the
orientation of the sample boundary, and ν, V0 are parameters in
the GL energy controlling the spatial anisotropy and the potential
energy scale, respectively. The black regions indicate where μ∗ is
real and hence there will be no oscillations of the magnetic field, or
condensates, away from the sample boundary.
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extracted from the nonlinear numerics, and are displayed,
for these parameter sets, alongside the linear prediction, in
Fig. 1. The agreement is remarkable. Finally, we have also
chosen parameter sets for which μ∗ is real, so that the lin-
earization predicts nonoscillatory decay. While the solutions
still generically exhibit a single peak in each field, after this
initial overshoot in the nonlinear regime, the fields decay
exponentially without oscillation as the linearization predicts.

IV. CONCLUSIONS

In conclusion, we have shown that the normal modes in an
anisotropic superconductor that breaks time-reversal symme-
try mix density and phase fields with the magnetic field. This
precludes using the usual notion of coherence and magnetic
field penetration lengths because long-range decay of matter
and magnetic fields is given by the same exponent. Addition-
ally, the fundamental length scales, associated with the normal
modes, that mix the order parameters and magnetic field,
are in general complex. We have also shown that this mode
mixing requires BTRS along with anisotropy and that mixing
is required for complex length scales. While systems exist
with oscillations in magnetic field and phase difference due
to anisotropy-driven mixing between these two modes [13],
all four fields having complex length scales can only happen
in an anisotropic BTRS system. Calculating numerically the
Meissner effect in a chiral p + ip superconductor, we indeed
find that application of an external magnetic field is screened
in an oscillatory way and produces damped oscillatory decay
of the order-parameter fields. For strong anisotropy, the effect
should be detectable in muon spin relaxation experiments.
Cutting sample boundaries under different angles relative to
crystal axes and measuring magnetic field inversion can allow
one to recover information about the order parameter. Finally,
we note that our analysis dictates that the effect is present
for any inhomogeneous situation, including the domain wall
excitations in p + ip superconductors considered in [25];
these should also exhibit oscillation and field inversion. That
this was not observed in [25] might be an artifact of an overly
restrictive ansatz. We plan to examine this further in a separate
publication.
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APPENDIX A: COUPLING MATRICES

Here, we record the nonzero matrix elements of the 4 × 4
matrices appearing in Eq. (21):

A11 = −n · Q11n + (n · Q12n)2

n · Kn
u2

2, (A1)

A12 = − (n · Q12n)2

n · Kn
u1u2, (A2)

A13 = ±u2n · Q12n

(
1 + n · Ln

n · Kn

)
, (A3)

A22 = −n · Q22n + (n · Q12n)2

n · Kn
u2

1, (A4)

A23 = ±u1n · Q12n

(
1 − n · Ln

n · Kn

)
, (A5)

A33 = (n · Ln)2

n · Kn
− n · Kn, (A6)

A44 = −1, (A7)

B14 = ±u2

(
n · Q12n⊥ − n · Q12n

n · Kn⊥

n · Kn

)
, (A8)

B24 = ∓u1

(
n · Q12n⊥ − n · Q12n

n · Kn⊥

n · Kn

)
, (A9)

B34 =
(

n · Ln⊥ − n · Kn⊥ n · Ln

n · Kn

)
, (A10)

Cαβ = Hαβ, 1 � α, β � 2 (A11)

C33 = 2ηu2
1u2

2, (A12)

C44 = n⊥ · Kn⊥ − (n · Kn⊥)2

n · Kn
. (A13)

Recall that Ai j ≡ A ji, Bi j ≡ −B ji, and Ci j = C ji.

APPENDIX B: BOUNDARY CONDITIONS

To compute the Meissner state in the region � numerically,
we must minimize the Gibbs free energy

G =
∫

�

(F − HB) +
∫

∂�

Fsurf =:
∫

�

G +
∫

∂�

Fsurf (B1)

among all fields defined on �. It is convenient to include a
gauge-fixing term 1

2 (∂iAi )2 in F , and to denote the dynamical
fields collectively as φa, a = 1, . . . , 6 (consisting of the real
and imaginary parts of ψα , and A1, A2). Then, under a varia-
tion δφa, G varies as

δG =
∫

�

[
∂G
∂φa

− ∂i

(
∂G

∂ (∂iφa)

)]
δφa

+
∫

∂�

(
∂Fsurf

∂φa
− ni

∂G
∂ (∂iφa)

)
δφa, (B2)

where we have used the divergence theorem, and recalled
that n is an inward-pointing normal to ∂�. Demanding that
δG = 0 for all variations requires both these integrals vanish
identically, and hence that φa satisfy the usual Euler-Lagrange
equations in � together with the boundary conditions

