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Two mechanisms of Josephson phase shift generation by an Abrikosov vortex
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Abrikosov vortices contain magnetic fields and circulating currents that decay at a short range λ ∼ 100 nm.
However, vortices can induce Josephson phase shifts at a long range r ∼ μm � λ. Mechanisms of this puzzling
phenomenon are not clearly understood. Here we present a systematic study of vortex-induced phase shifts in
planar Josephson junctions. We make two key observations: (i) The cutoff effect: Although vortex-induced phase
shift is a long-range phenomenon, it is terminated by the junction and does not persist beyond it. (ii) A linear to
superlinear crossover with a rapid upturn of the phase shift occurs upon approaching a vortex to a junction. The
crossover occurs at a vortex-junction distance comparable to the penetration depth. Together with theoretical
and numerical analysis this allows unambiguous identification of two distinct and independent mechanisms.
The short range r � λ mechanism is due to circulating vortex currents inside a superconducting electrode
without involvement of magnetic fields. The long range r � λ mechanism is due to stray magnetic fields
outside electrodes without circulating vortex currents. We argue that understanding of controlling parameters
of vortex-induced Josephson phase shift can be used for development of novel compact cryoelectronic devices.
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I. INTRODUCTION

Josephson electronics operate with a quantum-mechanical
Josephson phase difference (JPD), ϕ, between two super-
conducting electrodes. In conventional Josephson junctions
(JJ’s) ϕ = 0 in the absence of applied currents and is spa-
tially independent, ϕ(x) = const, without external magnetic
fields. It is anticipated that unconventional junctions with
either a fixed spatially independent JPD (ϕ junctions) or a
spatially dependent Josephson phase shift (JPS) along the
junction (0-ϕ junctions) may provide additional functionality
in Josephson electronics [1–4]. For example, they can operate
as autonomous and persistent phase batteries—one of key
elements of quantum [1,5–14] and digital Josephson electron-
ics [2,3,15,16]. Such junctions can also be used for develop-
ment of novel types of cryogenic memory [17–22]. A π shift
is most commonly needed, e.g., for bringing flux qubits to
a degeneracy point [1,5–7], for realization of complementary
digital electronics [2,3,15,16], and for maximum distinction
between 0 and 1 state in memory cells [17].

Several ways of making ϕ and 0-ϕ junctions are known.
0-ϕ junctions can be created via self-field effect, which
is induced by uneven distribution of critical or bias cur-
rents [23–27] and affects the dynamics of Josephson vor-
tices [23,24,28]. π junctions with a fixed JPD, ϕ = π , can
be realized using hybrid superconductor/ferromagnet (S/F)
structures [29–31] and unconventional superconductors with
sign-reversal order parameter, e.g., d wave [2,32,33], or
s± [34–37]. ϕ junctions with arbitrary JPD can be made
using inhomogeneous S/F junctions [38,39] or junctions with
strong spin-orbit coupling [40]. JPD in the above-mentioned
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junctions is either persistent but not tunable (e.g., SFS junc-
tions and junctions with sign-reversal order parameter), or
tunable but not persistent (e.g., 0-ϕ junctions based on uneven
current injection [25]).

Abrikosov vortex (AV), with a 2π rotation of the phase
of superconducting order parameter can also induce JPS in a
nearby JJ [41–46]. AV-induced JPS depends on the distance
and geometry [43,44]. AV can be easily and controllably
manipulated (displaced, introduced, or removed) by magnetic
field [43,47], current [17,47,48], light, or heat [46,49] pulses.
Therefore, vortices can be used for creation of memory
cells [17] and tunable but persistent phase batteries.

At present, the mechanism of AV-induced JPS is still not
well understood. Circulating currents and magnetic fields
of AV decay exponentially at a short range given by the
London penetration depth λ ∼ 100 nm. However, AV-induced
JPS is decaying much slower and persists at distances of a
few microns [43]. To some extent it resembles a long-range
Aharonov-Bohm effect [50]. For example, there is a seeming
direct relation between JPS and rotation of the phase of super-
conducting order parameter inside the vortex, given by the po-
lar angle � [43]. Yet, it cannot be the Aharonov-Bohm effect
because phase variation at a line segment (junction length)
is not a gauge-invariant quantity and cannot have physical
significance. Although the problem of AV-induced JPS has
been considered theoretically in several previous publications
and has been solved in some limiting cases [41,42,44–46],
at present there is neither a qualitative understanding of the
long-range nature of the phenomenon, nor a quantitative de-
scription of AV-induced JPS for realistic sample geometries.

Here we perform a systematic analysis of vortex-induced
Josephson phase shifts in Nb-based planar Josephson junc-
tions with artificial vortex traps. We observe that although
AV-induced JPS is a long-range phenomenon, it is terminated
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FIG. 1. Sketches of considered vortex-junction configurations. (a) A top view of planar junction (yellow region) with trapped Abrikosov
vortex in the first (top) electrode. Lines indicate current streamlines. (b) A side view of the same configuration. Lines indicate magnetic field
lines of vortex stray fields. (c) A top view of Corbino disk geometry, in which the fraction of stray flux entering the junction is proportional to
the polar angle of the vortex within the junction segment �v .

(cutoff) by the junction and does not persist beyond it. Dis-
tance dependence of the JPS revealed a linear to superlinear
crossover with a rapid upturn of JPS. The crossover occurs
at AV-JJ distance comparable to the penetration depth. This
allows unambiguous identification of two distinct and inde-
pendent mechanisms of AV-induced JPS. The short range
mechanism is due to circulating vortex currents inside super-
conducting electrodes without involvement of magnetic fields.
The long-range mechanism is due to stray magnetic fields out-
side electrodes without circulating vortex currents. It is long
range because stray fields cannot enter the superconductor and
can spread out along the surface up to arbitrary long distances.
Our conclusions are supported by numerical simulations and
theoretical analysis, which also provides a general vortex-
image solution for the current-induced JPS. We argue that the
detailed understanding of geometrical factors controlling the
vortex-induced Josephson phase shift facilitates development
of novel vortex-based cryoelectronic devices.

II. THEORETICAL ANALYSIS

Let’s consider a single AV in one of the electrodes of a
planar JJ, see a sketch in Fig. 1(a). We assume that the junction
is short, i.e., its length Lx is smaller than double the Josephson
penetration depth λJ . The vortex has a 2π phase rotation,
clockwise circulating currents and magnetic flux, decaying
at some characteristic scale λ∗ inside the superconducting
electrode. In the limiting cases of a thick electrode, d � λ,
it is equal to the London penetration depth, λ∗ = λ. For thin
films, d � λ it is given by the Pearl length λ∗ = λ2/d [51].
Finally, there are stray fields from the vortex outside elec-
trodes. They cannot enter the superconducting electrode and,
therefore, stretch along its surface until edges, where they
eventually close, as sketched in Fig. 1(b). In this section we
discuss how four vortex-related factors, phase rotation of the
superconducting condensate, circulating currents, inner vortex
fields, and outer stray fields, contribute to JPD.

As reported earlier [43], the value and the sign of AV-
induced JPS can be estimated using a naive assumption of
rigid 2π phase rotation around the vortex (the London gauge).
In this case JPD is just equal to the polar angle,

ϕv (x) = −V arctan

(
x − xv

|zv|
)

, (1)

where V is the vorticity (+1 for a vortex, −1 for an
antivortex), xv is the coordinate of the vortex along the
junction and zv is the distance to the junction. The total JPS
within the junction, �ϕv = ϕv (Lx ) − ϕv (x = 0), is equal to
the polar angle of the vortex within the junction segment
�v , indicated in Fig. 1(a), �ϕv � �v = arctan[xv/|zv|] +
arctan[(Lx − xv )/|zv|]. The sign of the phase shift is deter-
mined by the direction of phase rotation. In Fig. 1(a) we sketch
the case of a vortex (clockwise rotation) in the top electrode.
Since ϕ is the difference of phases of top and bottom elec-
trodes, a vortex induces negative JPS �ϕv < 0, irrespective
of in which electrode it is placed. Indeed, when it is placed in
the top electrode, it induces a negative phase gradient solely in
the top electrode. But if we translate it to the bottom electrode
it will induce a positive phase gradient solely in the bottom
electrode. This explains the minus sign and the absolute value
|zv| in Eq. (1). However, as we already mentioned, rigid phase
rotation cannot provide a proper explanation of AV-induced
JPS because phase of the condensate is not a gauge-invariant
quantity and cannot acquire a physically significant value at
a line segment (junction length). Therefore, JPS has to be
induced by circulating currents and fields of the vortex.

Within linear electrodynamics (neglecting spatial variation
of the order parameter), current densities J1,2 in the two
electrodes are described by the generalized second London
equation:

J1,2 = c

4πλ2
1,2

[
�0

2π
�η1,2 − A

]
. (2)
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Here η and A are the corresponding scalar (phase) and vector
potentials. The gauge-invariant JPD is obtained by integration
of Eq. (2) over an infinitesimal contour 1-2-3-4, see Fig. 1(a),
covering the barrier:

1

2π

∂ϕ

∂x
= 4πλ2

1,2

�0c
(J1x − J2x ) + t

�0
By. (3)

Here t is the width of the barrier, J1,2x are x components in the
vicinity of the barrier, By is the y component of magnetic in-
duction in the barrier. In the Meissner state (no vortices), J1,2x

can be obtained explicitly by solving Eq. (2) in the electrodes,
with boundary conditions By = H outside the junction (H is
applied external field in the y direction). A straightforward
calculation yields [52]:

∂ϕM

∂x
= 2πdeff

�0
By, (4)

where deff is the effective magnetic thickness of the junction.
For sandwich-type JJs deff is determined by λ, but for planar
JJs, studied below, deff is determined by sizes Lx,z of junction
electrodes [27,53–56]. Integration of Eq. (4) over the junction
length x ∈ [0, Lx] provides an explicit expression for the field-
induced JPS:

�ϕM = 2π
�

�0
, (5)

where � = deff
∫ Lx

0 Bydx is the total flux in the junction.
Due to linearity of London electrodynmics, JPD in the

presence of a vortex is a superposition of the Meissner con-
tribution at a given H and vortex-induced contribution at zero
field:

ϕ = ϕM (H ) + ϕv (H = 0). (6)

Vortex currents and fields contribute differently to JPS. For
example, in the mesoscopic case Lx � λ∗, the total flux
carried by the vortex �v ∼ (Lx/λ

∗)2�0 � �0 becomes neg-
ligible [52]. Thus, there is no magnetic field neither inside
nor outside the vortex and current makes the only contri-
bution to the phase shift. All previous theoretical studies
considered similar cases without field contribution to vortex-
induced JPS [41,42,44–46]. We note that junctions studied
here and earlier [17,43] have intermediate electrode thickness
d ∼ λ [53] and electrode sizes Lx ∼ 5–6 μm significantly
larger than λ∗ ∼ 100–300 nm. Therefore, stray fields cannot
be neglected in our experiment. Below we will consider both
limiting cases r � λ∗ and r � λ∗.

A. Current induced mechanism in a mesoscopic limit, Lx � λ∗

Let’s first consider the mesoscopic case Lx � λ∗. In this
case vortex flux � � 0 and all magnetic field effects can be
neglected. Therefore, Eq. (2) can be rewritten in cylindrical
(r,�) coordinates as

rotJ = c�0

4πλ∗2
δ(�), (7)

where r is the distance from the vortex, � is the polar angle,
and δ(�) is a delta function. Direct integration yields

J� = c�0

8π2λ∗2

1

r
. (8)

Since By = 0, there are no field-induced screening currents
in the second electrode, J2x = 0. If we substitute J1x from
Eq. (8) into Eq. (3), we obtain ϕv = �, which is equivalent
to Eq. (1). However, this is not a self-consistent solution be-
cause Eq. (8) does not take into account a boundary condition
that currents cannot cross electrode edges [57]. This leads to
distortion of stream lines, as sketched in Fig. 1(a).