∂Fsurf
∂φa

− ni
∂G

∂ (∂iφa)
= 0 (B3)
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FIG. 4. The Meissner state at a superconductor-insulator interface in the model (26) with V0 = 3, ν = −0.95, χ = 0, and external field
H = 0.3 for two different boundary orientations: ϕ = 0 (top set of plots) and ϕ = π/3 (bottom set of plots). The boundary is at X = 0, the
plotted fields are the condensate magnitudes ρ1 and ρ2, and the magnetic field strength B. The green dots mark points where the fields cross
their ground-state values and the blue dots mark local extrema.
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on ∂�. For the model studied here, this reduces to

niQ
1β
i j D jψβ = 2

[[
χ1 + χ2

(
n2

1 − n2
2

)]
ψ1 + 2χ3n1n2ψ2

]
,

niQ
2β
i j D jψβ = 2

[[
χ1 − χ2

(
n2

1 − n2
2

)]
ψ2 + 2χ3n1n2ψ1

]
,

∂iAi = 0,

B = H. (B4)

Imposing the translationally invariant ansatz ψα = ψα (X ), Ai = a(X )n⊥
i + b(X )ni, where X = nixi, this reduces further to

n · Q1βn[ψ ′
β (0) + ib(0)ψβ (0)] + in · Q1βn⊥a(0)ψβ (0) = 2

[[
χ1 + χ2

(
n2

1 − n2
2

)]
ψ1(0) + 2χ3n1n2ψ2(0)

]
,

n · Q2βn[ψ ′
β (0) + ib(0)ψβ (0)] + in · Q2βn⊥a(0)ψβ (0) = 2

[[
χ1 − χ2

(
n2

1 − n2
2

)]
ψ2(0) + 2χ3n1n2ψ1(0)

]
,

b′(0) = 0,

a′(0) = H. (B5)

These are the boundary conditions we impose at X = 0. At X = L, large (our effective infinity), we demand that b′ = a′ = 0,
ψ1 = u1, and ψ2 = iu2 (the fields are in their ground-state state).

APPENDIX C: χ = 0 RESULTS

To confirm that the long-range decay behavior holds for
various boundary conditions, we include here a plot in Fig. 4
for the parameters used in our results section but with the
boundary term removed, χ = 0.

APPENDIX D: RESCALING OF FIELDS

We have made use of the form of the potential argued for
in [25], however, we have made a few rescalings to rewrite the
proposed model in a simpler fashion. The proposed model is

Eb =
∫
R2

{
ap(|ηx|2 + |ηy|2) + b1(|ηx|2 + |ηy|2)2 + b2

2

(
η2

xη
2
y + η2

yη
2
x

) + b3|ηx|2|ηy|2

+ K1(|D1ηx|2 + |D2ηy|2) + K2(|D1ηy|2 + |D2ηx|2 + D1ηxD2ηy + D2ηyD1ηx + D1ηyD2ηx + D2ηxD1ηy) + B2

8π

}
d2xb,

(D1)

where Di = ∂i − iγ Ab
i and some of the parameters are coupled

such that

K1 = K

4
(3 + ν), K2 = K

4
(1 − ν),

b1 = b

8
(3 + ν), b2 = b

4
(1 − ν),

b3 = −b

4
(1 + 3ν). (D2)

We will write our condensate fields as

ψ1 = ηx/λ, ψ2 = η2/λ, λ := √−ap/b, (D3)

and rescale our gauge field

Ai = Ab
i /λA, λA := λ

√
4πK . (D4)

Finally, we can use a spatial rescaling

xi = xb
i /λx, λx := 1/γ λA, (D5)

and then rescale the total energy to be

E = Eb/λE , λE := Kλ2/2. (D6)

This finally gives the form of the energy given in Eq. (1) with
potential

Fp = V0
{
1 − (

ρ2
1 + ρ2

2

) + 1
8 (3 + ν)

(
ρ2

1 + ρ2
2

)2

− 1
4 (1 + 3ν)ρ2

1ρ2
2 + 1

4 (1 − ν)ρ2
1ρ2

2 cos 2θ12
}
,

(D7)

and anisotropy tensors

Q11 =
(

3 + ν 0

0 1 − ν

)
, Q22 =

(
1 − ν 0

0 3 + ν

)
,

Q12 =
(

0 1 − ν

1 − ν 0

)
.

Where we have collected multiple parameters together,

V0 = b

2πγ 2K2
. (D8)

Note that without loss of generality, we have reduced the
number of parameters to two (V0, ν). This leads to the vacua
and hence asymptotic values being θ12 = ±π/2 as required
for BTRS and ρ1 = ρ2 = 1 without loss of generality.
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