The boundary condition can be accounted for using a
well known image method [42]. A mirror image with reverse
vorticity should be added at the other side of the edge.
It cancels out the perpendicular component of the current
through this edge. However, it adds a smaller current at the
opposite edge. To compensate it an image of an image should
be introduced at the opposite edge, and so on. This leads to an
infinite series of images due to reflections from all the edges,
as illustrated in Fig. 2(a). Each image vortex generates JPD
ϕv (xn, zm) according to Eq. (1) with image vortex coordinates
(xn, zm) and corresponding vorticity Vnm. The image solution
for AV-induced JPD is then

ϕv =
∑
n,m

ϕv (xn, zm), (9)

where the sum is taken over the image array. It is rapidly
converging and can be easily calculated, as described in Ap-
pendix A. For a semi-infinite electrode, Lz = ∞, the image ar-
ray consists of the primary image row I due to reflections from
left and right edges, and an antirow I′ due to mirror reflection
from the bottom (junction) edge, see Fig. 2(a). The green line
in Fig. 2(b) shows corresponding antivortex induced JPS as
a function of vortex polar angle �v . Simulations are made
for a vortex at xv = 0.5Lx and for varying zv , see a sketch in
the inset of Fig. 2(b). �v = 0 corresponds to vortex-free case
zv = ∞ and �v � π to AV at the edge of the junction zv → 0.

In Ref. [44] J. Clem obtained a self-consistent solution for
Pearl vortex-induced JPS in thin film planar JJ with narrow
long electrodes (d � λ, Lx � λP, Lz = ∞). The solution is
described in Appendix B. It is shown by the dashed magenta
line in Fig. 2(b). Apparently it coincides with the image array
solution. The coincidence is not occasional because in the
considered flux-free mesoscopic case the only vortex feature
is the delta-function phase singularity, Eq. (7), irrespective
of the vortex type (Pearl or Abrikosov). Consequently, the
solutions are also identical.

From Fig. 2(b) it is seen that a vortex far away from
the junction, �v � 0, does not induce JPS, �ϕv � 0. Upon
approaching to the junction, JPS increases and reaches the
maximum value �ϕv = 2π when the vortex is at the edge
of the junction, �v = π . Doubling of JPS with respect to �v

is due to concentration of currents in a narrow gap between
the vortex and the junction. It can be viewed as an additional
current from the image antivortex, which doubles the JPS.
This doubling is quite peculiar. The total phase shift around
the vortex is always 2π . However, at zv → 0 all of it is
concentrated at one point at the nearest edge, in a stark
contrast to a naive picture of rigid phase rotation around
the vortex. Curiously, if we would make junctions at all the
edges of vortex-carrying electrode, all other junctions except
the one at which the vortex is placed would not show any
phase shifts in this case. Below we will perform a similar
experiment—simultaneous detection of the phase shift from
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FIG. 2. (a) Illustration of an image solution for a rectangular electrode with a vortex. Green circles represent primary images from the
four edges. Multiple mirror reflections from all edges lead to an infinite series of image vortices and antivortices. (b) Calculated variation of
the vortex-induced JPS versus vortex polar angle for a junction with narrow Lx � λ∗, long Lz = ∞ electrodes. Calculations are made for an
antivortex approaching the junction at xv = 0.5Lx from zv = ∞ (�v = 0) to zv = 0 (�v = π ), as sketched in the inset. Green line represents
the image array solution, which coincides with the solution from Ref. [44] for a Pearl antivortex (dashed magenta line). Black dotted line
represents linear dependence �ϕv = �v . (c) Image-array solutions for finite-size rectangular-shape electrodes with Lz = Lx (blue lines) and
Lz = Lx/2 (red lines). Here we consider a double junction experiment, sketched in the inset, and show a variation of JPS in the bottom (solid
lines) and top (dashed lines) junctions made at the upper and lower edges of the electrode, versus the polar angle in the bottom junction, �vb.
Calculations are made for an antivortex moving at xv = 0.5Lx from the top, zv = Lz (minimal value of �vb), to the bottom, zv = 0 (�vb = π ),
junction, as sketched in the inset.

different sides of the vortex. This, however, could be done
only for a finite-size (Lz) electrode. Subsequent reflections
from bottom and top edges in the case of finite Lz electrode
lead to the appearance of an infinite series of image rows I, I′,
II, II′, III, e.t.c, as sketched in Fig. 2(a) (see Appendix A for
details).

Inset in Fig. 2(c) shows a sketch of the double-junction
experiment, which we will perform below. In this case the
antivortex is placed in the middle electrode with two JJ’s on
top and bottom edges. Solid and dashed lines in Fig. 2(c)
show image solutions in the bottom, �ϕvb, and top, �ϕvt , JJ’s,
respectively, versus polar angle in the bottom JJ, �vb. Blue
lines correspond to a square-shaped electrode, Lz = Lx, and
red lines to a rectangular shape, Lz = 0.5Lx. It can be seen that
upon moving of the vortex from one JJ to another the phase
shift changes from 2π to 0 in the former and from 0 to 2π in
the latter.

The disproportional to polar angle variation of JPS, com-
pare green and black dotted lines in Fig. 2(b), is charac-
teristic for the considered mesoscopic case. It is associated
with nonlinearity (singularity) of current distribution around
the vortex center, Eq. (8). Therefore, this disproportionality
can be considered as a signature of the circulating current
mechanism of JPS. Finally, we note that although JPS in
this limit is decaying in a long-range manner ∝1/r, see
Eqs. (1) and (8), this is not a long range phenomenon because
it is valid only at r � λ∗. In principle, the image method
would be valid also for r > λ∗, provided there are no stray
fields [41,42,46]. This is the case for elongated objects with
zero demagnetization factor, but we will not discuss it further
because it is not relevant for the considered case of planar
thin-film junctions [17,43] and because this effect is rapidly

decaying at r > λ∗ [41] and becomes insignificant at longer
scales.

B. Stray-field mechanism in macroscopic junctions, Lx � λ∗

Next we consider an opposite limit, Lx � λ∗, which is
usually the case for JJ’s. In this case AV carries the full
flux quantum and magnetic field effects are essential. If the
vortex-junction distance is (much) larger than the effective
penetration depth, zv > λ∗, we may neglect circulating vortex
currents at the junction. Similarly, we may neglect associated
vortex fields inside the superconducting electrode. In this case
vortex stray fields outside electrodes make the only contribu-
tion to JPS. Since stray fields cannot enter the superconductor,
they have to spread along its surface until edges, as sketched
in Fig. 1(b). The range of spreading is determined entirely by
electrode geometry and can be very long.

When vortex stray fields reach the junction, the corre-
sponding fraction of the flux closes through the junction, as
sketched in Fig. 1(b). This creates an actual magnetic field in
the junction with the sign opposite to that of the vortex. This
field is large because of a flux-focusing effect caused by a
large demagnetization factor of a thin film in perpendicular
field [27]. It induces correspondingly large edge currents
I1x,2x in the junction banks, which have equal amplitudes
but opposite directions, I1x = −I2x, as sketched in Fig. 1(a).
We want to emphasize the principle difference between cir-
culating currents of the vortex, which are bulk (flow in the
whole film thickness) and short-range r ∼ λ∗, and stray-field
induced surface currents, whose range is determined by the
geometry of electrodes. In Fig. 1(b) we tried to separate them
by painting short-range bulk vortex currents in black/white
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FIG. 3. 3D numerical simulations of stray field distribution from a vortex in a system of planar superconducting electrodes. We show
side views through a central cross section containing the vortex (red spot with high field). White horizontal bands represent superconducting
electrodes with B = 0. (a) Vortex in the center of a single square-shaped electrode (no junction). (b) For two electrodes, forming a single
junction. (c) For three electrodes forming two planar junctions. Here the vortex is at the left edge of the panel and it is placed in the same square
shaped electrode as in (a) (left part of the electrode is not shown). From panels (b) and (c) it can be seen that stray fields are predominantly
closing through the nearest junction and that only a minor fraction reaches the outmost junction (note the logarithmic scale). This is consistent
with the cutoff phenomenon observed in experiment.

and long-range stray-field-induced currents in orange/blue. In
the limit considered here, Lx,z � λ∗, only stray-field-induced
surface currents are present at the junction banks.

JPS induced by stray fields is given by Eq. (5), where
� is the total stray flux closing through the junction. Since
electrodes have a large area, Lx,z � λ∗, all the field reaching
the junction goes in it because the penalty for stretching stray
fields further is too high. The stray flux can be calculated
exactly for the Corbino disk geometry, see Fig. 1(c), with a
junction being a segment of the circle (painted yellow). In this
case, due to the rotational symmetry, stray flux in the junction
is � = (�v/2π )�0 and, thus,

�ϕv = �v, (10)

consistent with Eq. (1).
Finding distribution of currents and stray fields in real-

istic planar junctions with large demagnetization factors is
a complex three-dimensional problem, which can be solved
only numerically. Figure 3 represents corresponding 3D sim-
ulations performed using COMSOL Multiphysics software.
Superconductor is modelled as a material with zero mag-
netic permeability, leading to B = 0 inside junction electrodes
[white horizontal bands in Figs. 3(a) and 3(b)]. The vortex is
modeled by setting a finite magnetic field in the vortex trap
(red spots with large field). We represent data in logarithmic
scale so that color scales represent log10(|By|) and densities of
field lines represent log10(|B|).

Figure 3(a) shows a side view of stray field distribution
from a vortex in the center of square shaped superconducting
film. In Fig. 3(b) a second electrode is added to the right
of the initial electrode. The gap between the two electrodes
represents a junction. It is seen that upon reaching the junc-
tion, stray fields are mostly penetrating into it and only a
very small fraction reaches the right edge of the junction.
Simulation in Fig. 3(c) represents the case with a third wider
electrode added to the right, thus forming two junctions. It can
be seen that most stray field lines are closed in the nearest
junction and very few are expanding further out (note the
logarithmic scale). Incomplete closing of stray fields in the
nearest junction in our simulations is a consequence of a too
small demagnetization factor (scaling with Lx,z/d) that we

had to adopt for making a reasonably coarse mesh, to solve
the problem on a personal computer. Planar junctions, studied
below, have a much larger Lx,z/d ∼ 100, with proportionally
larger penalty for stretching stray fields to the outmost edge.

We checked that the stray flux (and thus JPS) in the
junction is approximately proportional to �v . This indicates
a uniform radial spreading of vortex stray fields. Therefore, in
the considered limit of a macroscopic junction Lx,z � λ∗ and
for zv � λ∗ the phase shift is induced solely by stray fields,
proportionally to the polar angle, Eq. (1).

To summarize this section, there are two distinct contribu-
tions to vortex-induced JPS. The current-induced mechanism
is short-range r � λ∗. The corresponding JPS is given by
the image solution and is disproportional with respect to
�v . The stray field mechanism is long-range r ∼ Lz � λ∗
and the corresponding JPS is approximately proportional to
�v . Despite quantitative differences, JPS for both mechanisms
appear to be qualitatively similar and decay in a long-range
manner as 1/r. This is demonstrated in Fig. 4(a), which
shows calculated JPS for the two mechanisms. Thick lines
represent an image solution [Eq. (A2) from Appendix A,
which coincides with the Pearl-vortex solution Eq. (B1) from
Appendix B]. Thin lines represent the stray field contribution
equal to the polar angle, Eq. (1), scaled to the same total
phase shift. Apparently, the curves have similar shapes with
only a minor difference at the edges due to different boundary
conditions. The circulating current mechanism requires zero
phase gradient at the edges because there is neither current
through the edge, nor magnetic field in the corresponding
mesoscopic limit. For the stray-field mechanism there is a
finite field in the junction, which leads to a finite gradient at
the edges, Eq. (4). Both effects are terminated at the junction
because neither circulating currents nor stray fields persist
beyond it. Therefore, only different ranges and functional
dependencies �ϕv (�v ) provide a possibility to discriminate
the two mechanisms.

C. Numerical analysis of Ic(H ) patterns

Appearance of vortex-induced JPS leads to distortion of
Ic(H ) patterns [17,43,44]. The critical current Ic corresponds
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FIG. 4. Numerical modeling of Ic(H ) patterns for different distances zv between junction and vortex. Simulations are made for an antivortex
at different zv and xv = 0.5Lx for a long Lz = ∞ electrode. (a) Phase shifts calculated from image array solution (thick lines) and Eq. (1), scaled
to the same amplitude �ϕv (thin lines). (b)–(f) Variation of Ic(H ) patterns upon approaching of the antivortex to the junction. Dashed black
line in (b) represents the vortex-free Fraunhofer pattern. Thick and thin lines in (b)–(f) are obtained for corresponding lines from (a). The
difference is marginal.

to the maximum of Josephson current, I = Ic0 sin(ϕ(x)),
integrated over the junction length, with ϕ(x) given by Eq. (6).
Figures 4(b)–4(f) show successive evolution of Ic(H ) patterns
upon approaching an antivortex to a junction with vortex-
induced JPS from Fig. 4(a). Thick and thin lines represent the
image solution (circulating current mechanism) and the polar
angle, Eq. (1), (stray-field mechanism) scaled to the same total
JPS. It is seen that the difference between the two solutions
is insignificant. Therefore, we will use Eq. (1), with V as
a fitting parameter, for determination of vortex-induced JPS
from experimental Ic(H ) patterns.

III. EXPERIMENTAL ANALYSIS

Planar proximity-coupled Josephson junctions of SNS-
type (S—superconductor, N—normal metal) are made by cut-
ting N/S bi-layers by a focused ion beam (FIB). The bilayer
is deposited by magnetron sputtering. Films are first patterned
into Lx = 5–6 μm wide bridges by photolithography and ion
etching and subsequently cut by FIB. Finally, a vortex trap
(a hole with diameter 30–50 nm) is made by FIB. We used
various N metals: Cu, Fig. 5, a superparamagnetic CuNi alloy
with approximately 50–50 concentration, Figs. 6, 7, and some
other, all showing similar behavior. In all presented cases the
thickness of N layer (Cu or CuNi) is dN = 50 nm and S layer
(Nb) is dS = 70 nm. Measurements are done in a closed-cycle
4He cryostat. Magnetic field is applied perpendicular to the
film. More details about fabrication and characterization of
such planar junctions (including device sketches) can be found
in Refs. [17,27,43,53,58,59].

To study the mechanism of vortex-induced JPS we fab-
ricated devices with vortex traps at different distances zv

from junctions and with correspondingly different polar an-
gles �v . AV can be manipulated (introduced or erased) by
magnetic field and bias current [17,43]. We always start with
the vortex-free state, obtained after zero-field cooling of the
sample without bias current. A vortex is introduced in the
trap by applying an appropriate current either at zero field
or at small field below the lower critical field of the elec-
trode, as described in Ref. [17]. Entrance/exit of AV results
in an abrupt (instantaneous) change of the critical current.
The two states with and without a vortex in the trap form
steady and perfectly reproducible binary states [17]. This is
how we can be sure that the vortex is indeed sitting in the
trap. Only such reproducible states are shown and analyzed
below. It could happen that eventually additional vortices
enter junction electrodes and are placed randomly outside
the trap. However this leads to irreversible and irreproducible
states. If this happens, we clean the device by repeating
the zero-field cooling procedure. For double-junction exper-
iments, the position of the vortex can be unambiguously
triangulated by simultaneous detection of responses in both
junctions.

A. Single junction experiment

Figure 5(a) shows a scanning electron microscope (SEM)
image of a Nb-Cu-Nb planar junction with a vortex trap. De-
vice parameters are Lx � 5.25 μm, zv � 1.0 μm, and �v �
0.77π . Black lines in Fig. 5(b) represent measured vortex-free
Ic(H ) modulation at T = 2.5 K. It has a Fraunhofer-type
shape with a single central maximum at H = 0 [61]. Magenta
lines in Fig. 5(b) represent Ic(H ) patterns after trapping a
vortex at positive field. The Ic(H ) is significantly distorted:
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FIG. 5. Single junction experiment. (a) SEM image of a Nb-Cu-Nb planar junction with a vortex trap in the top electrode at zv = 1.0 μm
from the junction, zv/Lx = 0.19 and �v = 0.77π . (b) Measured Ic(H ) modulation without vortices (black lines) and with a trapped vortex
(magenta lines). (c) Ic(H ) modulation with a trapped antivortex. It is mirror symmetric with respect to the vortex case in (b). (d) Calculated
Ic(H ) pattern for the experimental geometry from (c). Inset shows corresponding antivortex-induced Josephson phase shift according to Eq. (1).
A good agreement with experimental pattern in (c), without any fitting, indicates that the vortex-induced Josephson phase shift in this case is
close to the vortex polar angle, �ϕv � �v .

The main maximum is shifted towards positive field and an
additional secondary maximum appears at the left side. The
shift of the main maximum in the direction of applied field
is very characteristic for a trapped vortex [43]. Since the main
maximum corresponds to � � 0, such a shift indicates that the
effective vortex-induced field in the junction is opposite with
respect to applied field, i.e., in Fig. 5(b) the vortex-induced
flux is negative and a positive field is needed to compensate it
to � = 0, leading to the corresponding positive shift of the
main Ic(H ) maximum. This is in contrast to Ic(H ) pattern
shifts in ferromagnetic junctions, which trap flux of the same
sign as applied field [60]. The reverse sign of vortex-induced
field is consistent with stray fields, as sketched in Fig. 1(b).
Figure 5(c) shows measured Ic(H ) pattern with a trapped
antivortex. It is mirror symmetric with respect to the vortex
case, Fig. 5(b).

In the device from Fig. 5, the vortex is placed at a rather
large distance zv = 1 μm from the junction, which is sig-
nificantly longer than both London, λ ∼ 100–150 nm, and
Pearl, λP ∼ 140–320 nm, lengths. Therefore, as explained
in Sec. II B, vortex stray fields should make a dominant

contribution to JPS, which should be ��v . Figure 5(d) rep-
resents numerically calculated Ic(H ) with antivortex-induced
JPS according to Eq. (1) and with experimental �v � 0.77π .
Measured and calculated curves from Figs. 5(c) and 5(d)
are in a quantitative agreement without any fitting [61]. This
demonstrates that vortex-induced JPS scales with the polar
angle, |�ϕv| � �v , for large zv � λ∗, consistent with an
earlier report [43].

B. Double junction experiment

As discussed in Sec. II, double junction experiments can
provide crucial information about the mechanism of vortex-
induced JPS. Therefore, we made samples, containing two
planar JJs and vortex traps at different locations. First we
consider the case when a vortex trap is placed in the mid-
dle electrode, shared by both junctions, as sketched in the
inset of Fig. 2(c). In Fig. 6 we show results for such a
device with two Nb-CuNi-Nb JJs. Figures 6(a) and 6(b) show
vortex-free Ic(H ) patterns at T = 6.6 K. They have a regular
Fraunhofer-type shape, indicating good uniformity of JJs [24].
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FIG. 6. Double junction experiment with a vortex trap in the middle electrode, placed closer to the top junction, �vt = 0.92π and �vb =
0.79π . (a) and (b) Fraunhofer-type vortex free Ic(H ) patterns for both junctions. (c)–(f) Black and blue symbols represent measured Ic(H )
patterns after trapping [(c), (d)] a vortex [(e), (f)] an antivortex. Note that distortion is larger for the top junction [(c), (e)] which is closer to the
vortex. Furthermore, vortex-induced JPS is larger than the polar angle for the top junction and smaller for the bottom junction, consistent with
simulations in Fig. 2(c). Red lines represent numerical fits, used for estimation of JPS. Insets show sketches of experiments.

Junction lengths are Lxt = 5.4 μm and Lxb = 5.43 μm and
separation between them Lz � 1.3 μm. The vortex trap is
placed closer to the top JJ with |zvt | � 0.36 μm (comparable
to λ∗) and zvb � 0.94 μm to the bottom JJ, as sketched in
the inset. Corresponding polar angles are �vt � 0.92π and
�vb � 0.79π .

Black and blue symbols in Figs. 6(c) and 6(d) show mea-
sured Ic(H ) patterns for top and bottom junctions, respec-
tively, after trapping a vortex. Figures 6(e) and 6(f) show Ic(H )
characteristics with a trapped antivortex. They are mirror
symmetric with respect to vortex-induced characteristics from
Figs. 6(c) and 6(d). From Figs. 6(c)–6(f) it is obvious that a
vortex in the middle electrode distorts Ic(H ) patterns in both
junctions, but the distortion is stronger in the top junction,
which is closer to the vortex, consistent with simulations from
Fig. 4. Thus, a double-junction geometry allows unambiguous
triangulation of the vortex position.

Red lines in Figs. 6(c)–6(f) represent numerical fits. From
those we obtain |�ϕvt | � 1.5π , which is significantly larger
than �vt � 0.92π and |�ϕvb| � 0.63π , smaller than �vb �
0.79π . This is inline with calculations for mesoscopic double-
junction devices with finite-size Lz electrode, see Fig. 2(c):
When the vortex is close to the top junction (small �vb) the
phase shift is concentrated in the top junction and becomes
larger than �vt up to a factor two for zvt → 0. However,
this is accompanied by reduction of JPS in the furthermost
bottom junction, compare dashed and solid lines in Fig. 2(c),
qualitatively consistent with our observation.

C. The cutoff effect

Now we consider the case when the vortex is placed
in outer electrodes of double-junction devices. Figure 7(a)
shows a SEM picture of such a device. Junction lengths are
Lxt = 5.58 μm and Lxb = 5.56 μm. The separation between
junctions was made intentionally small 0.6 μm, so that polar
angles to both junctions are not very different. Vortex-free
characteristics for both junctions at T = 6.7 K are shown
in Fig. 7(b). They have regular Fraunhofer-type shapes with
minor distortions [61].

Initially, a single vortex trap was made in the top electrode
close to the top junction, marked as the top trap in Fig. 7(a).
The corresponding distances to the top and the bottom junc-
tion are zvt = 0.38 μm and zvb = 1.0 μm. Polar angles are
almost the same as in Fig 6: �vt � 0.91π and �vb � 0.78π .
However, the result of vortex trapping is quite different.

Figures 7(c) and 7(d) show Ic(H ) patterns for the top and
bottom junctions, respectively, with a trapped antivortex in
the top trap at T � 6.7 K. It is seen that Ic(H ) in the top
junction is strongly distorted. Red lines in panel (c) represent a
numerical fit, which yields �ϕvt = 1.55π > �vt . However, in
the bottom junction there is no visible distortion with respect
to the vortex-free case �ϕvb � 0. Consequently, the vortex in
the top electrode does not induce a sensible JPS in the bottom
junction despite a large polar angle �vb = 0.78π .

After this measurement the sample was taken back to
FIB and a second trap was made in the bottom electrode.
The bottom trap, marked in Fig. 7(a), was made at the

174511-8



TWO MECHANISMS OF JOSEPHSON PHASE SHIFT … PHYSICAL REVIEW B 100, 174511 (2019)

μ

-6 -4 -2 0 2 4 6

-200

-100

0

100

200

I c (
μA

)

H (Oe)

-8 -6 -4 -2 0 2 4

-200

-100

0

100

200

I c (
μA

)

H (Oe)

-8 -6 -4 -2 0 2 4

-200

-100

0

100

200

I c (
μ A

)

H (Oe)

Θ π
Δϕ π

Θ π
Δϕ

-6 -4 -2 0 2 4 6
-200

-100

0

100

200

I c (
μ A

)

H (Oe)

-6 -4 -2 0 2 4 6

-200

-100

0

100

200

I c (
μA

)

H (Oe)

Θ π
Δϕ

Θ π
Δϕ π

FIG. 7. Experimental demonstration of the cutoff effect for a double-junction device with vortex traps in outmost electrodes. (a) SEM
image of the device with two nearby Nb-CuNi-Nb junctions. (b) Vortex-free Ic(H ) patterns for both junctions. (c) and (d) Ic(H ) patterns for
the top (c) and bottom (d) junctions with a trapped antivortex in the top trap (this is the only trap at this state of the sample, as sketched in
the inset). Note that the Ic(H ) pattern for the top junction is strongly distorted, indicating the large total JPS �ϕv = 1.55π as seen from the
numerical fit (red line) in (c). However, the pattern in the bottom junction is practically unaffected. (e) and (f) Measurements after making a
second bottom trap at the same distance to the bottom junction as for the top trap, see the sketch. Symbols represent Ic(H ) patterns with an
antivortex in the bottom trap. This time the pattern in the bottom junction is significantly distorted but in the top junction is not. This illustrates
that the vortex-induced JPS is terminated at the junction and does not persist beyond it.

same distance and polar angle to the bottom junction as the
top trap, |zvb| = 1.0 μm, �vb = 0.78π . Corresponding values
for the top junction are |zvt | = 1.6 μm and �vt = 0.67π .
Figures 7(e) and 7(f) show Ic(H ) modulation for top and
bottom junctions with a trapped antivortex in the bottom trap.
It is seen that Ic(H ) in the bottom junction, which shares one
electrode with the vortex, is now significantly distorted. A
numerical fit, shown by red lines in Figs. 7(f), yields �ϕvb =
0.78π , equal to the corresponding polar angle �vb. However,
now the top junction, which has vortex-free electrodes, is
unaffected, �ϕvt � 0.

Observations from Fig. 7 clearly demonstrate that vortex-
induced JPS is cutoff by the nearest junction and does not per-
sist beyond it. JPS is induced only when AV is placed in one
of the junction electrodes and is not observed otherwise, irre-
spective of the distance between the vortex and the junction
(at least for zv > λ [62]). The cutoff makes it evident that JPS
is not due to the Aharonov-Bohm effect. On the other hand,
the cutoff is expected for both JPS mechanisms, discussed
in Secs. II A and II B. The current-induced JPS is terminated
because vortex currents do not cross the junction [57]. The
stray-field JPS is terminated due to almost complete closing
of field lines through the nearest junction, see Fig. 3(c).

D. Distance dependence of the phase shift

From presented data it follows that vortex-induced JPS
can be equal [Figs. 5 and 7(f)], larger [Figs. 6(c) and 6(e)

and 7(c)], or smaller [Figs. 6(d) and 6(f)] than the polar angle
�v . Since junction lengths Lx are approximately the same,
factors that control JSP are the vortex-junction distance zv and
the electrode size Lz, which is finite for the case when vortices
are placed in middle electrodes of double-junction devices and
essentially infinite otherwise.

Figure 8 summarizes the dependence of observed JPS on
the vortex polar angle. Blue symbols represent previously
reported data from Ref. [43]. Red symbols represent data from
this study. Filled red circles correspond to Lz ∼ ∞, either
for single-junction devices or double-junction devices with
the vortex in outmost electrodes. Open red symbols represent
double-junction data for the vortex in the middle electrode
with finite Lz. Similar symbols represent JPS for junctions
on the same device. For example, open squares represent data
from Fig. 6. JPS values �ϕv are obtained from fitting using
Eq. (1), as shown in Figs. 5–7. The accuracy of determination
of �ϕv is limited mostly by some deviations of vortex-free
Ic(H ) from the pure Fraunhofer pattern [61]. It may also be
affected by the presence of far-away vortices (at zv � Lx)
that may create a small irregular distortion of Ic(H ), which is
difficult to control just because of its smallness. We estimate
the corresponding systematic uncertainty less than 0.1π . The
solid black line in Fig. 8 represents Eq. (1) with linear
dependence �ϕv = �v , expected for the stray-field mecha-
nism in macroscopic devices. Dashed lines represent current-
induced image solutions for mesoscopic devices. Olive and
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Red symbols are from the present study and blue from Ref. [43].
Solid circles are for single- and double-junction devices with vor-
tices in outmost electrodes, Lz = ∞. Open symbols are for double-
junction devices with the vortex in the middle electrode with finite
Lz. Similar symbols correspond to junctions at the same device.
Solid and dashed lines represent stray-field, Eq. (1), and current-
induced image solutions (Lz = ∞, olive and Lz = 0.24Lx , magenta
curve), respectively. A crossover from linear to superlinear depen-
dence occurs at �v � 0.9π , corresponding to zv � 500 nm ∼λ∗.
The crossover indicates transition in the mechanism of the phase
shift from stray-field-induced (linear) at large distances zv � λ∗ to
circulating-current-induced (superlinear) at a short range zv � λ∗.

magenta dashed lines correspond to Lz ∼ ∞ and Lz = 0.24Lx,
respectively.

From Fig. 8 it is seen that for small �v (large distances)
JSV scales linearly with the polar angle �ϕv � �v . However
at larger �v (small zv), the phase shift becomes larger than
the polar angle (superlinear) and approaches 2π , qualitatively
consistent with the image solution [62]. The upturn is more
abrupt than predicted by the Lz = ∞ solution (olive dashed
line). This may have two reasons. First, for finite Lz (middle
electrode), �ϕv vs �v line is steeper because the minimal �v

is finite, cf. Figs. 2(b) and 2(c). Magenta dashed line in Fig. 8
represents the image solution for Lz = 0.24Lx , corresponding
to the device from Fig. 6 with Lz = 1.3 μm. It provides a
seemingly good description of data for the vortex in the
middle electrode (open symbols). In concord with such a
description, some of the open red symbols lie below the
�ϕv = �v line. Those points correspond to farmost JJs in
double junction devices, as in Figs. 6(d) and 6(f). Such a
deviation is expected for the current-induced mechanism due
to concentration of JPS at the nearest to the vortex junction,
see Fig. 2(c).

On the other hand, from Fig. 8 it is seen that even
for vortices in outer electrodes (solid symbols) the upturn

�ϕv (�v ) follows approximately the same line. Consequently
there should be a more general reason for the upturn, unrelated
to Lz. The origin becomes clear if we consider the upturn
as a crossover from a linear stray-field induced JPS at large
distances to a superlinear �ϕv (�v ) for current-induced JPS
at small distances. Such a crossover should occur at zv ∼ λ∗,
which separates ranges of validity of the two mechanisms.
Indeed, the upturn �ϕv (�v ) starts at distances zv � 500 nm,
which is comparable to the estimated value of the Pearl length
λP � 300 nm. Therefore, we conclude that the observed linear
to superlinear crossover is primarily due to a gradual transition
from the long-range stray-field mechanism at large distances
zv � λ∗ to a short-range circulating current mechanism at
zv � λ∗. Thus we identify two distinct mechanisms of Joseph-
son phase shift generation by an Abrikosov vortex. This is our
main result.

IV. CONCLUSIONS

To summarize, we performed a systematic study of
Abrikosov vortex-induced phase shifts in planar Josephson
junctions. We demonstrated that JPS depends on the polar
angle of the vortex within the junction and decays slowly, in a
long-range manner, approximately inversely proportionally to
the distance. Thus a significant phase shift can be generated
even at very large distances (few microns), compared to
the London penetration depth λ � 100 nm. However, experi-
ments with two consecutive junctions have shown that vortex-
induced JPS is cutoff by the nearest junction and does not per-
sist beyond it, irrespective of the distance. Thus, this is not a
true long-range phenomenon, like the Aharonov-Bohm effect.
The phase shift is induced only when the vortex is present
in one of the junction electrodes. On a quantitative level we
observed a crossover from a linear dependence �ϕv � �v at
large distances zv � λ∗ to a superlinear dependence at shorter
distances zv � λ∗.

We performed theoretical and numerical analysis of two
mechanisms of vortex-induced JPS generation: By circulating
vortex currents at a short range r � λ∗ and by vortex stray
fields at a long range r � λ∗. For the current-induced mecha-
nism we derived a simple and rigorous image array solution,
valid for finite-size electrodes both for Abrikosov and Pearl
vortices. We emphasize that the two mechanisms are distinct
and independent. Vortex stray fields spread outside a super-
conductor and can generate JPS at arbitrary long distances
r � λ∗, at which there are no circulating vortex currents
inside a superconductor. Similarly, circulating vortex currents
create a large phase shift only at a short-range r < λ∗, where
circulating current densities are large. In the mesoscopic case
it occurs without involvement of magnetic fields.

Observation of the linear-to-superlinear crossover
�ϕv (�v ) clearly revealed gradual transition from one
mechanism to another. Altogether this work provides a
comprehensive quantitative description of the vortex induced
Josephson phase shift. We anticipate that this knowledge can
be employed for development of future generation of compact
Josephson electronic devices like memory [17] and tunable
phase shifters. Both compactness and tunability are facilitated
by the small size of the Abrikosov vortex, λ ∼ 100 nm, which
represents the smallest magnetic object in a superconductor.

174511-10



TWO MECHANISMS OF JOSEPHSON PHASE SHIFT … PHYSICAL REVIEW B 100, 174511 (2019)

ACKNOWLEDGMENTS

The work was accomplished during a sabbatical period of
V.M.K. at Moscow Institute of Physics and Technology and
was supported by the Russian Science Foundation, Grant No.
19-19-00594, and the 5-top-100 program at MIPT.

APPENDIX A: IMAGE ARRAY SOLUTION

Let us consider a vortex (V = 1) at position (xv, zv ) in
the electrode-1 with sizes (Lx, Lz ), as sketched in Fig. 2(a).
We assume that at least one of the sizes is mesoscopic,
Lx � λ∗. Mirror reflections from the vertical (left-right)
edges will create a first image row [marked I in Fig. 2(a)]
at z1 = zv with antivortices at xn− = −2(n − 1)Lx − xv

and xn+ = 2nLx − xv, (n = 1, 2, 3...) and vortices at
xm− = −2mLx + xv and xm+ = 2mLx + xv, (m = 1, 2, 3...).
Each of them induces a phase shift according to Eq. (1).
The original vortex will create a total phase shift
�ϕ0 = arctan[(Lx − xv )/zv] + arctan[xv/zv]. The two
primary antivortex images [marked green in Fig. 2(a)] will
reduce it by �ϕ1 = − arctan[(Lx + xv )/zv] + arctan[xv/zv] −
arctan[(2Lx − xv )/zv] + arctan[(Lx − xv )/zv]. Subsequent
vortex and antivortex pairs will add �ϕm = arctan[((2m +
1)Lx − xv )/zv] − arctan[(2mLx − xv )/zv] + arctan[(2mLx +
xv )/zv] − arctan[((2m − 1)Lx + xv )/zv] and �ϕm+1 =
− arctan[((2m + 1)Lx + xv )/zv] + arctan[(2mLx + xv )/zv] −
arctan[(2m + 2)Lx − xv )/zv] − arctan[((2m + 1)Lx +
xv )/zv], (m = 1, 2, 3...), correspondingly. As a result, the
total phase shift induced by row I can be written as

�ϕI = 2

(
tan−1 xv

zv

−
∞∑

n=1

[
tan−1 2nLx − xv

zv

− tan−1 (2n − 1)Lx − xv

zv

− tan−1 2nLx + xv

zv

+ tan−1 (2n − 1)Lx + xv

zv

])
. (A1)

If electrode 1 is semi-infinite Lz = ∞, then we need to
add only one additional image row from the bottom (junction)
edge, marked I′ in Fig. 2(a). It is obvious that this row will
create exactly the same phase shift, as row I. Consequently,

for a semi-infinite electrode the total phase shift is double the
phase shift of the primary row.

�ϕv (Lz = ∞) = 2�ϕI. (A2)

For a finite-size electrode additional image rows appear
due to mirror reflections from the top edge, as depicted in
Fig. 2(a). Reflection of the primary row I from the top edge
leads to the secondary antirow II z = 2Lz − zv . Its reflection
from the bottom edge leads to a row II′ at z = −2Lz + zv , and
so on. Each image vortex in the row generates a phase shift
according to Eq. (1) with corresponding coordinates (xn, zm).
Similar to the case of antivortices and vortices in the pri-
mary row I, antirows appear at zn− = −2(n − 1)Lz − zv and
zn+ = 2nLz − zv, (n = 1, 2, 3...), rows at zm− = −2mLz + zv

and zm+ = 2mLz + zv, (m = 1, 2, 3...) and couples of rows
are symmetric with respect to the junction [e.g., rows I–I′
and II–II′ in Fig. 2(a)] and create identical phase shifts. This
simplifies calculations.

The sum in Eq. (A1) is well behaving and converges at
n = 10–20, depending on zv . The larger is zv (small �v) the
more terms are needed. n = 10 is enough for achieving an
absolute accuracy �0.01π . The simulated curves shown in
Fig. 2(b) were obtained with 20 terms and absolute accuracy
�0.001π . For a finite Lz, �v cannot be small and, therefore,
convergence is much faster. Data shown in Fig. 2(a) for finite
Lz was obtained by summing four pairs of rows, but already
three rows provide a similar result with no visible difference
at the scale of the graph.

APPENDIX B: COMPARISON WITH CLEM’S SOLUTION

In Ref. [44] Clem obtained a self-consistent solution for
JPS induced by a Pearl vortex in a thin film planar JJ with
narrow, long electrodes using a conformal mapping method:

ϕPearl = arg

[
w(ζ ) − w∗(ζv )

w(ζv ) − w(ζ )

]
, (B1)

where ζ = x + iz, ζv = xv + izv , w(ζ ) = i sinh(πζ/Lx ) and
w∗ is a complex conjugate of w. The solution is valid for a
junction with d � λ, Lx � λP and Lz = ∞. The solution is
represented by the dashed magenta line in Fig. 2(b).
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